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Chapter 1

Introduction

These notes are based on a series of 7 lectures given by the author at the Uni-
versity of Sevilla in October 2022. This is a preliminary version of the notes,
and I would be very happy to receive comments, corrections and suggestions.1

Before we come to the definitions of operads and ∞-operads to the next
chapter, in this introduction we will try to say a few words about what ∞-
operads are supposed to do, and why the reader might be interested in learn-
ing about them. Roughly speaking, we can say that ∞-operads are a frame-
work for working with homotopy-coherent algebraic structures in the setting of
∞-categories2.

What, then, are homotopy-coherent algebraic structures? At least heuristi-
cally, these are algebraic structures where equalities are replaced by a coherent
choice of (higher and higher) homotopies. Such structures were first consid-
ered in algebraic topology, with the very first probably being the 𝐴∞-spaces of
Stasheff [Sta63]. These are topological spaces 𝑋 equipped with a multiplication
𝑚 : 𝑋 ×𝑋 → 𝑋 that is only associative up to a specified homotopy in the square

𝑋 ×3 𝑋 ×2

𝑋 ×2 𝑋

𝑚×1

1×𝑚 𝑚

𝑚

which thus gives a continuously varying family of paths 𝑎(𝑏𝑐) → (𝑎𝑏)𝑐 for
𝑎, 𝑏, 𝑐 ∈ 𝑋 . These homotopies must themselves be related by a homotopy of

1Including suggestions for further topics that ought to be covered in an introduction to ∞-
operads, since I have a vague idea of expanding these notes some day. . .

2I will assume the reader already has some familiarity with∞-categories, or is at least willing
to fake it.
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homotopies in the pentagon

((𝑎𝑏)𝑐)𝑑 (𝑎(𝑏𝑐))𝑑

(𝑎𝑏) (𝑐𝑑) 𝑎((𝑏𝑐)𝑑)

𝑎(𝑏 (𝑐𝑑))

for points 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋 , and so on forever. The notion of 𝐴∞-space was intro-
duced because this is precisely the multiplicative structure that occurs on loop
spaces. However, up to homotopy equivalence such structures can in fact al-
ways be replaced by a strictly associative multiplication (cf. Moore loops in the
case of loop spaces).

Looking at iterated loop spaces leads to more complex homotopy-coherent
structures, called 𝐸𝑛-spaces, first introduced by Boardman–Vogt [BV73] and
May [May72]. The limiting case of 𝐸∞-spaces, which is the algebraic structure
on infinite loop spaces, can be thought of as additionally encoding commu-
tativity in a fully homotopy-coherent sense. Such a structure typically cannot
be replaced by a strict commutative multiplication on a homotopy-equivalent
space3.

Other examples of homotopy-coherent algebraic structures arise in cate-
gory theory, where structures like (symmetric) monoidal (2-)categories can be
viewed as “truncated” instances of homotopy-coherent structures. There are
also many interesting examples of homotopy-coherent algebraic structures on
chain complexes.

While they have since found many uses, operads were in fact introduced (in
[BV73] and [May72]) as a way to organize the homotopy-coherence data that
arises in such examples. However, such “strict” operads have certain drawbacks,
analogous to those of simplicial categories as a model of ∞-categories. One
advantage of instead working with∞-operads, that is an∞-categorical version
of operads, is that they often give a less painful way to organize this kind of
coherence data, where we never have to think about it explicitly, simply by
exploiting that we have already set up a good theory of∞-categories to encode
homotopy-coherent diagrams.

In summary, ∞-operads are supposed to give a convenient language for
working with homotopy-coherent algebraic structures.4 We mention some
general features of the theory that it might be helpful to keep in mind:

• In practice, we typically care more about the homotopy-coherent versions
3In fact, strictly commutative and associative multiplications can only exist on Eilenberg–

MacLane spaces.
4In particular, if you don’t happen to work with such structures, you probably don’t need to

care about ∞-operads!
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of familiar structures like (associative or commutative) algebras and mod-
ules over them, rather than in new “exotic” algebraic structures. (There is
arguably one very important exception, namely 𝐸𝑛-algebras. On the other
hand, these can also be described as iterated associative algebras.)

• The applications of∞-operads are more as a good language for describing
homotopy-coherent algebras, rather than in the form of “big theorems”
about ∞-operads themselves.

• While the algebraic structures we typically care about can also be described
using other approaches (such as simplicial or topological operads) taking
an∞-categorical approach gives us many tools for constructing new sym-
metric monoidal∞-categories and “doing algebra with∞-categories” that
are not easily accessible in older formalisms.

Acknowledgments

I thank Fernando Muro, Víctor Carmona Sánchez, and Ramón Flores for invit-
ing me to give a lecture series in Sevilla, and the audience for sitting through
7 lectures on ∞-operads. These lectures were to some extent based on previ-
ous lectures on related topics, so I also thank the organizers of the YaMCATS
seminar (Simona Paoli, Nicola Gambino, Steve Vickers, and Scott Balchin) for
letting me talk about analytic monads in Leeds in 2018, Hongyi Chu and Bruno
Stonek for inviting me to talk about ∞-operads in Bonn on the internet in
2020, and Thomas Nikolaus for asking me to talk about∞-operads in Münster
in 2021.

Unfortunately, mainly due to time constraints, far too much of the lectures
ended up focusing on my own work. While I hope to rectify this somewhat
in future versions of these notes, this at least gives me an occasion to thank my
collaborators on∞-operadic topics, who have taught me much of this material:
Shaul Barkan, Hongyi Chu, David Gepner, Gijs Heuts, Joachim Kock, and Jan
Steinebrunner.
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Chapter 2

From operads to ∞-operads

The main goal of this chapter is to introduce Lurie’s definition of ∞-operads
and explain how it is a natural generalization to the ∞-categorical setting of a
good (if perhaps not so well-known) approach to operads in sets. We hope to
convince the reader that the definition of ∞-operads is easy to understand and
that it is usable in practice (and perhaps disabuse them of the idea that∞-operads
are particularly difficult or technical).

We start by briefly reviewing operads in §2.1 before we introduce the ap-
proach to operads via their categories of operators in §2.2. Once this is done, it
is easy to find an appropriate ∞-categorical analogue, which we do in §2.3.

2.1 What are operads anyway?

There are many equivalent ways to define operads (and we will see some more
of these later), but one good way to think about them is that, roughly speaking,
an operad is a structure like a category, but where instead of morphisms going
from one object to another, morphisms in an operad have a list of objects as
their source (but still a single object as target).

Remark 2.1.1. We will use the word operad to refer by default to the many-
object (or “coloured”) version of operads. These structures are also known as
symmetric multicategories. The term operad was first used for the one-object case,
and this usage is still common; our terminology is chosen for compatibility
with that normally used in the∞-categorical setting (where “symmetric multi-
∞-category” becoems rather cumbersome). Note also that our operads here
are unenriched, that is they are operads in sets rather than enriched in some
symmetric monoidal category. This is because the notion of∞-operads we will
introduce gives precisely the ∞-categorical analogue of operads in sets.

Here is a more (but not completely) precise definition:
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Definition 2.1.2. An operad O consists of a set obO of objects and for all lists of
objects 𝑌 = (𝑦1, . . . , 𝑦𝑛) (𝑛 ≥ 0) and 𝑥 ∈ obO a set HomO(𝑌, 𝑥) of multimorphisms
𝑌 → 𝑥 together with

• a composition operation that lets us compose a multimorphism 𝑓 : 𝑌 → 𝑥

with a list of multimorphisms 𝐺 = (𝑔𝑖 : 𝑍 𝑖 → 𝑦𝑖)𝑖=1,...,𝑛 to get a multimor-
phism 𝑓 ◦ 𝐺 : (𝑍 1, . . . , 𝑍𝑛) → 𝑥 (where the list of lists really means their
concatenation),

• an identity id𝑥 : (𝑥) → 𝑥 for all 𝑥 ∈ obO,

• a permutation symmetry whereby for each 𝜎 ∈ Σ𝑛 we have

HomO((𝑦1, . . . , 𝑦𝑛), 𝑥)
∼−→ HomO((𝑦𝜎 (1) , . . . , 𝑦𝜎 (𝑛) ), 𝑥),

compatible with multiplication in the symmetric group Σ𝑛.

such that the composition is

• associative, i.e. (𝑓 ◦ 𝐺) ◦ (𝐻1, . . . , 𝐻𝑛) = 𝑓 ◦ (𝐺 ◦ (𝐻1, . . . , 𝐻𝑛)) where 𝐺 =

(𝑔1, . . . , 𝑔𝑛) and 𝐺 ◦ (𝐻1, . . . , 𝐻𝑛) = (𝑔1 ◦ 𝐻1, . . . , 𝑔𝑛 ◦ 𝐻𝑛),

• unital, i.e. id𝑥 ◦ 𝑓 = 𝑓 = 𝑓 ◦ id𝑌 where id𝑌 = (id𝑦1, . . . , id𝑦𝑛 )

• compatible with the symmetric group actions, in a sense that is “obvious”
but annoying to write down1.

Notation 2.1.3. Suppose O is an operad with a single object ∗. Then it is con-
venient to write O(𝑛) for the set of 𝑛-ary multimorphisms HomO((∗, . . . , ∗), ∗)
with 𝑛 ∗’s as input. The permutations give an action of Σ𝑛 on O(𝑛), and the
composition operations can be written as

O(𝑛1) × · · · × O(𝑛𝑘 ) × O(𝑘) → O(𝑛1 + . . . + 𝑛𝑘 ).

Remark 2.1.4. The one-object version of operads was first introduced by May
[May72] and Boardman–Vogt [BV73], while the non-symmetric (that is, with-
out symmetric group actions) version of many-object operads (often called mul-
ticategories) was considered earlier by Lambek [Lam69].

Examples 2.1.5.

(i) The commutative operad Comm has a single object ∗ and Comm(𝑛) has a
single element for all 𝑛 = 0, 1, . . .. (Once we have defined the category of
operads, Comm will be its terminal object.)

1Having to deal with permutation explicitly is arguably a serious disadvantage of this way of
describing operads, even if we were not interested in their ∞-analogues.
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(ii) The associative operad Assoc also has a single object ∗, and Assoc(𝑛) is the
set of orderings of 1, . . . , 𝑛 with its free Σ𝑛-action. Composition is given
by concatenation of orderings.

(iii) Let CM be the operad with two objects 𝑎,𝑚 and with

HomCM(𝑌, 𝑥) =


∗, 𝑌 = (𝑎, . . . , 𝑎), 𝑥 = 𝑎,

∗, 𝑌 = (𝑎, . . . , 𝑎,𝑚) up to permutation, 𝑥 =𝑚,

∅, otherwise.

(iv) Let BM be the operad with three objects 𝑙,𝑚, 𝑟 and where for𝑋 = (𝑥1, . . . , 𝑥𝑛)
we have

HomBM(𝑋, 𝑙) = {isomorphisms between 𝑋 and (𝑙, . . . , 𝑙)},
HomBM(𝑋, 𝑟 ) = {isomorphisms between 𝑋 and (𝑟, . . . , 𝑟 )},

HomBM(𝑋,𝑚) = {isomorphisms between 𝑋 and (𝑙, . . . , 𝑙,𝑚, 𝑟, . . . , 𝑟 )}.

Composition is given by concatenation of such isomorphisms.

Definition 2.1.6. Let (V, ⊗) be a symmetric monoidal category. We define an
operad Vopd with the same objects as Vby taking2

HomVopd ((𝑣1, . . . , 𝑣𝑛),𝑤) := HomV(𝑣1 ⊗ · · · ⊗ 𝑣𝑛,𝑤),

where for 𝑛 = 0 we interpret the empty tensor product as the unit in V. Com-
position of multimorphisms is given by tensoring and composing morphisms
in V.

Definition 2.1.7. Suppose O and P are operads. A functor of operads 𝐹 : O→ P

consists of an assignment 𝐹 : obO→ obP on objects, and maps on multimor-
phisms HomO((𝑦1, . . . , 𝑦𝑛), 𝑥) → HomP((𝐹𝑦1, . . . , 𝐹𝑦𝑛), 𝐹𝑥) compatible with
composition, identities, and permutations. We write Opd for the category of
operads and functors. If V is a symmetric monoidal category, then a functor of
operads O→ Vopd is also called an O-algebra in V.

Examples 2.1.8. Let Vbe a symmetric monoidal category.

(i) A Comm-algebra in V is a commutative algebra: a functor Comm →
Vopd picks out a single object 𝐴 ∈ V and specifies for each 𝑛 a morphism
`𝑛 : 𝐴⊗𝑛 → 𝐴 that is invariant under the action of Σ𝑛 given by permuting
the tensor factors, and for any partition 𝑛 = 𝑛1 + · · · + 𝑛𝑘 we have

`𝑛 = `𝑘 ◦ (`𝑛1 ⊗ · · · ⊗ `𝑛𝑘 ).
2Here we’re being a bit imprecise: really we need to choose a parenthesization of the tensor

product and then use the associator isomorphisms when we define composition.
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Here `1 = id𝐴 (being the image of the identity of the unique object of
Comm) and `0 : 1 → 𝐴 is a unit for the multiplication given by `2 : 𝐴 ⊗
𝐴 → 𝐴, which is commutative since it is invariant under reordering the
two copies of𝐴. Note also that `𝑛 for 𝑛 > 2 can be expressed as an iterated
composition of `2’s.

(ii) An Assoc-algebra in V is an associative algebra: a functor Assoc→ Vopd
picks out a single object𝐴 ∈ Vand specifies for each𝑛 a morphism𝐴⊗𝑛 →
𝐴 for every ordering of 1, . . . , 𝑛, but these are all obtained from each other
by reordering the factors in the tensor product. Moreover for 𝑛 > 2 they
can all be obtained by iterated composition of the binary multiplication.

(iii) A CM-algebra𝐴 in Vconsists of a commutative algebra𝐴(𝑎) and a module
𝐴(𝑚) over 𝐴(𝑎).

(iv) A BM-algebra 𝐴 in V consists of two associative algebras 𝐴(𝑙) and 𝐴(𝑟 ),
and an 𝐴(𝑙)-𝐴(𝑟 )-bimodule 𝐴(𝑚).

Observation 2.1.9. If V and W are symmetric monoidal categories, then a
functor of operads Vopd → Wopd is the same thing as a lax symmetric monoidal
functor V → W: A multimorphism (𝑣1, . . . , 𝑣𝑛) → 𝑤 factors uniquely as
(𝑣1, . . . , 𝑣𝑛) → 𝑣1 ⊗ · · · ⊗ 𝑣𝑛 → 𝑤 , so its image in Wopd is determined by the
functor V→ Wobtained by restricting to unary operations, together with the
multimorphisms of the form (𝐹𝑣1, . . . , 𝐹𝑣𝑛) → 𝐹 (𝑣1 ⊗ · · · ⊗ 𝑣𝑛) in Wopd. These
correspond to morphisms 𝐹𝑣1 ⊗ · · · ⊗ 𝐹𝑣𝑛 → 𝐹 (𝑣1 ⊗ · · · ⊗ 𝑣𝑛), which give the
data of a lax symmetric monoidal structure on this functor.

Observation 2.1.10. Any category C can be regarded as an operad with only
unary operations, that is

HomC((𝑦1, . . . , 𝑦𝑛), 𝑥) :=
{

HomC(𝑦1, 𝑥), 𝑛 = 1,
∅, 𝑛 ≠ 1.

A functor between two such operads is then the same thing as a functor between
the corresponding categories, so we get a fully faithful inclusion Cat ↩→ Opd.
This has a right adjoint, which takes an operad O to the category obtained by
forgetting all but the unary operations in O.

We can characterize those operads that arise from symmetric monoidal cat-
egories:

Proposition 2.1.11. An operad O arises from a symmetric monoidal category if and
only if the following conditions hold:

(1) For all lists 𝑋 = (𝑥1, . . . , 𝑥𝑛) of objects in O there exists an object ⊗𝑋 and a mul-
timorphism 𝑋 → ⊗𝑋 such that composition with this map gives an isomorphism

HomO(⊗𝑋,𝑦)
∼−→ HomO(𝑋,𝑦)
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for all 𝑦 ∈ O.

(2) If the list 𝑋 decomposes as a concatenation of lists (𝑋1, . . . , 𝑋𝑛), then the map
⊗𝑋 → ⊗(⊗𝑋1, . . . , ⊗𝑋𝑛) that corresponds to the composite

𝑋 = (𝑋1, . . . , 𝑋𝑛) → (⊗𝑋1, . . . , ⊗𝑋𝑛) → ⊗(⊗𝑋1, . . . , ⊗𝑋𝑛)

is an isomorphism.

