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November 26, 2020

1 Introduction

Exercise 1.1. We computed the homology of the torus by thinking of it as built
from a square by gluing opposite edges, and triangulating this by cutting it into two
triangles along the diagonal. Here are two other (non-orientable!) surfaces we can
build by identifying opposite sides of a square, but now with a twist in either one or
both directions:

The corresponding spaces are the Klein bottle and the real projective plane RP2,
respectively. Triangulate these too by adding a diagonal and picking orientations,
and compute the homology groups. [You should find that homology groups are not
always free abelian groups.]

Exercise 1.2. The Euler characteristic of a triangulated surface is

χ := V − E + F.

(i) Show that χ = h0 − h1 + h2 where hi is the rank of the abelian group Hi(Σ).
Conclude that the Euler characteristic is a topological invariant. [Hint: For
abelian groups B ⊆ A the rank of A/B is given by rk A/B = rk A− rk B. You
will also need to write the boundary groups Bi(Σ) as quotients.]

(ii) Conclude that for any way of covering the oriented surface of genus g by poly-
gons we must have

V − E + F = 2− 2g.

[Hint: Subdivide the polygons into triangles.]

(iii)∗ In particular, any convex polyhedron must satisfy Euler’s formula,

V − E + F = 2.

Use this to classify the Platonic solids. [Hint: first observe that we have pF =

2E = qV if the faces have p edges and q edges meet at each vertex, and show
that 1

p + 1
q > 1

2 ; since p and q are integers ≥ 3 there are not many possibilities.]

2 Some Basic Topology and Category Theory

Exercise 2.1. Let X be a topological space and S a set. Show that if we equip S with
the discrete topology then any function S→ X is continuous, and if we equip S with
the indiscrete topology then any function X → S is continuous.

Exercise 2.2. Let (X, dX) and (Y, dY) be metric spaces. Show that a function f : X → Y
is continuous if and only if for every x ∈ X and every ε > 0 there exists δ > 0 such
that if dX(x, x′) < δ then dY( f (x), f (x′)) < ε. (Note that δ may depend on x.)
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Exercise 2.3. Prove the following basic properties of isomorphisms in a category C:

(i) If f : x → y and g : y→ z are isomorphisms, so is g f : x → z.

(ii) Given f : x → y, if there exist g, h : y→ x such that

g f = idx, f h = idy,

then f is an isomorphism.

(iii) If f is an isomorphism, its inverse is unique.

(iv) If F : C → D is a functor and f : x → y is an isomorphism in C, then F( f ) is an
isomorphism in D.

(v) Being isomorphic is an equivalence relation on objects of C.

Exercise 2.4. Let X be a topological space and U ⊆ X a subset. Show that the subspace
topology on U has the following universal property: if T is a topological space, then
a continuous map from T to U is a map of sets T → U such that the composite
T → U ↪→ X is continuous.

Exercise 2.5. Show that there is a functor Top→ Set that takes a topological space to
its underlying set (the “forgetful” functor) and two functors Set→ Top that take a set
to itself equipped with the discrete and indiscrete topologies, respectively.

Exercise 2.6. Let x, y, z be objects of a category C. Show that there is a canonical
isomorphism

x× (y× z) ∼= (x× y)× z,

provided these products exist.

Exercise 2.7. Show that the cartesian product of (abelian) groups is also the categorical
product in Grp and Ab, when equipped with the canonical group structure.

Exercise 2.8 (∗). Given a set I and a collection xi (i ∈ I) of objects of a category C, their
product (if it exists) is an object ∏i∈I xi together with projections πi : ∏i∈I xi → xi

satisfying the following universal property: given an object y and morphisms fi : y→
xi for i ∈ I, there exists a unique morphism f : y → ∏i∈I xi such that πi f = fi. Show
that I-indexed cartesian products are categorical products in the category Set, and
also in the categories Ab,Grp,Top when equipped with canonical (abelian) group
structures and topologies. (What is an I-indexed product when I is empty?)

Exercise 2.9. Show that the coproduct in Top of topological spaces X, Y is the disjoint
union X qY of sets, with a subset U ⊆ X qY defined to be open if and only if U ∩ X
is open in X and U ∩Y is open in Y.

Exercise 2.10 (∗). What is the coproduct of two copies of Z in Grp?

Exercise 2.11 (∗). Define I-indexed coproducts for any indexing set I, as in Exercise 2.8.
Describe these in the categories Set and Top.

Exercise 2.12 (∗). If C is a category, we define the opposite category Cop to be the
category with the same objects as C, but with the direction of morphisms reversed —
thus HomCop(x, y) := HomC(y, x). Check that a coproduct in C is the same thing as a
product in Cop.
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Exercise 2.13 (∗). Suppose a topological space X can be written as a union of subsets
Xi (i ∈ I) such that the subsets Xi are open and disjoint. Show that X ∼= äi∈I Xi (i.e.
the topology on X is the coproduct topology).