See [Lei04, Section 3.3] for a proof of the non-symmetric version of this
proposition.3

Example 2.1.12. Let C be a category. Define an operad C⨿ with the same
objects as Cwhere

HomC⨿ ((𝑐1, . . . , 𝑐𝑛), 𝑐) :=
𝑛∏
𝑖=1

HomC(𝑐𝑖 , 𝑐),

with composition coming from composition in C. This arises from a symmetric
monoidal category if and only if Chas coproducts.

2.2 Operads via categories of operators

In this section we introduce the category of operators of an operad, which allows
us to formulate the notion of an operad entirely within the setting of ordinary
categories.

Definition 2.2.1. We write F for the category of finite sets, and F∗ := F∗/ for
the the category of pointed finite sets. It is sometimes notationally convenient
to use a skeleton of this category, given by the objects

⟨𝑛⟩ := ({0, 1, . . . , 𝑛}, 0),

which we will do without comment.

Observation 2.2.2. The category F∗ can also be defined as the category whose
objects are finite sets, with a morphism from 𝑆 to 𝑆 ′ given by a span

𝑇

𝑆 𝑆 ′

𝑓 𝑔

where the backwards map 𝑓 is required to be injective; composition of spans
is by taking pullbacks. Here this span corresponds to the map of pointed sets
𝑆+ → 𝑆 ′+ that restricts to 𝑔 on 𝑇 ⊆ 𝑆 and sends all elements not in 𝑇 to the
basepoint.

3I have not managed to find a detailed proof of the symmetric version in the literature.
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Definition 2.2.3. Let O be an operad. Its category of operators O⊗ is a category
with a functor to F∗ whose

• objects over ⟨𝑛⟩ are lists (𝑥1, . . . , 𝑥𝑛) (possibly empty) of objects of O,

• morphisms (𝑥1, . . . , 𝑥𝑛) → (𝑦1, . . . , 𝑦𝑚) consist of a morphism 𝜙 : ⟨𝑛⟩ →
⟨𝑚⟩ in F∗ and for 𝑗 = 1, . . . ,𝑚 a multimorphism Φ𝑖 : (𝑥𝑖)𝑖∈𝜙−1 ( 𝑗 ) → 𝑦 𝑗 in O.

Composition comes from composition in O: given morphisms

(𝑥1, . . . , 𝑥𝑛)
(𝜙,Φ𝑖 )−−−−−→ (𝑦1, . . . , 𝑦𝑚)

(𝜓,Ψ𝑗 )−−−−−→ (𝑧1, . . . , 𝑧𝑘 ),

their composite is specified by 𝜓 ◦ 𝜙 together with the composite multimor-
phisms Ψ𝑗 ◦ (Φ𝑖)𝑖∈𝜓 −1 ( 𝑗 ) . The identity of (𝑥1, . . . , 𝑥𝑛) is (id⟨𝑛⟩, (id𝑥𝑖 )𝑖=1,...,𝑛). Any
functor of operads 𝐹 : O→ P induces an obvious functor O⊗ → P⊗ over F∗, so
that the category of operators gives a functor Opd→ Cat/F∗ .

Remark 2.2.4. This definition of the category of operators goes back to the
work of May and Thomason [MT78].

It turns out that we can give a purely categorical characterization of the
categories that arise from this construction, and thus get a new way to think of
operads. Before we can discuss this, we first need some definitions:

Definition 2.2.5. Let 𝑝 : E→ B be a functor. We say a morphism 𝑓 : 𝑥 → 𝑦

in E lying over 𝑓 : 𝑎 → 𝑏 in B is 𝑝-cocartesian if for every 𝑧 ∈ Eover 𝑐 ∈ B the
commutative square

HomE(𝑦, 𝑧) HomE(𝑥, 𝑧)

HomB(𝑏, 𝑐) HomB(𝑎, 𝑐)

𝑓
∗

𝑝 𝑝

𝑓 ∗

is a pullback. In other words, 𝑓 is cocartesian if given 𝑔 : 𝑏 → 𝑐 and 𝜙 : 𝑥 → 𝑧

with 𝑝 (𝜙) = 𝑔𝑓 , there exists a unique morphism 𝑔 : 𝑦 → 𝑧 such that 𝜙 = 𝑔𝑓 .
If 𝑆 is some collection of morphisms in B, we say that E has 𝑝-cocartesian lifts
of 𝑆 if for every 𝑓 : 𝑎 → 𝑏 in 𝑆 and 𝑥 in E over 𝑎, there exists a 𝑝-cocartesian
morphism over 𝑓 with source 𝑥 . We say that 𝑝 is a cocartesian fibration4 if Ehas
𝑝-cocartesian lifts of all morphisms in B, and an isofibration if Ehas cocartesian
lifts of isomorphisms in B.

Warning 2.2.6. With this definition the notion of “having 𝑝-cocartesian lifts
of 𝑆” is not invariant under equivalences of categories, because we are asking
for a lift in E whose projection to B is equal (rather than isomorphic) to the
morphism we start with. In fact, we can factor any functor as an equivalence
followed by an isofibration, so up to equivalence being an isofibration is a vac-
uous property.

4or more classically a Grothendieck opfibration
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Definition 2.2.7. We say a morphism 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩ in F∗ is active if 𝜙−1(0) =
{0}, i.e. nothing except the base point is sent to the base point, and inert if
|𝜙−1(𝑖) | = 1 for 𝑖 ≠ 0, i.e. 𝜙 is an isomorphism away from the base point. In the
span description of F∗, the active maps are the spans whose backwards compo-
nent is an isomorphism and the inert are those whose forwards component is
an isomorphism.

Lemma 2.2.8. Every morphism in F∗ factors uniquely up to isomorphism as a com-
posite of an inert map followed by an active map. In other words, the inert and active
maps form a factorization system on F∗. □

Notation 2.2.9. We write 𝜌𝑖 : ⟨𝑛⟩ → ⟨1⟩ for the inert map given by

𝜌𝑖 ( 𝑗) =
{
1, 𝑗 = 𝑖,

0, 𝑗 ≠ 𝑖,

for 1 ≤ 𝑖 ≤ 𝑛.

Observation 2.2.10. Let us make some observations about how the category
O⊗ encodes the structure of the operad O:

• In F∗ there is a unique active morphism 𝛼𝑛 : ⟨𝑛⟩ → ⟨1⟩ for all 𝑛. Morphisms
over 𝛼𝑛 in O⊗ are precisely 𝑛-ary multimorphisms in O.

• For 𝛼 : ⟨𝑛⟩ → ⟨𝑚⟩ active in F∗, a morphism in O⊗ over 𝛼 is a list of 𝑚
multimorphisms in Owith arities 𝛼−1(𝑖) (𝑖 = 1, . . . ,𝑚).

• The remaining data in O⊗ allows us to encode the composition of multi-
morphisms as ordinary composition in a category.

Proposition 2.2.11. An isofibration 𝑝 : E→ F∗ is equivalent (over F∗) to the category
of operators of an operad if and only if the following conditions hold:

(1) E has 𝑝-cocartesian lifts of the inert morphisms in F∗.

(2) Given 𝑋 ∈ E⟨𝑛⟩ , cocartesian morphisms 𝑋 → 𝑋𝑖 over 𝜌𝑖 , and an object 𝑌 ∈ E⟨𝑚⟩ ,
the commutative square

HomE(𝑌,𝑋 )
∏𝑛

𝑖=1 HomE(𝑌,𝑋𝑖)

HomF∗ (⟨𝑚⟩, ⟨𝑛⟩)
∏𝑛

𝑖=1 HomF∗ (⟨𝑚⟩, ⟨1⟩)

is cartesian.

(3) Given objects 𝑋1, . . . , 𝑋𝑛 in E⟨1⟩ , there exists an object 𝑋 ∈ E⟨𝑛⟩ with cocartesian
morphisms 𝑋 → 𝑋𝑖 over 𝜌𝑖 .

12



Observation 2.2.12. In the situation above, taking cocartesian lifts of all the
maps 𝜌𝑖 gives a functor

E⟨𝑛⟩ →
𝑛∏
𝑖=1

E⟨1⟩ .

It follows from the second condition above that this is fully faithful, since for
𝑋,𝑌 ∈ E⟨𝑛⟩ with cocartesian morphisms 𝑋 → 𝑋𝑖 , 𝑌 → 𝑌𝑖 , we get an isomor-
phism

HomE⟨𝑛⟩ (𝑋,𝑌 ) � HomE(𝑋,𝑌 )id⟨𝑛⟩ �
𝑛∏
𝑖=1

HomE(𝑋,𝑌𝑖)𝜌𝑖

�
𝑛∏
𝑖=1

HomE(𝑋𝑖 , 𝑌𝑖)id⟨1⟩ �
𝑛∏
𝑖=1

HomE⟨1⟩ (𝑋𝑖 , 𝑌𝑖) .

The third condition above then says that this fully faithful functor is also essen-
tially surjective on objects, i.e. an equivalence of categories.

Proof of Proposition 2.2.11. We first suppose O is an operad, and show that O⊗ →
F∗ has the given properties. It is clear that we can lift isomorphisms from F∗, so
that this is an isofibration. To prove (1), we consider an inert map 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩
in F∗, and𝑋 = (𝑥1, . . . , 𝑥𝑛) an object of O⊗ over ⟨𝑛⟩. Set𝑋 ′ = (𝑥𝜙−1 (1) , . . . , 𝑥𝜙−1 (𝑚) )
and define 𝜙 : 𝑋 → 𝑋 ′ to be the map over 𝜙 given by id𝑥

𝜙−1 (𝑖 )
for 𝑖 = 1, . . . ,𝑚.

We claim 𝜙 is cocartesian. To prove this, consider a commutative triangle

⟨𝑛⟩ ⟨𝑘⟩

⟨𝑚⟩

𝜙

𝜓

𝜓 ′

and a map𝜓 : 𝑋 → 𝑌 over𝜓 in O⊗. Then𝜓 is given by a collection of multimor-
phisms 𝜓 𝑗 : (𝑥𝑖)𝑖∈𝜓 −1 ( 𝑗 ) → 𝑦 𝑗 . Since 𝜙 is inert, we can also write these as mul-
timorphisms (𝑥𝜙−1 (𝑖 ) )𝑖∈𝜓 ′−1 ( 𝑗 ) → 𝑦 𝑗 , so that they also form a map 𝜓

′
: 𝑋 ′ → 𝑌

such that 𝜓 = 𝜓
′ ◦ 𝜙 . It is also clear that this factorization is unique, so that 𝜙 is

indeed cocartesian.
For (2), we want to see that given any 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩ in F∗ and objects

𝑌 = (𝑦1, . . . , 𝑦𝑛) over ⟨𝑛⟩ and 𝑋 = (𝑥1, . . . , 𝑥𝑚) over ⟨𝑚⟩, then a collection of
morphisms𝑌 → (𝑥𝑖) over 𝜌𝑖𝜙 corresponds to a unique morphism𝑌 → 𝑋 over𝜙 .
Such a collection of morphisms is given by multimorphisms (𝑦 𝑗 ) 𝑗∈ (𝜌𝑖𝜙 )−1 (1) →
𝑥𝑖 ; here (𝑦 𝑗 ) 𝑗∈ (𝜌𝑖𝜙 )−1 (1) = (𝑦 𝑗 ) 𝑗∈𝜙−1 (𝑖 ) , so these multimorphisms do indeed com-
bine to a unique morphism 𝑌 → 𝑋 over 𝜙 .

Part (3) is now clear from our description of the inert cocartesian morphisms
in O⊗.
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To prove the converse direction, suppose we have an isofibration 𝑝 : E→ F∗
satisfying the 3 given conditions. We define an operad Owhose objects are those
of E⟨1⟩ . Given objects 𝑥1, . . . , 𝑥𝑛, 𝑦 ∈ E⟨1⟩ , a multimorphism (𝑥1, . . . , 𝑥𝑛) → 𝑦

is given by an object 𝑋 ∈ E⟨𝑛⟩ with cocartesian morphisms 𝑋 → 𝑥𝑖 over 𝜌𝑖
(this exists by (3) and is unique up to unique isomorphism), together with a
morphism 𝑋 → 𝑦 over 𝛼𝑛 in E.5 To compose a collection of multimorphisms
(𝑥11, . . . , 𝑥

1
𝑚1) → 𝑦1, . . . , (𝑥𝑛1 , . . . , 𝑥

𝑛
𝑚𝑛
) → 𝑦𝑛 with (𝑦1, . . . , 𝑦𝑛) → 𝑧, given by

maps 𝑋 𝑗 → 𝑦 𝑗 and 𝑌 → 𝑧, we choose 𝑋 over ⟨𝑀⟩ = ⟨𝑚1 + · · · + 𝑚𝑛⟩ with
cocartesian maps 𝑋 → 𝑥

𝑗

𝑖
over 𝜌𝑚1+···+𝑚 𝑗−1+𝑖 . If 𝜋 𝑗 is the obvious inert map

⟨𝑀⟩ → ⟨𝑚 𝑗 ⟩, then we have a cocartesian map from 𝑋 over 𝜋 𝑗 whose target
can be identified with 𝑋 𝑗 (since this is the unique object with cocartesian maps
𝑋 𝑗 → 𝑥

𝑗

𝑖
over 𝜌𝑖 ). We thus have a family of maps 𝑋 → 𝑋 𝑗 → 𝑦 𝑗 which fit

together into a unique map 𝑋 → 𝑌 by (2). The composite multimorphism in O

is then given by the composite 𝑋 → 𝑌 → 𝑧 in E.
We claim that we then have an equivalence E ≃ O⊗, but leave the details

for any unusually diligent readers to check. A key point here is that for any
objects 𝑋 ∈ E⟨𝑛⟩ and 𝑌 ∈ E⟨𝑚⟩ , we can describe the set HomE(𝑋,𝑌 )𝜙 of maps
over 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩ first as

HomE(𝑋,𝑌 )𝜙 �
𝑚∏
𝑖=1

HomE(𝑋,𝑌𝑖)𝜌𝑖𝜙

by (2), where 𝑌 → 𝑌𝑖 is cocartesian over 𝜌𝑖 , and then identify this in turn as

𝑚∏
𝑖=1

HomE(𝜋𝑖,!𝑋,𝑌𝑖)𝛼𝑛𝑖

where the inert-active factorization of 𝜌𝑖𝜙 is given as

⟨𝑛⟩ 𝜋𝑖−→ ⟨𝑛𝑖⟩
𝛼𝑛𝑖−−→ ⟨1⟩

and 𝑋 → 𝜋𝑖,!𝑋 is cocartesian over 𝜋𝑖 . Thus all maps in E are determined by
those that correspond to multimorphisms in O. □

Proposition 2.2.13. Let O and P be operads. A functor

O⊗ P⊗

F∗

𝐹

comes from a functor of operads if and only if 𝐹 preserves inert cocartesian morphisms.
5To form a strict 1-category rather than a (2,1)-category that’s equivalent to a 1-category we

should strictly speaking take isomorphism classes of this data, but we will ignore this technical
point to simplify the exposition.
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We omit the proof, but this amounts to the observation that 𝐹 preserv-
ing inert cocartesian morphisms corresponds to 𝐹 (𝑥1, . . . , 𝑥𝑛) being the same
as (𝐹𝑥1, . . . , 𝐹𝑥𝑛). Using Proposition 2.1.11, we can also identify symmetric
monoidal categories in this context:

Proposition 2.2.14. The following are equivalent for an isofibration 𝑝 : E→ F∗:

(1) E is equivalent to the category of operators V⊗opd for a symmetric monoidal category
V.

(2) 𝑝 satisfies conditions (1)–(3) in Proposition 2.2.11 and is a cocartesian fibration.

(3) 𝑝 is a cocartesian fibration and the functor

E⟨𝑛⟩
(𝜌𝑖,! )−−−−→

𝑛∏
𝑖=1

E⟨1⟩,

induced by cocartesian morphisms over 𝜌𝑖 , is an equivalence for all 𝑖 .

Moreover, a functor between such cocartesian fibrations corresponds to a (strong) sym-
metric monoidal functor if and only if it preserves all cocartesian morphisms. □

(See Proposition 2.3.8 below for a proof of the equivalence of the last two
conditions in the ∞-categorical context.)

Upshot 2.2.15. We can identify Opd with the subcategory of Cat/F∗ whose objects are
the isofibrations satisfying conditions (1)–(3) in Proposition 2.2.11, and whose morphisms
are those that preserve inert cocartesian morphisms.

We can thus regard the conditions of Proposition 2.2.11 as a new definition of
operads. While it looks quite different from other definitions, there are several
advantages to this approach:

• The definition is concise and precise: we don’t have to say that any “obvi-
ous” diagrams commute or deal with composition of Σ𝑛-actions (these are
all hidden away in the base category F∗).

• The definition is easy to use in practice: For example, if we want to define
a symmetric monoidal category it is quite feasible to define a functor to F∗
and check that it’s a cocartesian fibration that satisfies the product condi-
tion from Proposition 2.2.14. On the other hand, in practice nobody ever
specifies all the data that’s actually required to define a symmetric monoidal
category in the usual sense.

For our purposes, however, the key advantage of this approach is that it defines
operads and symmetric monoidal categories in terms of ordinary categories,
using only concepts that have clear generalizations to∞-categories. We are thus
led to an obvious generalization of this notion of operads to the ∞-categorical
context, which we spell out in the next section.
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2.3 ∞-operads and their algebras

In this section we introduce the definition of ∞-operads. This follows [Lur17,
2.1]; see also the lecture notes [Har19] by Harpaz for a good introduction to
∞-operads.

First, a few words on ∞-categories:

• I will assume the reader is already somewhat familiar with ∞-categories
and how they work, or is at least willing to suspend their disbelief in the
existence of such beasts.

• We will be working with ∞-categories “model-independently”, that is to
say we will think of an ∞-category as an object in the ∞-category of ∞-
categories, rather than explicitly using some model (like quasicategories of
complete Segal objects in simplicial sets).

• Our terminology should always be interpreted in an ∞-categorical con-
text. For example, when we talk about a diagram “commuting”, we mean
this in the ∞-categorical sense (that is, the diagram should be a functor of
∞-categories), rather than in some stricter interpretation (which doesn’t
actually make sense in an ∞-category).

We also mention some basic notation:

• S denotes the ∞-category of spaces or ∞-groupoids, and Cat∞ the ∞-
category of (small) ∞-categories. Here S is a full subcategory of Cat∞,
and we write (–)≃ for the right adjoint to the inclusion (which gives the
underlying ∞-groupoid C≃ of an ∞-category C, obtained by throwing
away all non-invertible morphisms). We think of categories as a special
case of∞-categories, and so identify the (2, 1)-category of categories with
a full subcategory of Cat∞.

• If 𝑥,𝑦 are objects of an∞-category C, we have a mapping space MapC(𝑥,𝑦);
these form a functor

MapC : C
op × C→ S.

This transposes to the fully faithful Yoneda embedding
C ↩→ P(C),

where P(C) := Fun(Cop,S) is the ∞-category of presheaves on C.

Definition 2.3.1. Let 𝑝 : E→ B be a functor of ∞-categories. A morphism
𝑓 : 𝑥 → 𝑦 in E is 𝑝-cocartesian (over 𝑓 := 𝑝 (𝑓 ) : 𝑎 → 𝑏 in B) if for any 𝑧 ∈ E, the
commutative square

MapE(𝑦, 𝑧) MapE(𝑥, 𝑧)

MapB(𝑏, 𝑝𝑧) MapB(𝑎, 𝑝𝑧) .

𝑓
∗

𝑓 ∗
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is a pullback square in S. Given a set 𝑆 of morphisms in B, we say that E has
𝑝-cocartesian lifts of 𝑆 if given 𝑓 : 𝑎 → 𝑏 in B and 𝑥 ∈ Ewith 𝑝𝑥 ≃ 𝑎, there exists
a 𝑝-cocartesian morphism 𝑓 : 𝑥 → 𝑦 such that 𝑝 (𝑓 ) ≃ 𝑓 . (To be a bit more
precise, this means that in any commutative square of ∞-categories

{0} E

[1] B

𝑥

𝑝

𝑓

𝑓

where 𝑓 lies in 𝑆 , there exists a lift 𝑓 that is a 𝑝-cocartesian morphism.) We say
that 𝑝 is a cocartesian fibration if Ehas 𝑝-cocartesian lifts of all morphisms.

We recall the straightening theorem for cocartesian fibrations:

Theorem 2.3.2 (Lurie, [Lur09]). There is a natural equivalence of ∞-categories

Fun(B, Cat∞) ≃ Cocart(B),

where Cocart(B) is the subcategory of Cat∞/B whose objects are the cocartesian fibra-
tions and whose morphisms are those that preserve cocartesian morphisms. □

We can now state Lurie’s definition of an ∞-operad:

Definition 2.3.3. An ∞-operad is a functor of ∞-categories 𝑝 : O → F∗ such
that

(1) Ohas 𝑝-cocartesian lifts of inert morphisms in F∗. (We refer to these as inert
morphisms in O.)

(2) If𝑋 is an object of O⟨𝑛⟩ and𝑋 → 𝑋𝑖 is an inert morphism over 𝜌𝑖 : ⟨𝑛⟩ → ⟨𝑖⟩,
then for any 𝑌 ∈ O⟨𝑚⟩ , the commutative square

MapO(𝑌,𝑋 )
∏𝑛

𝑖=1MapO(𝑌,𝑋𝑖)

HomF∗ (⟨𝑚⟩, ⟨𝑛⟩) HomF∗ (⟨𝑚⟩, ⟨1⟩)

is a pullback in S.

(3) Given 𝑋1, . . . , 𝑋𝑛 ∈ O⟨1⟩ , there exists an object 𝑋 ∈ O⟨𝑛⟩ with cocartesian
morphisms 𝑋 → 𝑋𝑖 over 𝜌𝑖 .

A morphism of ∞-operads is a commutative triangle

O P

F∗

𝐹

17



such that 𝐹 preserves inert morphisms. We also refer to such an 𝐹 as an O-algebra
in P. We write Opd∞ for the subcategory of Cat∞/F∗ whose objects are ∞-
operads and whose morphisms are the morphisms of ∞-operads, and AlgO(P)
for the full subcategory of Fun/F∗ (O,P) spanned by the O-algebras in P.6

Example 2.3.4. If O is an operad in sets, then its category of operators O⊗ → F∗
is an ∞-operad. For example, if we take O to be the operads for (associa-
tive/commutative) algebras and modules from Examples 2.1.8, their algebras
give the correct ∞-categorical notions of algebras and modules.

Observation 2.3.5. By the same argument as in Observation 2.2.12, for an∞-
operad O the functor

O⟨𝑛⟩ →
𝑛∏
𝑖=1

O⟨1⟩,

induced by the cocartesian morphisms over 𝜌𝑖 : ⟨𝑛⟩ → ⟨1⟩, is an equivalence for
all 𝑛.

Definition 2.3.6. Let Cbe an∞-category with finite products. A commutative
monoid in C is a functor 𝑀 : F∗ → C such that the map

𝐹 (⟨𝑛⟩) →
𝑛∏
𝑖=1

𝐹 (⟨1⟩)

induced by the maps 𝜌𝑖 : ⟨𝑛⟩ → ⟨1⟩, is an equivalence in C for all 𝑛. A symmetric
monoidal∞-category is then just a commutative monoid in Cat∞, or a cocartesian
fibration that corresponds to such a commutative monoid.

Remark 2.3.7. In S, this notion of a commutative monoid is the∞-categorical
analogue of Segal’s special Γ-spaces [Seg74].

Just as we saw for ordinary categories, symmetric monoidal ∞-categories
can be identified as ∞-operads that are cocartesian fibrations:

Proposition 2.3.8. If 𝑝 : E→ F∗ is a cocartesian fibration, then 𝑝 is a symmetric
monoidal ∞-category if and only if 𝑝 is an ∞-operad.

Proof. If 𝑝 is an ∞-operad and a cocartesian fibration, we get from Observa-
tion 2.3.5 that 𝑝 is a symmetric monoidal ∞-category. For the converse, we
observe that conditions (1) and (3) in the definition of an ∞-operad are imme-
diate if 𝑝 is a symmetric monoidal ∞-category. To prove the last condition,
we note that for 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩ and objects 𝑋 over ⟨𝑛⟩ and 𝑌 over ⟨𝑚⟩, the

6It is possible to enhance Opd∞ to an (∞, 2)-category where AlgO(P) is the ∞-category of
maps from O to P.
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𝑝-cocartesian morphisms in Eprovide a commutative diagram

MapE(𝑋,𝑌 )𝜙
∏𝑚

𝑖=1MapE(𝑋, 𝜌𝑖,!𝑌 )𝜌𝑖𝜙

MapE⟨𝑚⟩ (𝜙!𝑋,𝑌 )
∏𝑚

𝑖=1MapE(𝜙!𝑋, 𝜌𝑖,!𝑌 )𝜌𝑖

∏𝑚
𝑖=1MapE⟨1⟩ (𝜌𝑖,!𝜙!𝑋, 𝜌𝑖,!𝑌 ),

∼ ∼

∼

where the labelled morphisms are equivalences. Hence the top horizontal mor-
phism is an equivalence if and only if the bottom diagonal morphism is one.
Here the latter condition follows from 𝑝 being a symmetric monoidal∞-category,
while the former for all choices of 𝜙 , 𝑋 , and 𝑌 , gives the missing condition (2)
for 𝑝 to be an ∞-operad. □

Notation 2.3.9. A symmetric monoidal∞-category with underlying∞-category
C is often denoted C⊗; then C ≃ C⊗⟨1⟩ . (Note that, unlike in [Lur17], we do
not use the notation O⊗ for a general ∞-operad.)

Definition 2.3.10. A lax symmetric monoidal functor between symmetric monoidal
∞-categories is a morphism of ∞-operads between them, i.e. a commutative
triangle

C⊗ D⊗

F∗

𝐹

where 𝐹 preserves inert morphisms. If 𝐹 preserves all cocartesian morphisms,
we call it a symmetric monoidal functor.

Example 2.3.11. If O is a simplicial operad (that is, an operad enriched in simpli-
cial sets), then it has a simplicial category of operators O⊗ → F∗. If the simplicial
sets of maps in O are all Kan complexes, then its homotopy-coherent nerve is
an isofibration of quasicategories that represents an ∞-operad.

For later use, we also note that any ∞-operad has a canonical factorization
system:

Definition 2.3.12. A factorization system7 on an∞-category C is a pair of wide8

subcategories C𝐿, C𝑅 such that the composition map

Map( [1], C𝐿) ×C≃ Map( [1], C𝑅) → Map( [1], C)

is an equivalence.
7Sometimes also called an “orthogonal factorization system”.
8That is, containing all objects.
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Definition 2.3.13. Recall that the inert and active maps form a factorization
system on F∗. If O is an ∞-operad, we say that a morphism in O is inert if it is
cocartesian and lies over an inert morphisms in F∗, and active if it just lies over
an active morphism in F∗.

Proposition 2.3.14. If O is an ∞-operad, then the inert and active morphisms in O

form a factorization system. □
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Chapter 3

Constructions and examples

In this chapter we survey a few important constructions and results on ∞-
operads. We will also see how they give us new examples of ∞-operads, and in
particular produce interesting symmetric monoidal ∞-categories.

3.1 Monoids and cartesian monoidal ∞-categories

This section is based on [Lur17, §2.4.1].

Definition 3.1.1. Let Obe an∞-operad and Can∞-category with finite prod-
ucts. A functor𝑀 : O→ Cis an O-monoid if for all𝑋 ∈ O⟨𝑛⟩ and inert morphisms
𝑋 → 𝑋𝑖 over 𝜌𝑖 : ⟨𝑛⟩ → ⟨1⟩, the induced map

𝑀 (𝑋 )
(𝑀 (𝜌𝑖 ) )−−−−−−→

𝑛∏
𝑖=1

𝑀 (𝑋𝑖)

is an equivalence in C. We writeMonO(C) for the full subcategory of Fun(O, C)
spanned by the O-monoids.

If Chas finite products, we want to define a symmetric monoidal∞-category
C× with the tensor product given by the cartesian product, and such that O-
algebras in C× are naturally equivalent to O-monoids in C for all ∞-operads
O.

Definition 3.1.2. Let

Arint(F∗) ⊆ Ar(F∗) := Fun( [1], F∗)

denote the full subcategory of inert morphisms.

Observation 3.1.3. The functor ev0 : Arint(F∗) → F∗ given by evaluation at
0 ∈ [1] is a cartesian fibration1. This follows from the inert maps being the left

1the dual notion of a cocartesian fibration
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class in a factorization system: for an inert map ⟨𝑛⟩ ↣ ⟨𝑚⟩ and an arbitrary
morphism ⟨𝑛′⟩ → ⟨𝑛⟩, the cartesian morphism over this is the commutative
square

⟨𝑛′⟩ ⟨𝑚′⟩

⟨𝑛⟩ ⟨𝑚⟩

that gives the inert-active factorization of the composite ⟨𝑛′⟩ → ⟨𝑚⟩. The
functor ev0 then corresponds under the straightening equivalence to a functor
F∗ → Cat. This takes the object ⟨𝑛⟩ to the category (F int

∗ )⟨𝑛⟩/ of inert maps
⟨𝑛⟩ ↣ ⟨𝑚⟩, with morphisms given by (necessarily) inert maps ⟨𝑚⟩ ↣ ⟨𝑚′⟩
under ⟨𝑛⟩.

Construction 3.1.4. From this cartesian fibration and the projection C× F∗ →
F∗, which is a cocartesian fibration, by a general construction we can produce a
cocartesian fibration C

× → F∗ with the universal property that for 𝐾 → F∗ we
have a natural equivalence

Map/F∗ (𝐾,𝐶
×) ≃ Map(𝐾 ×F∗ Arint(F∗), C) .

(In particular, the fibre C
×
⟨𝑛⟩ is equivalent to Fun((F int

∗ )⟨𝑛⟩/, C).) When C has
finite products, we define C× to be the full subcategory of C

×
containing the

functors 𝐹 : (F int
∗ )⟨𝑛⟩/ → C such that for every object 𝜙 : ⟨𝑛⟩ → ⟨𝑚⟩, the map

𝐹 (𝜙) →
𝑚∏
𝑖=1

𝐹 (𝜌𝑖𝜙)

is an equivalence.

Theorem 3.1.5. Let C be an ∞-category with finite products. Then C× is a sym-
metric monoidal ∞-category. Moreover, if O is an ∞-operad, then the composite

AlgO(C) ⊆ Fun/F∗ (O, C
×) ≃ Fun(O×F∗ Arint(F∗), C) → Fun(O, C),

where the last functor comes from restriction along the section F∗ → Arint(F∗) given
by identity morphisms, identifies AlgO(C×) with the full subcategory MonO(C) of
O-monoids. □

If this looks way too complicated just to define the cartesian product as a
symmetric monoidal structure, consider the following exercise:

Exercise 3.1.6.

(i) Define the symmetric monoidal structure on Set given by the cartesian
product (in the classical sense) in complete detail, without ever saying
something is “obvious”. (For extra credit, formalize this on a computer.)
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(ii) Do the same for the cartesian product of groupoids, as a symmetric monoidal
bicategory.2

Variant 3.1.7. Working with Grothendieck universes as usual, we let Ĉat∞ de-
note the (very large) ∞-category of large ∞-categories, and define Ĉat

cocomp
∞

to be the subcategory of large ∞-categories with small colimits and functors
that preserve these. We then define Ĉat

cocomp,⊗
∞ to be the subcategory of Ĉat

×
∞

whose objects are lists of cocomplete ∞-categories, and whose morphisms are
componentwise given by functors

𝐹 : C1 × · · · × C𝑛 → D

that preserve colimits in each variable (meaning that given objects 𝑥𝑖 ∈ C𝑖 for
all 𝑖 ≠ 𝑗 , the functor 𝐹 (𝑥1, . . . , –, . . . , 𝑥𝑛) : C𝑗 → D preserves colimits). Then it
is easy to see that Ĉat

cocomp,⊗
∞ is an ∞-operad. To show that it is a symmetric

monoidal∞-category we now only need to prove that there exists a cocomplete
∞-category C1⊗· · ·⊗C𝑛 that corepresents such “multi-cocontinuous functors.”
(A similar construction could be used to obtain the tensor product of vector
spaces from the cartesian product of sets.)

3.2 Day convolution

This section is based on [Lur17, §2.2.6] and [Gla16]. We start by recalling the
classical case of Day convolution for ordinary categories: If C is a small sym-
metric monoidal category and D is a cocomplete symmetric monoidal cate-
gory (where ⊗ preserves colimits in each variable) then the functor category
Fun(C, D) can be given a symmetric monoidal structure where the tensor prod-
uct of 𝐹 and 𝐺 is the left Kan extension in the diagram

C× C D× D D

C.

𝐹×𝐺

⊗C

⊗D

𝐹⊗𝐺

We thus have the formula

(𝐹 ⊗ 𝐺) (𝑐) � colim
(𝑥,𝑦,𝑥⊗C𝑦→𝑐 )

𝐹 (𝑥) ⊗D 𝐹 (𝑦).

This is the Day convolution symmetric monoidal structure, first introduced in
[Day70].

2You may stop at any time by conceding that the ∞-categorical construction is actually not
so bad.
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A commutative algebra in Fun(C, D) is the same thing as a lax symmetric
monoidal functor. Heuristically, this is because a natural transformation

𝐹 ⊗ 𝐹 → 𝐹

amounts to specifying, for 𝑥,𝑦 ∈ Cand a map 𝑥⊗C𝑦 → 𝑐, a map 𝐹 (𝑥)⊗D𝐹 (𝑦) →
𝐹 (𝑐). In particular, we must provide maps 𝐹 (𝑥) ⊗D𝐹 (𝑦) → 𝐹 (𝑥 ⊗C𝑦), and these
must induce the rest by functoriality. This description of commutative algebras
can be generalized to a universal property, which we may as well state in the
∞-categorical setting:

Theorem 3.2.1 (Glasman, Lurie). Let Cbe a small symmetric monoidal∞-category
and O an ∞-operad. Then there exists an ∞-operad DayC(O) such that for any ∞-
operad P we have a natural equivalence

AlgP(DayC(O)) ≃ AlgP×F∗ C⊗ (O) .

(In particular, we can identify DayC(O)⟨1⟩ with Fun(C,O⟨1⟩).) Moreover, if D is a
symmetric monoidal ∞-category such that D is cocomplete and ⊗ preserves colimits
in each variable, then DayC(D⊗) is also a symmetric monoidal ∞-category (with the
same formula for the tensor product as above).

This universal property says that DayC(–) is a right adjoint of –×F∗ C⊗ (the
cartesian product in Opd∞). Note, however, that such a right adjoint does not
exist in general, i.e. Opd∞ is not cartesian closed. We can, however, gener-
alize the Day convolution to the case where C is “symmetric pro-monoidal”,
meaning that C⊗ → F∗ is an∞-operad that is a flat/exponentionable/Conduché
fibration3; see [BGS20] or [Hin20] for details.

If C is a small symmetric monoidal ∞-category, it can be shown that the
mapping space functor has a canonical lax symmetric monoidal structure

Cop,⊗ ×F∗ C⊗ → S× .

If we think of P(C) := Fun(Cop,S) as a symmetric monoidal ∞-category via
the Day convolution DayCop (S×), we then get by adjunction that the Yoneda
embedding is a lax symmetric monoidal functor

C⊗ → P(C)⊗ .

This gives P(C)⊗ a universal property for certain maps out of it:

Theorem 3.2.2 (Glasman [Gla16]). Let D be a cocomplete symmetric monoidal
∞-category where ⊗ preserves colimits in each variable. Restricting along the Yoneda
embedding gives an equivalence between colimit-preserving symmetric monoidal functor
P(C) → D and symmetric monoidal functors C→ D.

3This means that pullback along the functor in Cat∞ has a right adjoint, or equivalently
preserves colimits.
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Remark 3.2.3. There is a particularly simple construction of the Day convolu-
tion on presheaves, due to Heine [Hei18]: We have a straightening equivalence
between Fun(C,S) and left fibrations over C, which form a full subcategory
LFib(C) ⊆ Cat∞/C. The full subcategory LFib ⊆ Ar(Cat∞) spanned by left fibra-
tions is closed under cartesian products in the arrow ∞-category, and we can
define DayC(S×) as the pullback

DayC(S×) LFib×

F∗ Cat×∞.

ev1

C

This pullback is automatically an∞-operad (since limits in Opd∞ are computed
in∞-categories). To show that it is symmetric monoidal we use that a symmet-
ric monoidal functor, such as LFib× → Cat×∞, is easily seen to be a cocartesian
fibration if and only if its underlying functor is one. Here ev1 : LFib→ Cat∞ is a
cocartesian fibration as a consequence of left fibrations being the right part of a
factorization system in Cat∞ (with the left part being the coinitial functors), as
in Observation 3.1.3. Given functors 𝐹,𝐺 : C→ S corresponding to left fibra-
tions F, G→ C, this means that the Day convolution tensor 𝐹 ⊗𝐺 corresponds
to the left fibration obtained by factoring the composite

F× G→ C× C
⊗−→ C

as a coinitial functor followed by a left fibration. A similar construction using the
cartesian product of cocartesian fibrations has been shown by Ramzi [Ram22]
to produce the Day convolutions DayC(Cat×∞).

We now want to look at how the Day convolution can be used to construct
some interesting examples of symmetric monoidal ∞-categories:

Example 3.2.4 (Pushout-product). The category [1] = {0→ 1} has a symmet-
ric monoidal structure given by 𝑖 ⊗ 𝑗 = min(𝑖, 𝑗). If C is a symmetric monoidal
∞-category compatible with pushouts, we get from this a Day convolution on
Ar(C) = Fun( [1], C) given by

(𝑥
𝑓
−→ 𝑦) ⊗ (𝑥 ′

𝑔
−→ 𝑦′) ≃ 𝑥 ⊗ 𝑦′ ⨿𝑥⊗𝑥 ′ 𝑦 ⊗ 𝑥 ′ → 𝑦 ⊗ 𝑦′.

In other words, this is the pushout-product of arrows induced by the tensor prod-
uct on C.

We can use this to define the smash product on pointed spaces, if we first
quote a result about localizations:

Theorem 3.2.5 ([Lur17, 2.2.1.9]). Let C be a symmetric monoidal∞-category, and
suppose C0 ⊆ C is a full subcategory such that the inclusion 𝑖 : C0 ↩→ C has a left
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adjoint 𝐿. (Thus C0 is a localization of C.) Assume furthermore that 𝐿-equivalences
are closed under the tensor product, i.e. if 𝐿(𝑥 → 𝑦) is an equivalence then so is 𝐿(𝑥 ⊗
𝑐 → 𝑦 ⊗ 𝑐) for all 𝑐 , and define C⊗0 to be the full subcategory of C⊗ on the objects
whose inert cocartesian projections over ⟨1⟩ lie in C0. Then:

(1) C⊗0 is a symmetric monoidal ∞-category4 and the inclusion 𝑖⊗ : C⊗0 ↩→ C⊗ is
lax symmetric monoidal.

(2) 𝑖⊗ has a left adjoint 𝐿⊗ which is a symmetric monoidal structure on 𝐿.5

Example 3.2.6 (Smash product on S∗). We can view S∗ := S∗/ as a full sub-
category of Ar(S), and the inclusion 𝑖 : S∗ ↩→ Ar(S) has a left adjoint 𝐿, given
by

𝐿(𝑋 → 𝑌 ) ≃ ∗ → 𝑌/𝑋 := 𝑌 ⨿𝑋 ∗,
since we then have an equivalence of mapping spaces

𝑋 ∗

𝑌 𝑍

 ≃


∗

𝑌/𝑋 𝑍

 .
The localization 𝐿 is compatible with the pushout-product on Ar(S): a mor-
phism

𝑋 𝑋 ′

𝑌 𝑌 ′

is an 𝐿-equivalence precisely when 𝑌/𝑋 → 𝑌 ′/𝑋 ′ is an equivalence, and we
can identify 𝐿((𝑋 → 𝑌 ) ⊗ (𝐴 → 𝐵)) with 𝑌/𝑋 ∧ 𝐵/𝐴. Here the smash product
(𝑋, 𝑥) ∧ (𝑌,𝑦) of two pointed spaces (𝑋, 𝑥) and (𝑌,𝑦) is

(𝑋 × 𝑌 )/(𝑋 × {𝑦} ⨿{𝑥 }×{𝑦} {𝑥} × 𝑌 ) ≃ 𝐿((∗ → 𝑋 ) ⊗ (∗ → 𝑌 )) .

Theorem 3.2.5 then implies that the smash product gives a symmetric monoidal
structure on S∗. (Here we did not really use anything particular to the ∞-
category S.)

Example 3.2.7 (Tensor products of commutative monoids and groups). This
example is based on [GGN15]. If C is an ∞-category with finite products, let
CMon(C) ⊆ Fun(F∗, C) denote the full subcategory of commutative monoids.
We also define CGrp(C) to be the full subcategory of those commutative monoids
that are grouplike, which can be defined as the map

𝑀 ×𝑀
(pr1,` )−−−−−→ 𝑀 ×𝑀

4The same definition produces an ∞-operad for an arbitrary full subcategory.
5In particular, the tensor product of 𝑥,𝑦 ∈ C0 is 𝐿(𝑥 ⊗C𝑦).
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being an equivalence (where ` is the multiplication and pr1 the projection on
the first factor), or if C is S by the induced commutative monoid structure on
𝜋0𝑀 being a group. Both CMon(C) and CGrp(C) are (under mild assumptions
on C) localizations of Fun(F∗, C) that are compatible with Day convolution for
∧ on F∗ and the cartesian product on C. This therefore induces tensor products
of commutative monoids and grouplike commutative monoids in C.6

Example 3.2.8 (Smash product of spectra). A spectrum in the sense of stable
homotopy theory can be defined as a functor 𝑋 : Sfin

∗ → S (where Sfin is the
full subcategory of S containing the finite CW-complexes) that is

• reduced, that is 𝑋 (∗) ∼−→ ∗,

• excisive, meaning that 𝑋 takes pushouts in Sfin
∗ to pullbacks in S.

(In particular, 𝑋 must take the suspension pushout

𝑇 ∗

∗ Σ𝑇

to a pullback square, so that 𝑋 (𝑇 ) ≃ Ω𝑋 (Σ𝑇 ). As a special case, 𝑋 (𝑆𝑛) ≃
Ω𝑋 (𝑆𝑛+1), so that on spheres we get a spectrum in the more traditional sense;
this also determines the functor, since every finite space is an iterated pushout
of spheres and discs.) We can thus view the ∞-category Sp of spectra as a full
subcategory of Fun(Sfin

∗ ,S). This is a localization, which is compatible with Day
convolution for the smash product on Sfin

∗ and the cartesian product on S, so
Sp inherits a symmetric monoidal structure from this — the smash product of
spectra.

3.3 Algebraic patterns and non-symmetric∞-operads

When working with homotopy-coherent algebraic structures, we can some-
times describe them in ways that are combinatorially simpler than using ∞-
operads. For example, even for 1-categorical structures it can be convenient to
work with non-symmetric (or planar) operads, which are defined without any
symmetric group actions, when this is possible (such as for associative alge-
bras and their (bi)modules). One can show that such non-symmetric operads
are equivalent to (symmetric) operads equipped with a map to the (symmetric)
operad Assoc for associative algebras. In this section, we want to discuss the∞-
categorical analogue of this comparison. To do so, it is convenient to introduce

6This tensor product on CGrp(S) is an∞-categorical analogue of the tensor product of abelian
groups.
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some general language for describing “structures similar to ∞-operads” (espe-
cially since it will occasionally be useful to have this available later on), in the
form of algebraic patterns. This material is based on [CH21] and [BHS22].

Definition 3.3.1. An algebraic pattern7 is an∞-category O equipped with a fac-
torization system (Oint,Oact) such that every morphism 𝑋 → 𝑍 factors uniquely
as 𝑋 ↣ 𝑌 ⇝ 𝑍 where the first morphism is inert and the second is active, as well
as full subcategory Oel ⊆ Oint consisting of elementary objects.

Notation 3.3.2. If O is an algebraic pattern, then for 𝑂 ∈ Owe write

Oel
𝑂/ := Oel ×Oint Oint

𝑂/

for the ∞-category of inert maps 𝑂 ↣ 𝐸 with 𝐸 elementary.

Definition 3.3.3. If O is an algebraic pattern and C is an ∞-category, we say
that a functor 𝐹 : O→ C is a Segal O-object in C if for all 𝑂 ∈ O, the canonical
cone

(Oel
𝑂/)

⊳ → O
𝐹−→ C

is a limit, so that we have a “Segal condition”

𝐹 (𝑂) ≃ lim
𝐸∈Oel

𝑂/
𝐹 (𝐸).

If C is the ∞-category S of spaces we often refer to Segal O-objects as Segal
O-spaces, while if C is the ∞-category Cat∞ of ∞-categories we call them Segal
O-∞-categories.

Examples 3.3.4.

(i) The pattern F ♭
∗ consists of the category F∗ together with its inert–active

factorization system, and with ⟨1⟩ as the only elementary object. Then
(F ♭
∗ )el
⟨𝑛⟩/ is the discrete set {𝜌𝑖 : ⟨𝑛⟩ → ⟨1⟩}, and a Segal F ♭

∗ -object is pre-
cisely a commutative monoid.

(ii) As a variant of the previous example, we can consider the pattern F
♮
∗ where

we take F∗ with the same factorization system, but now with both ⟨1⟩ and
⟨0⟩ as elementary objects. Then (F ♭

∗ )el
⟨𝑛⟩/ is the poset

𝜌1 · · · 𝜌𝑛

(⟨𝑛⟩ → ⟨0⟩),

7This name is inspired by Lurie’s categorical patterns [Lur17], and should not be confused with
the patterns of Getzler [Get09].
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so the Segal condition for 𝐹 is

𝐹 (⟨𝑛⟩) ≃ 𝐹 (⟨1⟩) ×𝐹 (⟨0⟩) · · · ×𝐹 (⟨0⟩) 𝐹 (⟨1⟩);

a functor 𝐹 is a Segal F ♮
∗ -object in C if and only if it is a commutative

monoid in C/𝐹 (⟨0⟩) .

(iii) Let Obe an∞-operad. Then we can consider the pattern O♭ given by the
inert–active factorization system on O, with the elementary objects being
all objects over ⟨1⟩. (Thus O♭,el ≃ O≃⟨1⟩ .) Here O♭,el

𝑋/ is the discrete set of
cocartesian morphisms 𝑋 → 𝑋𝑖 over 𝜌𝑖 , and a Segal O♭-object is precisely
an O-monoid.

(iv) Let � be the simplex category, i.e. the category of non-empty ordered
sets [𝑛] = {0 < 1 < · · · < 𝑛} (𝑛 ≥ 0). A map 𝜙 : [𝑛] → [𝑚] is in-
ert if it is a subinterval inclusion (so 𝜙 (𝑖) = 𝜙 (0) + 𝑖) and active if it is
boundary-preserving (so 𝜙 (0) = 0 and 𝜙 (𝑛) = 𝑚). This gives an active-
inert factorization system on �, and so an inert-active one on �op. We
define the pattern �op,♮ using this factorization system, with [0] and [1]
as the elementary objects. Then �op,♮,el is [1] ⇒ [0], and we can depict
(�op,♮,el)[𝑛]/ as the poset

{0, 1} {1, 2} · · · {𝑛 − 1, 𝑛}

{0} {1} {2} · · · {𝑛 − 1} {𝑛}

(where we describe an inert map by its image). A functor 𝐹 : �op → C is
a Segal �op,♮-object if

𝐹 ( [𝑛]) ≃ 𝐹 ( [1]) ×𝐹 ( [0] ) · · · ×𝐹 ( [0] ) 𝐹 ( [1]),

i.e. if it satisfies Rezk’s Segal condition [Rez01] — in particular, Segal
�op,♮-spaces are precisely Segal spaces.

(v) We can also consider the pattern�op,♭ where only [1] is elementary. Here
the Segal condition is

𝐹 ( [𝑛]) ≃ 𝐹 ( [1])×𝑛,
and Segal �op,♭-objects can be identified with associative monoids. (This
is the relevant pattern for non-symmetric ∞-operads.)

(vi) Let Span(F ) denote the (2,1)-category whose objects are finite sets and
whose morphisms from 𝑆 to 𝑇 are spans of finite sets

𝑋

𝑆 𝑇,
𝑓

𝑔
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with composition given by taking pullbacks. We get a factorization sys-
tem if we take the inert maps to be those where 𝑔 is an isomorphism
(i.e. the “backwards” maps) and the active ones to be those where 𝑓 is
an isomorphism (the “forwards” maps). We can define a pattern Span(F )♭
where 1 (the one-point set) is the only elementary object; its Segal objects
are equivalent to commutative monoids.

Other examples include the dendroidal category�op, which can be used to de-
scribe ∞-operads (we will come back to this in the next chapter), the product
�

𝑛,op which can be used to describe 𝑛-fold ∞-categories, the wreath product
�

op
𝑛 , which can be used to describe (∞, 𝑛)-categories [Rez10], as well as cate-

gories of trees and graphs that are related to ∞-properads, cyclic ∞-operads,
and modular ∞-operads [HRY15,HRY19,HRY20].

Remark 3.3.5. We can define a natural analogue of the category of opera-
tors for a non-symmetric operad as a category over �op.8 The categories that
arise in this way can be described by a variant of the conditions from Proposi-
tion 2.2.11, which suggests a definition of non-symmetric∞-operads as certain
∞-categories over �op. We may as well spell out the general version of this
definition over an arbitrary pattern:

Definition 3.3.6. Let O be an algebraic pattern. A weak Segal O-fibration is a
functor of ∞-categories 𝑝 : E→ O such that:

(1) Ehas 𝑝-cocartesian lifts of inert morphisms in O.

(2) For 𝑋 ∈ E𝑂 , if b : (Oel
𝑂/)

⊳ → E is a diagram of cocartesian morphisms over
the objects of Oel

𝑂/, then for 𝑌 ∈ E𝑂 ′ , the commutative square

MapE(𝑌,𝑋 ) lim
𝛼 : 𝑂↣𝐸∈Oel

𝑂/
MapE(𝑌, b (𝛼))

MapO(𝑂 ′,𝑂) lim
𝛼 : 𝑂↣𝐸∈Oel

𝑂/
MapO(𝑂 ′, 𝐸)

is cartesian.

(3) The functor E𝑂 → lim
𝐸∈Oel

𝑂/
E𝐸 is essentially surjective.

We will also refer to weak Segal O-fibrations as O-∞-operads when appropri-
ate. (In all the examples we consider here they also coincide with the fibrous
O-patterns used in [BHS22].) We will write WSF(O) for the ∞-category of
weak Segal O-fibrations and functors over O that preserve inert cocartesian mor-
phisms; we may also use Opd(O) when we instead call them O-∞-operads.

8Barwick’s theory of operator categories [Bar18] give an setting where �op is obtained from
finite ordered sets by a construction that also produces F∗ from finite sets.
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Examples 3.3.7.

(i) Weak Segal fibrations over F ♭
∗ are precisely ∞-operads.

(ii) Weak Segal fibrations over F ♮
∗ are generalized ∞-operads in the terminol-

ogy of [Lur17]. They can be viewed as a generalization of ∞-operads
where we don’t require the fibre over ⟨0⟩ to be a point, and we replace
the cartesian products in the definition by fibre products over this. Let’s
write Opdgen

∞ for the ∞-category of these.

(iii) If O is an ∞-operad, then weak Segal fibrations over O♭ can be identified
with ∞-operads over O.

(iv) Weak Segal fibrations over �op,♭ are non-symmetric or planar ∞-operads;
we’ll write Opdns

∞ for the ∞-category of these.

(v) Weak Segal fibrations over �op,♮ are the non-symmetric version of gen-
eralized ∞-operads, i.e. “generalized non-symmetric ∞-operads”. They
can be viewed as an ∞-categorical version of the structures called fc-
multicategories by [Lei02] and virtual double categories by Cruttwell and
Shulman [CS10].

We point out some relations between these structures:

• Opd∞ is a full subcategory of Opdgen
∞ , which is closed under limits and

filtered colimits (since these can be shown to be computed in Cat∞ in both
cases). Since these∞-categories are presentable, it follows that there exists
a localization functor 𝐿gen : Opd

gen
∞ → Opd∞, left adjoint to the inclusion.

• If 𝑓 : O → P is a functor between algebraic patterns that preserves the
factorization system and elementary objects, and moreover the induced
functor

Oel
𝑋/ → Pel

𝑓 (𝑋 )/

is coinitial for all 𝑋 , then pullback along 𝑓 gives a functor

𝑓 ∗ : WSF(P) → WSF(O) .

Under mild assumptions, this has a left adjoint. For example, we can define
a functor cut : �op → F∗ that takes [𝑛] to ⟨𝑛⟩ and a morphism 𝜙 : [𝑛] →
[𝑚] in � to the map cut(𝜙) : ⟨𝑚⟩ → ⟨𝑛⟩ given by

cut(𝜙) (𝑖) =
{
𝑗, 𝜙 ( 𝑗 − 1) < 𝑖 ≤ 𝜙 ( 𝑗),
0, otherwise.

Pulling back along this gives a functor Opd∞ → Opdns
∞ that informally

“forgets symmetric group actions”. Its left adjoint is a “symmetrization”
functor Opdns

∞ → Opd∞.
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• Lurie proves a comparison result [Lur17, 2.3.3.26] that gives conditions for
certain functors as above to induce equivalences. For example, [Lur17,
4.1.3.14] applies this to shows that a variant cut : �op → Assoc of the functor
above gives an equivalence

Opdns
∞
∼−→ Opd∞/Assoc.

In [BHS22] we generalized Lurie’s comparison result, which makes it easy
to see that the inclusion of F∗ as a subcategory of Span(F ) induces an equiv-
alence

Opd∞ ≃ Opd(Span(F )).

3.4 The Boardman–Vogt tensor product

In this section we introduce the Boardman–Vogt tensor product of∞-operads,
which also allows us to discuss the additivity theorem for the 𝐸𝑛-operads. This
section is based on [Lur17, 2.2.5, 5.1.2] and [Bar18]; see also Harpaz’s notes
[Har19] for an account of (a variant of ) Lurie’s proof of additivity.

To motivate the Boardman–Vogt tensor product for operads in sets, we start
by considering a symmetric monoidal category C and an operad O with (just
for simplicity) a single object. Then the category AlgO(C) of O-algebras in C

has a symmetric monoidal structure induced by the tensor product in C: if 𝐴
and 𝐵 are O-algebras, we can make 𝐴 ⊗ 𝐵 an O-algebra via the composite9

O(𝑛) ×Σ𝑛 (𝐴 ⊗ 𝐵)⊗𝑛 →
(
O(𝑛) ×Σ𝑛 𝐴⊗𝑛

)
⊗
(
O(𝑛) ×Σ𝑛 (𝐵)⊗𝑛

)
→ 𝐴 ⊗ 𝐵.

More generally, if O and P are arbitrary operads, we can make AlgO(P) into
an operad: a multimorphism (𝐴1, . . . , 𝐴𝑛) → 𝐵 consists of a multimorphism
(𝐴1𝑂, . . . , 𝐴𝑛𝑂) → 𝐵𝑂 in P for every𝑂 ∈ O, such that for every multimorphism
(𝑂1, . . . ,𝑂𝑘 ) → 𝑂 in O, the square

(𝐴1(𝑂1), . . . , 𝐴1(𝑂𝑘 ), . . . , 𝐴𝑛 (𝑂1), . . . , 𝐴𝑛 (𝑂𝑘 )) (𝐴1(𝑂), . . . , 𝐴𝑛 (𝑂))

(𝐵(𝑂1), . . . , 𝐵(𝑂𝑘 )) 𝐵(𝑂)

commutes.
This construction is adjoint to the Boardman–Vogt tensor product: functors

O → AlgP(Q) are equivalent to functors O ⊗ P → Q. Here O ⊗ P can be
given a generators-and-relations description: its objects are obO×obP, and its
multimorphisms are generated by operations

((𝑂, 𝑃1), . . . , (𝑂, 𝑃𝑛)) → (𝑂, 𝑃)
9Note that this uses the diagonal of O(𝑛), so this is not possible for more general kinds of

enriched operads!
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for every 𝑂 ∈ O and every multimorphism (𝑃1, . . . , 𝑃𝑛) → 𝑃 in P, and vice
versa, with relations enforcing compatibility with compositions and permuta-
tions. We can also describe maps out of the Boardman–Vogt tensor as bifunctors
of operads, which admit a simple description in terms of categories of operators.
This leads to the following ∞-categorical definition:

Definition 3.4.1. Let ` : F∗×F∗ → F∗ denote the smash product functor (` (⟨𝑛⟩, ⟨𝑚⟩) =
⟨𝑛⟩ ∧ ⟨𝑚⟩ � ⟨𝑛𝑚⟩). If O,P,Q are ∞-operads, then a bifunctor of ∞-operads
(O,P) → Q is a commutative square

O×P Q

F∗ × F∗ F∗

𝜙

`

such that 𝜙 takes pairs of inert morphisms to inert morphisms in Q. It can be
shown that such bifunctors are corepresented by an ∞-operad O ⊗ P — the
Boardman–Vogt tensor product.

Remark 3.4.2. We can think of O×P→ F∗ × F∗ as an “external” Boardman–
Vogt tensor product. As shown by Barwick [Bar18] these make sense and admit
right adjoints more generally.

Remark 3.4.3. We can interpret the Boardman–Vogt tensor product in terms
of the terminology of the previous section: If O and P are ∞-operads then
O × P is not a weak Segal fibration for F ♭

∗ × F ♭
∗ (where the only elementary

object is (⟨1⟩, ⟨1⟩)), but it is one for F ♮
∗ × F

♮
∗ . The smash product functor ` gives

a morphism of algebraic patterns F ♮
∗ × F

♮
∗ → F

♮
∗ , and this induces an adjunction

`! : WSF(F ♮
∗ × F

♮
∗ ) ⇄ Opdgen

∞ : `∗.

We can then think of a bifunctor as a map

O×P `∗Q

F
♮
∗ × F

♮
∗ ,

so O⊗ P is the ∞-operad 𝐿gen`!(O×P).

Theorem 3.4.4 (Lurie). The∞-category Opd∞ has a symmetric monoidal structure
given by the Boardman–Vogt tensor product, which preserves colimits in each variable.
The unit is F int

∗ (which is the category of operators of the operad with one object and no
non-trivial operations).

Corollary 3.4.5. The ∞-category Opd∞ has internal Homs ALGO(P) with natural
equivalences

AlgO⊗P(Q) ≃ AlgO(ALGP(Q)) .
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Observation 3.4.6. We have a natural equivalence AlgF int
∗
(O) ≃ O⟨1⟩ , so for

∞-operads P,Q we have

ALGP(Q)⟨1⟩ ≃ AlgF∗⊗P(Q) ≃ AlgP(Q),

so that ALGP(Q) is an ∞-operad with underlying ∞-category AlgP(Q). If Q
is a symmetric monoidal ∞-category, it can furthermore be shown that so is
ALGP(Q) for any ∞-operad Q.

Definition 3.4.7. The little discs operad 𝐸𝑛 is a one-object operad in Top where
𝐸𝑛 (𝑘) is the space of embeddings of 𝑘 𝑛-dimensional discs in a bigger one; com-
position of these multimorphisms is given by inserting such configurations into
each other. This gives rise to an ∞-operad we’ll denote E𝑛.

We note some important facts about these (∞-)operads:

• The space 𝐸𝑛 (𝑘) is homotopy equivalent to the configuration space of 𝑘
points in R𝑛.

• The ∞-operad E1 is just the associative operad Assoc.

• The colimit E∞ := colim𝑛→∞ E𝑛 is the commutative operad F∗ (because
the spaces in E𝑛 get increasingly highly connected as 𝑛 increases, so in the
limit they become contractible).

Theorem 3.4.8 (Additivity). The Boardman–Vogt tensor product E𝑛 ⊗ E𝑚 is the
∞-operad E𝑛+𝑚 . Equivalently, we have

E⊗𝑛1 ≃ E𝑛 . (3.1)

Remark 3.4.9. The ∞-categorical version of the additivity theorem is due to
Lurie. Analogues of the result for specific models of 𝐸𝑛-operads were previously
proven by Dunn [Dun88] and Fiedorowicz–Vogt [FV15].

The Eckmann–Hilton argument shows that a set (or more generally an ob-
ject in a 1-category) with two compatible associative multiplications is just a
commutative monoid. In an ∞-category, the equivalence (3.1) says that the al-
gebras for E𝑛 are objects with 𝑛 compatible associative multiplications, so here
we get an infinite hierarchy of algebraic structures that lie between between
associative and commutative algebras. We can interpolate between these situa-
tions by considering truncated versions of ∞-categories:

Definition 3.4.10. An ∞-category C is an (𝑛, 1)-category if the mapping space
MapC(𝑥,𝑦) is an (𝑛 − 1)-groupoid (meaning a space 𝑋 such that all homotopy
groups 𝜋𝑖𝑋 = 0 for 𝑖 > 𝑛 − 1) for all 𝑥,𝑦 ∈ C. (Thus a (1, 1)-category is one
where the mapping spaces are sets, i.e. an ordinary category.)
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Corollary 3.4.11 (Lurie). If C is a symmetric monoidal (𝑛, 1)-category, then

AlgE𝑘 (C) ≃ CAlg(C)

whenever 𝑘 ≥ 𝑛 + 1.

The key idea of the proof is that since the spaces in the∞-operad E𝑘 become
increasingly connected as 𝑘 increases, we eventually can’t tell them apart from
points when we map them into the truncated mapping spaces of C.

Applied to 𝑛-categories, this corollary confirms a conjecture of Baez and
Dolan [BD95]:

Corollary 3.4.12 (Baez–Dolan stabilization). 𝑘-uply monoidal 𝑛-categories, by
which we mean E𝑘-algebras in the ∞-category Cat𝑛 of 𝑛-categories, are equivalent to
symmetric monoidal 𝑛-categories if 𝑘 ≥ 𝑛 + 2.

Remark 3.4.13. To deduce this from the previous corollary we only need to
check that Cat𝑛 is an (𝑛 + 1, 1)-category. This was done in [GH15], using that
we can inductively define 𝑛-categories as ∞-categories enriched in (𝑛 − 1)-
categories. The first proof of (a weaker form of ) Baez–Dolan stabilization is
due to Simpson [Sim98].

For example, E𝑘-algebras in Cat are monoidal categories for 𝑘 = 1, braided
monoidal categories for 𝑘 = 2, and symmetric monoidal categories for 𝑘 ≥
3. Similarly, E𝑘-algebras in 2-categories are, respectively, monoidal, braided
monoidal, and sylleptic monoidal 2-categories for 𝑘 = 1, 2, 3, and symmetric
monoidal 2-categories for 𝑘 ≥ 4.10

We note another surprisingly useful consequence of additivity:

Corollary 3.4.14. To define a symmetric monoidal (∞, 𝑛)-category, it suffices to
define a compatible sequence of 𝑘-fold monoids (monoids for (�𝑜𝑝)×𝑘 ) in (∞, 𝑛)-
categories for all 𝑘 .

This is useful to construct symmetric monoidal structures on bordism (∞, 𝑛)-
categories, for example. Without passing to the description of 𝑘-fold monoids
as E𝑘-algebras from the additivity theorem, it is not clear that this data should
“converge” to a symmetric monoidal structure.

3.5 Free algebras

An important feature of algebraic structures that can be described as algebras for
operads is that there is an explicit formula for free algebras: If O is a one-object
operad in sets and C is a symmetric monoidal category (which has colimits

10At least morally speaking — it’s not clear to me if these comparisons to the classical definitions
of monoidal structures on 2-categories have been worked out in detail. . .
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indexed by groupoids, and the tensor product preserves these in each variable),
then the free O-algebra on an object 𝑋 ∈ C is given by

∞∐
𝑛=0

O(𝑛) ⊗Σ𝑛 𝑋 ⊗𝑛, (3.2)

where O(𝑛)⊗Σ𝑛𝑋 ⊗𝑛 means the quotient of
∐

O(𝑛) 𝑋
⊗𝑛 by the diagonal Σ𝑛-action.

In this section we will look at an ∞-categorical version of this result, as well as
a more general description of left adjoints: if 𝑓 : O→ P is a morphism of ∞-
operads, then composition with 𝑓 gives a functor

𝑓 ∗ : AlgP(C) → AlgO(C),

and if C is a symmetric monoidal ∞-category (with certain well-behaved col-
imits) then this has a left adjoint

𝑓! : AlgO(C) → AlgP(C)

given by an explicit colimit formula. This section is based on [Lur17, 3.1] and
[CH22].

Notation 3.5.1. If 𝑓 : O→ P is a morphism of∞-operads and 𝑃 is an object of
P, we write

Oact
/𝑃 := Oact ×Pact Pact

/𝑃

for the ∞-category of objects 𝑂 ∈ O together with an active map 𝑓 (𝑂) ⇝ 𝑃 ,
with active maps between these.

Definition 3.5.2. A symmetric monoidal ∞-category C is compatible with 𝐾-
indexed colimits for some class 𝐾 of ∞-categories if the underlying ∞-category
C has 𝐾-indexed colimits, and for every 𝑋 ∈ C, the functor 𝑋 ⊗ – : C→ C

preserves 𝐾-indexed colimits.

Theorem 3.5.3. Suppose 𝑓 : O→ P is a morphism of ∞-operads and C is a sym-
metric monoidal∞-category that is compatible with Oact

/𝑃 -indexed colimits for all 𝑃 ∈ P.
Then the functor 𝑓 ∗ : AlgP(C) → AlgO(C) has a left adjoint 𝑓! (called operadic left
Kan extension along 𝑓 ) such that for 𝐴 ∈ AlgO(P), the value of 𝑓!𝐴 at 𝑃 ∈ P⟨1⟩ is

𝑓!𝐴(𝑃) ≃ colim
(𝑂,𝑓 𝑂

𝛼−→𝑃 ) ∈Oact
/𝑃

𝜋 (𝛼)!𝐴(𝑂)

where 𝜋 is the projection P→ F∗.

Observation 3.5.4. Let O be an ∞-operad. The subcategory Oint of (cocarte-
sian) inert morphisms in O is again an∞-operad (with no non-trivial active mor-
phisms, i.e. no non-trivial multimorphisms). Then Oint

⟨1⟩ ≃ O≃⟨1⟩ , and (Oint)act
/𝑂 ≃
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ActO(𝑂) is the ∞-groupoid of active morphisms in O with target 𝑂 . If P is
another ∞-operad, we have an equivalence

AlgOint (P) ≃ Fun(O≃⟨1⟩,P⟨1⟩).

(This is because we can identify the left-hand side with the∞-category of maps
over F int

∗ that preserve all cocartesian morphisms, and the Segal condition for
P implies that its pullback to F int

∗ is a right Kan extension of its restriction to
{⟨1⟩}.)

Corollary 3.5.5. If O is an ∞-operad and C is a symmetric monoidal ∞-category
that is compatible with colimits over ∞-groupoids, then

𝑈O : AlgO(C) → AlgOint (C)
∼−→ Fun(O≃⟨1⟩, C)

has a left adjoint FreeO, which takes 𝑋 : O≃⟨1⟩ → C to the free O-algebra FreeO(𝑋 ),
given at 𝑂 ∈ O⟨1⟩ by

FreeO(𝑋 ) (𝑂) ≃ colim
(𝑂 ′1,...,𝑂

′
𝑛 )⇝𝑂∈ActO(𝑂 )

𝑋 (𝑂 ′1) ⊗ · · · ⊗ 𝑋 (𝑂
′
𝑛). (3.3)

Remark 3.5.6. To recover the classical formula (3.2) from (3.3), let us (for
simplicity) consider an ∞-operad O such that O≃⟨1⟩ ≃ ∗ (so that O has a sin-
gle object and this has no non-trivial automorphisms); then FreeO is a functor
C→ AlgO(C). Moreover, we can identify O≃ with the groupoid

F ≃∗ ≃
∞∐
𝑛=0

𝐵Σ𝑛;

let us therefore denote the objects of O as ⟨𝑛⟩O. We have a map ActO(⟨1⟩O) →
ActF∗ (⟨1⟩), which we can think of as a map

∞∐
𝑛=0


⟨𝑛⟩O

⟨1⟩O

⟨𝑛⟩O

∼


→

∞∐
𝑛=0

𝐵Σ𝑛;

the fibre of this at a point in 𝐵Σ𝑛 is then the ∞-groupoid O(𝑛) of 𝑛-ary opera-
tions in Owith a Σ𝑛-action. We can compute a colimit over ActO(⟨1⟩O) by first
taking a left Kan extension along this map to

∐
𝑛 𝐵Σ𝑛 (which amounts to taking

colimits over its fibres, since this is a map of ∞-groupoids) and then taking a
colimit over

∐
𝑛 𝐵Σ𝑛. If we apply this to our formula (3.3) we get

FreeO(𝑋 ) ≃ colim
⟨𝑛⟩O→⟨1⟩O∈ActO(⟨1⟩)

𝑋 ⊗𝑛 ≃
∐
𝑛

colim𝐵Σ𝑛 colimO(𝑛) 𝑋
⊗𝑛 ≃

∐
𝑛

O(𝑛)⊗Σ𝑛𝑋 ⊗𝑛 .
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(More generally, if O≃⟨1⟩ is connected, then the classical formula describes the
left adjoint to the composite

AlgO(C)
𝑈O−−→ Fun(O≃⟨1⟩, C) → C,

where the second functor is given by restricting to a chosen point in O≃⟨1⟩ .)

We will look at a proof of the formula for free algebras in the simplest pos-
sible case, where it can be reduced to an ordinary Kan extension:

Proof of Corollary 3.5.5 for monoids. Let Cbe an∞-category with finite products,
where the cartesian product preserves colimits indexed by∞-groupoids in each
variable. If O is an ∞-operad, we can replace O-algebras in C by O-monoids
(see Section 3.1), and view our functor 𝑈O as the composite

MonO(C) → MonOint (C) ∼−→ Fun(O≃⟨1⟩, C),

where the functors are induced by restricting along the inclusions O≃⟨1⟩
𝑖−→ Oint 𝑗

−→
O. It is easy to see that the condition for a functor Oint → C to be a monoid is
precisely that it is right Kan extended from O≃⟨1⟩ , so the restrictionMonOint (C) →
Fun(O≃⟨1⟩, C) has an inverse given by right Kan extension. We claim that the
functor MonO(C) → MonOint (C) has a left adjoint, which is given by left Kan
extension along the inclusion 𝑗 : Oint → O. This left Kan extension is given by
colimits along

(Oint)/𝑂 := Oint ×O O/𝑂 ,

and from the inert–active factorization system on O it follows that the inclusion
of the∞-groupoid ActO(𝑂) in (Oint)/𝑂 is cofinal; since we assume Chas colimits
indexed by ∞-groupoids, all left Kan extension along 𝑗 exist, meaning that we
have an adjunction

𝑗! : Fun(Oint, C) ⇄ Fun(O, C) .

We want to show that this restricts to an adjunction between the full subcat-
egories of monoids. To see this, it suffices to show that if 𝑀 : Oint → C is
an Oint-monoid, then the left Kan extension 𝑗!𝑀 is an O-monoid, i.e. that for
𝑂 ∈ O⟨𝑛⟩ the canonical map

( 𝑗!𝑀) (𝑂) →
𝑛∏
𝑖=1
( 𝑗!𝑀) (𝑂𝑖),

where 𝑂 → 𝑂𝑖 is cocartesian over 𝜌𝑖 , is an equivalence.
It follows from condition (2) in Definition 2.3.3 that we have an equivalence

ActO(𝑂)
∼−→

𝑛∏
𝑖=1

ActO(𝑂𝑖),

38



which takes an active morphism 𝑂 ′ ⇝ 𝑂 to the active maps 𝑂 ′𝑖 ⇝ 𝑂𝑖 obtained
from the inert–active factorization of the composite 𝑂 ′⇝ 𝑂 ↣ 𝑂𝑖 . Moreover,
the maps ( 𝑗!𝑀) (𝑂) → ( 𝑗!𝑀) (𝑂𝑖) are the maps on colimits induced by composing
with these maps, so since 𝑀 is an Oint-monoid we can identify the map we are
interested in as the composite

( 𝑗!𝑀) (𝑂) ≃ colim
𝑂 ′⇝𝑂∈ActO(𝑂 )

𝑀 (𝑂 ′)

≃ colim
(𝑂 ′

𝑖
⇝𝑂𝑖 ) ∈

∏𝑛
𝑖=1 ActO(𝑂𝑖 )

𝑛∏
𝑖=1

𝑀 (𝑂 ′𝑖 )

→
𝑛∏
𝑖=1

colim
(𝑂 ′

𝑖
⇝𝑂𝑖 ) ∈ActO(𝑂𝑖 )

𝑀 (𝑂 ′𝑖 )

≃
𝑛∏
𝑖=1
( 𝑗!𝑀) (𝑂𝑖) .

Here we can rewrite the colimit over
∏𝑛

𝑖=1 ActO(𝑂𝑖) as an iterated colimit, and
we then see that the penultimate map is an equivalence by our assumption that
the cartesian product in C preserves colimits indexed by ∞-groupoids in each
variable. □

For proofs of the general version of Theorem 3.5.3 and Corollary 3.5.5 we
refer to [Lur17, 3.1] (which builds the left adjoint by “brute force”, using an
inductive simplex by simplex construction), [CH22] (which uses Day convolu-
tion to reduce to the case of monoids), and [NS22] (who prove a more general
parametrized/equivariant version).
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Chapter 4

Other versions of ∞-operads

In this chapter we will first look at some alternative descriptions of ∞-operads,
namely as analytic monads and as dendroidal Segal spaces, and then discuss one
way to define enriched ∞-operads.

4.1 Analytic monads

In the first part of this section we consider the monad for free O-algebras in
spaces for an ∞-operad O, and see that in a certain sense O can be completely
recovered from this monad, which gives a relation between∞-operads and the
class of analytic monads. We will then take a closer look at these monads, and in
particular see how they relate one-object ∞-operads to a version of the compo-
sition product on symmetric sequences in S. This section is based on [GHK22]
and [Hau23].

For a fixed ∞-operad O, let us write

Oel := O≃⟨1⟩
𝑖−→ Oint 𝑗

−→ O

for the inclusions. The forgetful functor 𝑈O from O-algebras in S can then be
identified with the composite

MonO(S)
𝑗∗
−→ MonOint (S) 𝑖∗−→ Fun(Oel,S) .

Here 𝑖∗ is an equivalence with inverse the right Kan extension 𝑖∗ along 𝑖, and as
we saw in the previous section we can identify the left adjoint FreeO with 𝑗!𝑖∗.

Proposition 4.1.1.

(1) The adjunction FreeO ⊣ 𝑈O is monadic.

(2) The endofunctor 𝑇O := 𝑈OFreeO preserves sifted colimits and weakly contractible
limits.
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(3) The unit and multiplication transformations for 𝑇O are cartesian transformations1.

Proof. To prove (1), the monadicity theorem says that it suffices to check that
𝑈O is conservative, i.e. detects equivalences, and preserves 𝑈O-split simplicial
colimits. For the first condition, observe that both 𝑗∗ and 𝑖∗ are conservative
(since 𝑗 is essentially surjective and 𝑖∗ is an equivalence), hence so is their com-
posite. Instead of looking at 𝑈O-split simplicial colimits, we will prove that 𝑈O

preserves all sifted colimits in general; since restriction along 𝑗 gives a colimit-
preserving functor Fun(O,S) → Fun(Oint,S), it suffices to check that monoids
are closed under sifted colimits in Fun(O,S). To see this, suppose we have a dia-
gram 𝐹 : I→ MonO(S) where I is sifted; for 𝑂 ∈ O⟨𝑛⟩ we have a commutative
triangle

colim𝑥∈I𝐹 (𝑥) (𝑂) colim𝑥∈I
∏𝑛

𝑖=1 𝐹 (𝑥) (𝑂𝑖)

∏𝑛
𝑖=1 colim𝑥∈I𝐹 (𝑥) (𝑂𝑖),

∼

∼

where the top horizontal map is an equivalence since each 𝐹 (𝑥) is a monoid and
the right vertical map is an equivalence since I is sifted. It follows that 𝑇O also
preserves sifted colimits, since it is the composite of 𝑈O and a left adjoint.

To complete the proof of (2), we need to know that colimits in S indexed
by∞-groupoids commute with weakly contractible colimits (i.e. those indexed
by ∞-categories whose classifying spaces are contractible). This is because the
straightening theorem lets us identify a functor 𝐹 : 𝑋 → S, where 𝑋 is an ∞-
groupoid, with a map of ∞-groupoids 𝑌 → 𝑋 , where 𝑌 is the colimit of 𝐹 —
thus the colimit functor Fun(𝑋,S) → S is equivalent to the forgetful functor
S/𝑋 → S, and this preserves weakly contractible limits. Since 𝑇O is given by the
formula

(𝑇O𝐹 ) (𝑂) ≃ colim𝑂 ′⇝𝑂∈ActO(𝑂 ) 𝐹 (𝑂 ′),

where ActO(𝑂) is an ∞-groupoid, we see that it commutes with weakly con-
tractible limits.

For (3), we first look at the multiplication transformation ` : 𝑇 2
O
𝐹 → 𝑇O𝐹 .

At 𝑂 ∈ O, the value 𝑇 2
O
𝐹 (𝑂) is an iterated colimit, which we can rewrite as a

colimit over the space

Act2O(𝑂) :=


𝑂 ′′ 𝑂 ′

𝑂

 .
The component `𝑂 can then be identified with the map on colimits induced
by the morphism Act2

O
(𝑂) → ActO(𝑂) given by composition. To see that ` is

1Meaning that their naturality squares are all pullbacks.

41



cartesian, it suffices to check that the naturality square

𝑇 2
O
𝐹 (𝑂) 𝑇O𝐹 (𝑂)

𝑇 2
O
∗ 𝑇O∗

over the terminal object is cartesian for every 𝑂 . For this it suffices to check it
is an equivalence on fibres over every point 𝑂 ′′ ⇝ 𝑂 ′ ⇝ 𝑂 in Act2

O
(𝑂) ≃ 𝑇 2

O
∗,

and using the identification between colimits and straightening, this is indeed
the identity of 𝐹 (𝑂 ′′). The case of the unit transformation [ : id→ 𝑇O is similar,
using that its component at 𝑂 can be described as the map on colimits induced
by the map ∗ → ActO(𝑂) picking out the identity. □

It turns out that the properties in Proposition 4.1.1 come very close to char-
acterizing those monads that arise from ∞-operads, so we introduce some ter-
minology for these:

Definition 4.1.2. An analytic functor is a functor 𝐹 : S/𝑋 → S/𝑌 that preserves
sifted colimits and weakly contractible limits. An analytic monad is a monad 𝑇
on S/𝑋 such that 𝑇 is an analytic functor and the unit and multiplication are
cartesian natural transformations.

We have thus shown that the monad𝑇O is an analytic monad on S/Oel for ev-
ery ∞-operad O. More generally, if 𝑞 : 𝑋 ↠ Oel is a morphism of ∞-groupoids
that is essentially surjective (meaning that it is surjective on 𝜋0) then the com-
posite 𝑞∗ ◦𝑈O : MonO(S) → S/𝑋 is also the monadic right adjoint for an analytic
monad (with underlying endofunctor 𝑞∗𝑇O𝑞!).

Definition 4.1.3. We can define an ∞-category AnMnd whose objects are an-
alytic monads and whose morphisms are lax morphisms of monads given by
cartesian transformations. This can be defined as a subcategory of Ar(Cat∞)op,
because such lax morphisms𝑇 ′ → 𝑇 can be identified with commutative squares

Alg(𝑇 ) Alg(𝑇 ′)

S/𝑋 S/𝑋 ′

𝑈𝑇 𝑈𝑇 ′

𝑝∗

where 𝑝 is a map of spaces, and the mate transformation is cartesian.

Definition 4.1.4. A pinned ∞-operad is a pair (O, 𝑞 : 𝑋 ↠ Oel) where O is an
∞-operad and 𝑞 is an essentially surjective morphism of spaces. These form an
∞-category POpd∞.
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Theorem 4.1.5 ([Hau23]). The functor M : POpd∞ → AnMnd that takes a pinned
∞-operad (O, 𝑞 : 𝑋 ↠ Oel) to the monadic right adjoint

MonO(S)
𝑈O−−→ S/Oel

𝑞∗

−→ S/𝑋 ,

is an equivalence.

We will say a little more about how we can extract a pinned∞-operad from
an analytic monad later in this section, but first we want to look at how analytic
monads can be related to the composition product of symmetric sequences. For
this we first need to recall the diagrammatic description of analytic functors and
cartesian transformations:

For 𝑋,𝑌 ∈ S, let AnFun(𝑋,𝑌 ) denote the ∞-category of analytic functors
S/𝑋 → S/𝑌 and cartesian transformations among them. Then AnEnd(𝑋 ) :=
AnFun(𝑋,𝑋 ) has a monoidal structure given by composition, and we can iden-
tify the∞-category AnMnd(𝑋 ) of analytic monads on S/𝑋 with that of associa-
tive algebras in AnEnd(𝑋 ) under composition.

Theorem 4.1.6 ([GHK22]). An analytic functor S/𝑋 → S/𝑌 is of the form 𝑡!𝑝∗𝑠
∗

for a unique diagram of spaces

𝑋
𝑠←− 𝐸

𝑝
−→ 𝐵

𝑡−→ 𝑌

where 𝑝 has finite discrete fibres. Moreover, a cartesian transformation between such
functors is induced by a diagram

𝐸 𝐵

𝑋 𝑌

𝐸′ 𝐵′

⌟

where the middle square is a pullback.2

Here we write, for a morphism of spaces 𝑓 : 𝐴→ 𝐵,

• 𝑓 ∗ : S/𝐵 → S/𝐴 for the functor given by pullback along 𝑓 ,

• 𝑓! : S/𝐵 → S/𝐴 for the left adjoint to 𝑓 ∗, given by composition with 𝑓 (or
by left Kan extension along 𝑓 after straightening),

• 𝑓∗ : S/𝐵 → S/𝐴 for the right adjoint to 𝑓 ∗ (given by right Kan extension
along 𝑓 after straightening),

2We can also define a larger ∞-category of analytic functors on varying bases in terms of
such diagrams.
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We can also give a diagrammatic description of composition of analytic func-
tors, but we omit this here as it is slightly complicated.

In particular, we can describe the objects of AnEnd(∗) as diagrams

∗ ← 𝐸
𝑝
−→ 𝐵 → ∗,

where 𝑝 has finite discrete fibres. There’s a classifier for such maps 𝑝: the map∐
𝑛

nℎΣ𝑛 →
∐
𝑛

𝐵Σ𝑛

is terminal in AnEnd(∗). In other words, given a map 𝑝 : 𝐸 → 𝐵 with finite
discrete fibres, there is a unique pullback square

𝐸
∐

𝑛 nℎΣ𝑛

𝐵
∐

𝑛 𝐵Σ𝑛 .

𝑝

The map 𝑝 is thus determined by a map 𝐵 → ∐
𝑛 𝐵Σ𝑛, so that we have an

equivalence
AnEnd(∗) ≃ S/∐𝑛 𝐵Σ𝑛 ≃

∏
𝑛

Fun(𝐵Σ𝑛,S) .

An analytic endofunctor of S is thus determined by a symmetric sequence, i.e. a
sequence of spaces 𝑋 (𝑛) with a Σ𝑛-action, 𝑛 = 0, 1, . . ..

Moreover, under this equivalence the monoidal structure given by composi-
tion of analytic functors is described by the classical formula for the composition
product of symmetric sequences, so that we have equivalences of ∞-categories
between

• pointed connected ∞-operads (O, ∗↠ Oel),

• analytic monads on S,

• associative algebras in symmetric sequences in Swith respect to the com-
position product.

(The same idea works for any fixed space of objects, but the formulas are a bit
more complicated.)

Remark 4.1.7. In sets, the relation between symmetric sequences/operads and
a notion of analytic endofunctors/monads on Set is due to Joyal [Joy86].

We end by saying a little more about the proof of Theorem 4.1.5, for which
we need a bit more terminology:

Definition 4.1.8. An algebraic monad on S/𝑋 is one whose underlying endo-
functor preserves sifted colimits.

44



Definition 4.1.9. A Lawvere theory is a pair (L, 𝑞 : 𝑋 → L) where L is an ∞-
category with finite products and 𝑋 is a space, such that every object of L is a
finite product of ones in the image of 𝑞. We define the ∞-category Mod(L) of
models of L to be that of product-preserving functors L→ S.

If 𝑇 is an algebraic monad on S/𝑋 ≃ Fun(𝑋,S), then its Lawvere theory L(𝑇 )
is defined by taking L(𝑇 )op to be the full subcategory of Alg(𝑇 ) spanned by
the free algebras on finite coproducts of representables, together with the map
𝑋 → L(𝑇 ) arising from the Yoneda embedding combined with the free algebra
functor.

Theorem 4.1.10 ([GGN15], [Hau23]). If 𝑇 is an algebraic monad, then L(𝑇 )
is a Lawvere theory. Conversely, if (L, 𝑞) is a Lawevere theory then the restriction
Mod(L) → Fun(𝑋,S) is the monadic right adjoint of an algebraic monad. Moreover,
these constructions give inverse equivalences of ∞-categories between Lawvere theories
and algebraic monads.

Here the case of one-sorted Lawvere theories (where 𝑞 : ∗ → L) is due to
Gepner–Groth–Nikolaus [GGN15], while the generalization to arbitrary spaces
can be found in [Hau23].

To relate this to analytic monads, we first note that AnMnd has a terminal
object Sym, which is the unique analytic monad structure on the terminal object

∗ ←
∐
𝑛

nℎΣ𝑛 →
∐
𝑛

𝐵Σ𝑛 → ∗.

Then we can identify AnMnd with a full subcategory of AlgMnd/Sym. Here the
Lawvere theory L(Sym) can be identified with Span(F )♮ := (Span(F ), {1}),
so we can identify AnMnd with a full subcategory of Lawvere theories over
Span(F )♮.

Theorem 4.1.11 ([Hau23]). The∞-category AnMnd corresponds under taking Law-
vere theories precisely to the ∞-category of weak Segal fibrations over Span(F )♮ .

As we mentioned in Section 3.3, the latter ∞-category is equivalent to that
of ∞-operads by pulling back along the inclusion of F∗ in Span(F ). [BHS22].

4.2 Dendroidal Segal spaces

In this section we introduce complete dendroidal Segal spaces as an alternative
model for∞-operads. These are presheaves on the dendroidal category� (first in-
troduced by Moerdijk and Weiss [MW07]) that satisfy certain Segal and com-
pleteness condition. Dendroidal Segal spaces were first introduced by Cisin-
ski and Moerdijk [CM13a], but our discussion is also based on [Koc11] and
[GHK22]; see also the book [HM22] of Heuts and Moerdijk for an expository
account of all things dendroidal.
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As a warm-up, let’s first recall that the algebraic structure of an∞-category
(i.e. a homotopy-coherently associative and unital composition) can be de-
scribed by a Segal space, that is a simplicial space 𝑋 : �op → S such that the
restriction map

𝑋 ( [𝑛]) ∼−→ 𝑋 ( [1]) ×𝑋 ( [0] ) · · · ×𝑋 ( [0] ) 𝑋 ( [1])

induced by the inert inclusions [0], [1] ↩→ [𝑛], is an equivalence. Thinking of
[𝑛] as the category 0→ 1→ · · · → 𝑛, we can suggestively write this map as

𝑋 (0→ · · · → 𝑛) ∼−→ 𝑋 (0→ 1) ×𝑋 (1) 𝑋 (1→ 2) ×𝑋 (2) · · · ×𝑋 (𝑛−1) 𝑋 (𝑛 − 1→ 𝑛) .

To think of 𝑋 as an ∞-category, we view 𝑋 ( [0]) as the space of objects and
𝑋 ( [1]) as the space of all morphisms. Then the face maps 𝑑1, 𝑑0 : [0] → [1]
give maps 𝑋 ( [1]) → 𝑋 ( [0]) that assign source and target objects to a mor-
phism, while the degeneracy 𝑠0 : [1] → [0] induces a map 𝑋 ( [0]) → 𝑋 ( [1])
that assigns an identity map to every object. The Segal condition then says that
we can think of 𝑋 ( [𝑛]) as the space of composable sequences of 𝑛 morphisms.

We also get a composition operation

𝑋 ( [1]) ×𝑋 ( [0] ) 𝑋 ( [1])
∼←− 𝑋 ( [2]) → 𝑋 ( [1])

from the active face map 𝑑1 : [1] → [2]. The commutative square

𝑋 ( [3]) 𝑋 ( [2])

𝑋 ( [2]) 𝑋 ( [1])

arising from the commutative square

[1] [2]

[2] [3]

𝑑1

𝑑1 𝑑1

𝑑2

in � can then be interpreted as saying that this composition is associative up to
the specified equivalence in the square, and so forth for further coherences for
associativity and units.

The idea of dendroidal Segal spaces is to describe the algebraic structure of
an ∞-operad in an analogous fashion. Note that here we can think of the ob-
jects of [𝑛] as giving all the different ways we can combine morphisms in a cate-
gory into something we can compose together. For operads, such “composable
shapes” are trees: for example, given multimorphisms 𝑓 , 𝑔, ℎ with compatible
inputs and outputs as in the tree
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𝑧,

ℎ

𝑔

𝑒𝑑𝑐

𝑥𝑓

𝑏𝑎

𝑤 𝑦

we can compose them in an operad to get a multimorphism (𝑎, 𝑏, 𝑥, 𝑐, 𝑑, 𝑒) → 𝑧.
We thus want to find a category � whose objects are trees, so that we can
describe ∞-operads algebraically as functors 𝐹 : �op → S that satisfy a Segal
condition.

Let us write 𝐶𝑛 for the corolla with 𝑛 inputs, that is the tree

𝑛· · ·21

with one vertex, and [ := | for the plain edge. If 𝐹 : �op → S is to represent an
∞-operad, then 𝐹 ([) should be the space of objects of the∞-operad, and 𝐹 (𝐶𝑛)
its space of 𝑛-ary multimorphisms.

To get an idea of what types of morphisms we want to have in the category
�, consider the following tree 𝑇 :

For our functor 𝐹 , we want the space 𝐹 (𝑇 ) to represent a ternary morphism
together with a composable binary morphism. This corresponds to the Segal
condition

𝐹 (𝑇 ) ≃ 𝐹 (𝐶3) ×𝐹 ([ ) 𝐹 (𝐶2) .

This should arise from inert morphisms, given by the inclusions of subtrees of
the shapes𝐶2,𝐶3, [ ↩→ 𝑇 . On the other hand, we should be able to compose the
data represented by 𝑇 to a single multimorphism with 4 inputs, which means
there should be a map

𝐹 (𝑇 ) → 𝐹 (𝐶4)
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induced by an active morphism 𝐶4 → 𝑇 .
To proceed further, we need a definition of the trees we want as our objects.

Most precise definitions of trees are quite painful to write down, but luckily
there is a pretty straightforward definition of the type of tree we want here,
due to Kock [Koc11]. The idea is that if 𝐸 is the set of edges of a tree and 𝑉 is
the set of vertices3 (or nodes), we can define𝑉∗ to be the set of pairs (𝑣, 𝑒) where
𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸 is an incoming edge of the vertex 𝑣 . Then we have maps

𝐸 ← 𝑉∗ → 𝑉 → 𝐸,

where the two maps on the left are the projections that take (𝑣, 𝑒) to 𝑒 and 𝑣 , and
the right-most map sends a vertex 𝑣 to its unique outgoing edge. This diagram
then completely encodes the structure of the tree, and we can give a simple
criterion for such a map of sets to represent a tree:

Definition 4.2.1. A tree is a diagram of finite sets

𝑇 =

(
𝐼

𝑠←− 𝐽
𝑝
−→ 𝐾

𝑡−→ 𝐼

)
,

such that:

(1) The map 𝑡 is injective. [“Every edge is the outgoing edge of at most one
vertex.”]

(2) The map 𝑠 is injective and there is a unique element 𝑅 ∈ 𝐼 (the root of𝑇 ) that
is not in the image of 𝑠. [“Every edge is incoming for at most one vertex,
and the root is the unique non-incoming edge.”]

(3) If we define the successor function 𝜎 : 𝐼 → 𝐼 by 𝜎 (𝑅) = 𝑅 and 𝜎 (𝑖) = 𝑡𝑝 ( 𝑗)
if 𝑖 = 𝑠 ( 𝑗), then for every 𝑖 we have 𝜎𝑘 (𝑖) = 𝑅 for some 𝑘. [“Every edge is
connected to the root by a finite sequence of vertices”]

The leaves of 𝑇 are the elements of 𝐼 that are not in the image of 𝑡 .

Definition 4.2.2. The category �int has trees (in the sense of the previous
definition) as its objects, and morphisms are diagrams

𝐼 𝐽 𝐾 𝐼

𝐼 ′ 𝐽 ′ 𝐾 ′ 𝐼 ′

⌟
(4.1)

where the middle square is a pullback.
3Our trees do not have “exterior” vertices at the root or leaves (but “nullary” vertices without

incoming edges are allowed).
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Observation 4.2.3. A morphism 𝑇 → 𝑇 ′ in �int thus assigns edges of 𝑇 to
edges of𝑇 ′, and vertices of𝑇 to those of𝑇 ′, and the pullback condition says that
a vertex must be sent to one with the same number of incoming edges. In fact,
the conditions for 𝑇 and 𝑇 ′ to be trees force the maps on edges and vertices to
be injective, so morphisms in �int are precisely subtree inclusions.

Definition 4.2.4. For 𝑛 = 0, 1, . . ., the 𝑛-corolla 𝐶𝑛 is the tree

{0, 1, . . . , 𝑛} ←↪ {1, . . . , 𝑛} → {0} ↩→ {0, 1, . . . , 𝑛},

while the plain edge [ is the tree

∗ ←↪ ∅ → ∅ → ∗.

We write �el for the full subcategory of �int spanned by these elementary ob-
jects.

With these definitions in hand, we can define the Segal condition we want:

Definition 4.2.5. A presheaf 𝐹 : �int,op → S is a Segal presheaf (or a Segal
�int,op-space in the terminology of Section 3.3) if 𝐹 is a right Kan extension
of its restriction 𝐹 |

�el,op , meaning that for every object 𝑇 ∈ �int,op, we have a
Segal condition

𝐹 (𝑇 ) ≃ lim
𝐸∈ (�el

/𝑇 )
op 𝐹 (𝐸),

where �el
/𝑇 := �el ×�int �

int
/𝑇 consists of the inclusions of all edges and corollas

in 𝑇 . We denote the ∞-category of Segal presheaves on �int as PSeg(�int) ⊆
P(�int).

Next, we want to extend the category �int to add the active maps, which
should encode all the possible ways we can compose trees (as well as insert iden-
tities).

Definition 4.2.6. For 𝑇 a tree, let sub(𝑇 ) denote the set of all subtrees of 𝑇 ,
which we can identify with the (discrete) groupoid (�int

/𝑇 )
≃. Then let sub′(𝑇 )

be the set of subtrees of𝑇 together with a marked leaf, that is pairs ([ → 𝑇 ′,𝑇 ′ →
𝑇 ) where the first map is a leaf of 𝑇 ′. If 𝑇 is given by the diagram

𝐸 ← 𝑉∗ → 𝑉 → 𝐸,

consider the diagram

𝑇 =
(
𝐸 ← sub′(𝑇 ) → sub(𝑇 ) → 𝐸

)
,

where the two first maps take a marked subtree to its marked edge in𝑇 and the
underlying subtree, and the last map takes a subtree to its root edge in 𝑇 . We
define the category � to have trees as its objects, with morphisms from 𝑇 to 𝑇 ′

given by diagrams of the form (4.1) from the diagram 𝑇 to 𝑇 ′.
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Observation 4.2.7. A morphism from𝑇 to𝑇 ′ in� is determined by a diagram

𝐸 𝑉∗ 𝑉 𝐸

𝐸′ sub′(𝑇 ′) sub(𝑇 ′) 𝐸′.

⌟

Thus we assign to every vertex 𝑣 of 𝑇 a subtree of 𝑇 ′ such that the incoming
edges of 𝑣 are in bijection with the leaves of the subtree, and the outgoing edge
of 𝑣 is sent to the root of the subtree. In fact, this map is determined uniquely
by its underlying map 𝐸 → 𝐸′; we refer to [Koc11] for more details.

We get a (replete) subcategory inclusion �int → � by viewing vertices
(corollas) as subtrees; morphisms in its image are inert. A morphism 𝑇 → 𝑇 ′ in
� is active if it preserves the boundary, i.e. it takes the root and leaves of𝑇 to the
root and leaves of𝑇 ′ (bijectively). The active and inert maps form a factorization
system on �. Therefore, we can define an algebraic pattern structure �op,♮ on
the category �op (in the sense of Section 3.3) using the corresponding inert–
active factorization system, and with �el,op as the elementary objects.

Remark 4.2.8. Given a tree 𝑇 , we can define a free operad on 𝑇 , whose objects
are the edges of 𝑇 and whose 𝑛-ary multimorphisms are the subtrees of 𝑇 with
𝑛 leaves (giving a multimorphism from the leaves to the root); composition is
given by gluing of subtrees. The category � can then also be identified as the
full subcategory of operads (in Set) spanned by these free operads.

Definition 4.2.9. A dendroidal Segal space (or Segal presheaf on�, or Segal�op-
space) is a functor 𝐹 : �op → S such that 𝐹 |

�int,op is a right Kan extension of
𝐹 |
�el,op . We write PSeg(�) for the full subcategory of P(�) spanned by the

dendroidal Segal spaces.

Dendroidal Segal spaces have the algebraic structure we want from an ∞-
operad, i.e. a homotopy-coherently associative and unital composition of mul-
timorphisms. However, to get the right ∞-category of ∞-operads we further
need to invert the fully faithful and essentially surjective maps. Let us first recall
how this works for Segal spaces:

Definition 4.2.10. A morphism of Segal spaces 𝑋 → 𝑌 is called fully faithful if
the square

𝑋1 𝑌1

𝑋0 × 𝑋0 𝑌0 × 𝑌0
is cartesian (where the vertical maps come from the two face maps [0] → [1]
in �), and essentially surjective if the induced map 𝜋0𝑋0/∼𝑋→ 𝜋0𝑌0/∼𝑌 , where
∼𝑋 is the equivalence relation generated by 𝑥 ∼𝑋 𝑥 ′ if there exists an invertible
morphism 𝑥

∼−→ 𝑥 ′ in 𝑋 .

50



Definition 4.2.11. A Segal space 𝑋 is complete if the square

𝑋0 𝑋0 × 𝑋0

𝑋3 𝑋1 × 𝑋1

Δ

𝑠0×𝑠0
(𝑑{0,2},𝑑{1,3} )

is cartesian. (The pullback here is the space of diagrams in 𝑋 of the form

𝑥 ′ 𝑥 𝑥 ′ 𝑥,

id

id

that is the space of a morphism together with a left and a right inverse, so that
the completeness condition says that 𝑋0 is the space of equivalences in 𝑋 .) We
write PSeg(�) for the full subcategory of P(�) spanned by the Segal spaces, and
PCSeg(�) for the full subcategory of complete Segal spaces.

Theorem 4.2.12 (Rezk [Rez01]). PCSeg(�) is the localization of PSeg(�) at the
fully faithful and essentially surjective maps.

Theorem 4.2.13 (Joyal–Tierney [JT07]). PCSeg(�) ≃ Cat∞.

Now we turn to the analogous results for ∞-operads:

Observation 4.2.14. We can identify � with the full subcategory of � con-
taining only the linear trees, meaning those with only unary vertices. Let
𝑖 : � ↩→ � be the corresponding inclusion; then composition with 𝑖 restricts
to a functor

𝑖∗ : PSeg(�) → PSeg(�).

Definition 4.2.15. We say 𝑋 ∈ PSeg(�) is complete if 𝑖∗𝑋 ∈ PSeg(�) is a com-
plete Segal space, and write PCSeg(�) for the full subcategory of PSeg(�) con-
taining the complete dendroidal Segal spaces.

Definition 4.2.16. A morphism 𝑓 : 𝑋 → 𝑌 in PSeg(�) is essentially surjective
if 𝑖∗ 𝑓 is an essentially surjective morphism in PSeg(�), and fully faithful if the
square

𝑋 (𝐶𝑛) 𝑌 (𝐶𝑛)

𝑋 ([)×(𝑛+1) 𝑌 ([)×(𝑛+1)

is a pullback for all 𝑛.
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Remark 4.2.17. To explain the definition of fully faithful morphisms, note that
in the square above, a point in 𝑋 ([)×(𝑛+1) represents 𝑛 + 1 objects 𝑥1, . . . , 𝑥𝑛, 𝑥 ′
in 𝑋 , and the fibre of 𝑋 (𝐶𝑛) at this point is the space 𝑋 (𝑥1, . . . , 𝑥𝑛;𝑥 ′) of 𝑛-ary
morphisms (𝑥1, . . . , 𝑥𝑛) → 𝑥 ′ in 𝑋 . Since a square in S is cartesian if and only
if it is given by equivalences on fibres, the condition for 𝑓 to be fully faithful is
equivalent to it giving equivalences

𝑋 (𝑥1, . . . , 𝑥𝑛;𝑥 ′)
∼−→ 𝑌 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛); 𝑓 (𝑥 ′))

on all spaces of multimorphisms.

Theorem 4.2.18 (Cisinski–Moerdijk [CM13a]). PCSeg(�) is the localization of
PSeg(�) at the fully faithful and essentially surjective morphisms.

Theorem 4.2.19. PCSeg(�) ≃ Opd∞.

There are by now several proofs of such an equivalence between dendroidal
Segal spaces and Lurie’s model of ∞-operads:

• Heuts, Hinich, and Moerdijk [HHM16] proved the first comparison, but
only for ∞-operads without nullary operations. (More precisely, they
compare Lurie’s∞-operads to dendroidal sets as model categories, and the
latter are equivalent to dendroidal Segal spaces by work of Cisinski and
Moerdijk [CM13a].)

• Barwick [Bar18] proved that Lurie’s∞-operads are equivalent to complete
Segal presheaves on a category of forests with levels, and Chu, Haugseng,
and Heuts [CHH18] compared the latter to complete dendroidal Segal
spaces.

• Hinich and Moerdijk [HM22] prove the first direct equivalence between
Lurie’s ∞-operads and complete denroidal Segal spaces. (They further
show that they are even equivalent as symmetric monoidal ∞-categories
for the Boardman–Vogt tensor product.)

• As we discussed in the previous section, it is shown in [Hau23] that Lurie’s
∞-operads are equivalent to analytic monads. The main result of [GHK22]
is that analytic monads have a very natural description as dendroidal Segal
spaces.

Remark 4.2.20. We can think of dendroidal Segal spaces as an operadic ver-
sion of Rezk’s Segal spaces. Similarly, the category � can be used to ob-
tain (at the model category level) dendroidal analogues of other models for ∞-
categories, such as the dendroidal sets of Moerdijk and Weiss [MW07] (which
are an operadic version of quasicategories), as well as dendroidal versions of
Segal categories. Cisinski and Moerdijk have constructed Quillen equivalec-
nes that relate these dendroidal models to each other and to simplicial operads
[CM13a,CM13b].
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We end this section by briefly discussing the relation between dendroidal
Segal spaces and analytic monads from [GHK22], since this is closely related to
the way we defined the category �: As we mentioned in Section 4.1, analytic
functors S/𝑋 → S/𝑌 are of the form 𝑡!𝑝∗𝑠

∗ for a diagram of spaces

𝑋
𝑠←− 𝐸

𝑝
−→ 𝐵

𝑡−→ 𝑌,

where 𝑝 has finite discrete fibres. Above we also defined trees as certain dia-
grams (of sets) of this form. Moreover, in Theorem 4.1.6 we saw that cartesian
transformations between analytic functors correspond to diagrams

𝑋 𝐸 𝐵 𝑌

𝑋 ′ 𝐸′ 𝐵′ 𝑌 ′,

⌟

which was also how we defined inert morphisms between trees above.
Thus, if we define AnEnd as an ∞-category of analytic endofunctors S/𝑋 →

S/𝑋 (where 𝑋 can vary) together with cartesian transformations among these,
then we can identify �int with a full subcategory of AnEnd. Moreover, in
[GHK22] we show that the restricted Yoneda embedding

AnEnd→ P(�int)

restricts to an equivalence

AnEnd ≃ PSeg(�int) .

Next, we can construct a forgetful functor 𝑈 : AnMnd → AnEnd (taking an
analytic monad to its underlying endofunctor), and this turns out to have a left
adjoint 𝐹 : AnEnd→ AnMnd (forming free analytic monads). Furthermore, we
give an explicit formula for 𝐹 in terms of trees, and using this we can prove that
� is the full subcategory of AnMnd spanned by the objects 𝐹 (𝑇 ) where 𝑇 is a
tree. (In particular, the diagram we called 𝑇 above is precisely 𝑈𝐹 (𝑇 ).)

Theorem 4.2.21 ([GHK22]). The restricted Yoneda embedding along� ↩→ AnMnd
induces an equivalence

AnMnd ≃ PSeg(�).

Combined with the equivalence from Theorem 4.1.5, this gives an equiva-
lence POpd∞ ≃ AnMnd ≃ PSeg(�). It is also shown in [Hau23] that this restricts
to an equivalence between Opd∞ and PCSeg(�), as we would expect.

4.3 Enriched ∞-operads via �

So far we have only discussed ∞-operads where the multimorphisms form ∞-
groupoids, which we have viewed as an ∞-categorical version of operads in
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sets. However, there are many examples of interesting operads that are enriched
in other categories, such as vector spaces or chain complexes. Here we will
consider one approach to define enriched ∞-operads, based on the dendroidal
category �; this follows [CH20].

We start by using � to give another description of dendroidal Segal spaces,
for which it will be clearer how to define an enriched version:

Definition 4.3.1. For 𝑋 ∈ S, define 𝑎𝑋 : �op → S as the right Kan exten-
sion along {[} ↩→ �

op of the functor ∗ → S with value 𝑋 . Then 𝑎𝑋 (𝑇 ) ≃
𝑋 ×{edges in 𝑇 } . We write �op

𝑋
→ �

op for the corresponding left fibration.

Observation 4.3.2. We can think of an object of�op
𝑋

as a tree𝑇 ∈ �op, together
with a labelling of each of its edges by a point of 𝑋 ; we will denote such an
object as 𝑇 (𝑥𝑒 : 𝑒 ∈ 𝐸 (𝑇 )) where 𝐸 (𝑇 ) is the set of edges of 𝑇 . A morphism
between such labelled trees is a morphism in�op together with an identification
of the corresponding labels. Moreover, we can lift the inert–active factorization
system on �op to �op

𝑋
by taking a morphism to be inert or active if its image

in �op is so (this works because all morphisms are cocartesian here). We can
then define an algebraic pattern structure �op,♭

𝑋
on �op

𝑋
using this factorization

system, where the elementary objects are the labelled corollas 𝐶𝑛 (𝑥1, . . . , 𝑥𝑛;𝑥),
which we can depict as

𝑥

𝑥𝑛· · ·𝑥2𝑥1

Definition 4.3.3. Let Cbe an∞-category with finite products. An�op
𝑋

-monoid
in C is a Segal object for the pattern�op,♭

𝑋
, i.e. a functor 𝐹 : �op

𝑋
→ C such that

for each object 𝑇 = 𝑇 (𝑥𝑒 : 𝑒 ∈ 𝐸 (𝑇 )) we have

𝐹 (𝑇 ) ∼−→
∏

corollas in 𝑇

𝐹 (𝐶𝑛 (· · · )),

where the labels of the corollas must match those from𝑇 . We write Mon
�

op
𝑋

(C)
for the ∞-category of �op

𝑋
-monoids in C.

These monoids are contravariantly functorial in 𝑋 by restriction along the
functors �op

𝑋
→ �

op
𝑌

induced by maps 𝑓 : 𝑋 → 𝑌 in S (which act on labelled
trees by applying 𝑓 to the labels). We define Mon�op/S(C) → S to be the
cartesian fibration for this functor Mon

�
op
(–)
(C) : Sop → Cat∞.
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Proposition 4.3.4. We have a commutative triangle

PSeg(�) Mon�op/S(S)

S

∼

ev[

where the horizontal functor is an equivalence.

In other words, a Segal presheaf 𝐹 : �op → S is the same thing as a monoid
𝑀 : �op

𝑋
→ S, where 𝑋 := 𝐹 ([). The idea of the proof is that we can define the

value of 𝑀 at a labelled tree 𝑇 as the pullback

𝑀 (𝑇 ) 𝐹 (𝑇 )

∗ ∏
𝐸 (𝑇 ) 𝐹 ([),

⌟

where the bottom horizontal map precisely picks out the labelling of the edges
of 𝑇 in 𝑇 . In the other direction, we can obtain 𝐹 from 𝑀 by taking a left Kan
extension along the projection �op

𝑋
→ �op.

More generally, if C is an∞-category with finite products,�op
𝑋

-monoids in
Cdescribe (the algebraic structure of ) an∞-operad enriched in Cvia the carte-
sian product, and with 𝑋 as its space of objects: the value at 𝐶𝑛 (𝑥1, . . . , 𝑥𝑛;𝑥 ′) is
the object of multimorphisms from (𝑥1, . . . , 𝑥𝑛) to 𝑥 ′, and the remaining data
tells us how to compose such multimorphisms. To define enriched ∞-operads
in a general symmetric monoidal ∞-category we now replace monoids by al-
gebras (as in Section 3.1):

Definition 4.3.5. We define a functor |–| : �op → F∗ on objects by |𝑇 | :=
𝑉 (𝑇 ) ⨿ {∗}, where 𝑉 (𝑇 ) is the set of vertices of the tree 𝑇 . For a morphism
𝛼 : 𝑇 → 𝑇 ′ in �, we define |𝛼 | : |𝑇 ′ | → |𝑇 | by

|𝛼 | (𝑣) =
{
𝑤, if 𝑣 is a vertex of the subtree 𝛼 (𝑤),
∗, if no such 𝑤 exists.

This defines a functor, which is compatible with the inert–active factorization
systems.

Definition 4.3.6. A �op
𝑋

-algebra 𝐴 in a symmetric monoidal ∞-category C is
a commutative triangle

�
op
𝑋

C⊗

F∗

𝐴
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such that𝐴 preserves inert morphisms. We write Alg
�

op
𝑋

(C) for the∞-category
of such algebras.

The condition that 𝐴 preserves inert morphisms says informally that the
value 𝐴(𝑇 ) at a labelled tree 𝑇 can be viewed as the list (𝐴(𝐶𝑣))𝑣∈𝑉 (𝑇 ) where 𝐶𝑣

is the labelled corolla at the vertex 𝑣 . If we write

𝐴(𝑥1, . . . , 𝑥𝑛;𝑥) := 𝐴(𝐶𝑛 (𝑥1, . . . , 𝑥𝑛;𝑥))

then this is the object of multimorphisms from (𝑥1, . . . , 𝑥𝑛) to 𝑥 , and for any la-
belled tree we get a composition map between these objects of multimorphisms,
just as we expect for an∞-operad in C. We therefore also call an�op

𝑋
-algebra in

C a C-enriched ∞-preoperad with space of objects 𝑋 . (Here we use “preoperad”
to underscore that we have not yet inverted the fully faithful and essentially
surjective morphisms, which we need to do to obtain the correct ∞-category
of enriched ∞-operads.)

Definition 4.3.7. Composition with the functors�op
𝑋
→ �

op
𝑌

induced by maps
𝑋 → 𝑌 in S gives a contravariant functor Alg

�
op
(–)
(C) : Sop → Ĉat∞, and we

write Alg
�op/S(C) → S for the corresponding cartesian fibration.

Observation 4.3.8. A morphism in Alg
�op/S(C) from 𝐴 over 𝑋 to 𝐵 over 𝑌

consists of a morphism 𝑓 : 𝑋 → 𝑌 between spaces of objects, together with a
natural transformation 𝜙 : 𝐴 → 𝑓 ∗𝐵, which in particular gives maps between
objects of multimorphisms

𝐴(𝑥1, . . . , 𝑥𝑛;𝑥) → 𝐵(𝑓 𝑥1, . . . , 𝑓 𝑥𝑛; 𝑓 𝑥),

as we would expect for a functor of enriched ∞-operads.

Definition 4.3.9. A morphism (𝑓 , 𝜙) : 𝐴 → 𝐵 in Alg
�op/S(C) is fully faithful if

it is a cartesian morphism over 𝑓 , i.e. if the components

𝐴(𝑥1, . . . , 𝑥𝑛;𝑥) → 𝐵(𝑓 𝑥1, . . . , 𝑓 𝑥𝑛; 𝑓 𝑥)

of 𝜙 are all equivalences.

Any lax symmetric monoidal functor 𝐹 : C→ D induces a functor

𝐹∗ : Alg�op/S(C) → Alg
�op/S(D)

given by composing with 𝐹 . In particular, we always have a lax symmetric
monoidal functor

𝑢 := MapC(1, –) : C→ S

by mapping out of the monoidal unit 1, and so a functor

Alg
�op/S(C)

𝑢∗−→ Alg
�op/S(S) ≃ Mon�op/S(S) ≃ PSeg(�)

taking a C-enriched ∞-operad to its “underlying unenriched ∞-operad”.
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Definition 4.3.10. A morphism in Alg
�op/S(C) is essentially surjective if its image

under the composite

Alg
�op/S(C) → PSeg(�)

𝑖∗−→ PSeg(�)

is an essentially surjective morphism of Segal spaces, and similarly an object of
Alg
�op/S(C) is complete if its image under the same functor is a complete Segal

space.

Theorem 4.3.11 ([CH20]). The full subcategory Opd�(C) ⊆ Alg
�op/S(C) com-

prising the complete objects is the localization at the fully faithful and essentially sur-
jective morphisms.

Let us also comment briefly on the relation between enriched ∞-operads
and model categories of enriched operads:

Theorem 4.3.12 ([CH20]). Suppose V is a symmetric monoidal model category such
that the model structure can be lifted to V-operads with a fixed set of objects. Then there
is an equivalence of ∞-categories

Opd�(V[𝑊 −1]) ≃ Opd(V) (DK−1),

where𝑊 denotes the weak equivalences in V and DK the Dwyer–Kan equivalences
between V-operads, meaning those morphisms that are “weakly fully faithful and es-
sentially surjective up to homotopy”.

The idea of the proof is to relate Alg
�

op
𝑆

(V[𝑊 −1]) for a fixed set of objects 𝑆
to algebras for the operad for 𝑆-coloured operads in V[𝑊 −1], and then rectify
these to strict algebras for the same operad in V, using comparison results of
Pavlov and Scholbach [PS18].

In particular, this comparison applies to operads enriched in simplicial sets,
chain complexes over a field of characteristic 0, and symmetric spectra. (In
these cases the Dwyer–Kan equivalences are actually the weak equivalences in
a model structure on strict operads, by work of Caviglia [Cav14] and Berger–
Moerdijk [BM03]; note that the comparison between∞-operads with simplicial
operads was first proved by Cisinski and Moerdijk [CM13b].)
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