Exercise 2.14. Suppose R is a relation on a set I. Show that the quotient I/R = I/R
together with the quotient map

π : I → I/R, π(i) = [i]R

has the following universal property: any function f : I → J for which i ∼R j implies
f (i) = f (j) factors uniquely through π,

I I/R

J.

π

f
∃! f

Exercise 2.15. Let Dn := {x ∈ Rn : |x| ≤ 1} be the closed n-disk and

∂Dn := Sn−1 := {x ∈ Rn : |x| = 1}

be the (n− 1)-sphere, both equipped with the subspace topology from Rn.

(i) Find explicit homeomorphisms D1/∂D1 ∼= S1 and D2/∂D2 ∼= S2. [Feel free to
use that these are compact Hausdorff spaces, so that a continuous bijection is
necessarily a homeomorphism.]

(ii) Show that the following three descriptions of the torus are homeomorphic:

T1 := {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y))

T2 := S1 × S1

T3 := {(R + r cos θ) cos φ, (R + r cos θ) sin φ, r sin θ)} ⊆ R3 (R > r)

(iii)∗ Find an explicit homeomorphism Dn/∂Dn ∼= Sn.

Exercise 2.16. Show that being homotopic is an equivalence relation on the set C(X, Y)
of continuous maps X → Y.

Exercise 2.17. Prove that hTop is a well-defined category, with composition and
identities induced from Top (so that there is a functor Top → hTop that takes each
continuous map to its equivalence class). What does Exercise 2.3 then tell you about
homotopy equivalences?

Exercise 2.18. Let S be a set. Show that:

(i) if S is equipped with the discrete topology then S is contractible if and only if S
has exactly one element,

(ii) if S is equipped with the indiscrete topology then S is contractible if and only if
S is non-empty.

[Hint: Prove that with the discrete topology the only continuous paths are the con-
stant ones, while any path is continuous for the indiscrete topology.]

Exercise 2.19 (∗∗). (A topological proof that S1 is not contractible.) View S1 as {z ∈ C :
|z| = 1} and let π : R→ S1 be the continuous map x 7→ eix. We say that a continuous
map f : S1 → S1 lifts to R if there exists f̄ : S1 → R such that f = π f̄ .
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(i) Show that if g : S1 → S1 lifts to R and f : S1 → S1 is another continuous map
such that f (x)/g(x) 6= −1 for all x ∈ S1 then f also lifts to R.

(ii) Let c1 : S1 → S1 be the constant map with value 1, and suppose f is homotopic
to c1, via a homotopy H : S1 × [0, 1] → S1. Since S1 × [0, 1] is compact, we can
choose δ > 0 such if |x− y| < δ then |H(x)− H(y)| < 2 for all x, y ∈ S1 × [0, 1]
(viewed as a subset of R3). Use this to show that f lifts to R.

(iii) Use (ii) to prove that S1 is not contractible (i.e. idS1 is not homotopic to a con-
stant map).

Exercise 2.20. Let X and Y be topological spaces.

(i) Show that any continuous map f : X → Y induces a function π0 f : π0X → π0Y,
and that this makes π0 a functor Top→ Set.

(ii) Show that if f , g : X → Y are homotopic, then π0 f = π0g. [Hence π0 is a functor
hTop→ Set.]

(iii) Show that if f : X → Y is a homotopy equivalence, then π0 f is an isomorphism.

3 Simplices and Singular Homology

Exercise 3.1. If V is a vector space over a field k, consider the linear map ηV : V → V∗∗

to the double dual, taking v ∈ V to the linear functional

ηV(v) : V∗ → k, φ 7→ φ(v).

Prove that these maps are natural, i.e. they determine a natural transformation η of
functors Vectk → Vectk from the identity to the double dual. Show that if we restrict
to finite-dimensional vector spaces η becomes a natural isomorphism.

Exercise 3.2. Let Ai, i ∈ I be a collection of abelian groups indexed by a set I, and
define the inclusion Ij : Aj →

⊕
i∈I Ai by Ij(a) = (ai)i∈I where aj = a and ai = 0 oth-

erwise. Show that the Ij’s exhibit the direct sum
⊕

i∈I Ai as the I-indexed coproduct
in Ab, i.e. given homomorphisms φj : Aj → B there exists a unique homomorphism
φ :

⊕
i∈I Ai → B with φj = φ ◦ Ij.

Exercise 3.3. Given sets Ti, i ∈ I, show that there is a natural isomorphism

Z

(
ä

i
Ti

)
∼=
⊕

i
ZTi.

[Hint: We can view the left-hand side as consisting of functions f : äi Ti → Z that are
0 except at finitely many elements, while the right-hand side consists of a family of
functions fi : Ti → Z that are all zero except at finitely many elements, and such that
fi = 0 except for finitely many indices i.]

Exercise 3.4 (Direct sums commute with quotients in Ab). Show that given abelian
groups Ai with subgroups Bi ⊆ Ai for i ∈ I, there is a canonical isomorphism

⊕
i∈I

Ai/Bi
∼=
(⊕

i∈I
Ai

)
/

(⊕
i∈I

Bi

)
.

[Hint: Show that homomorphism
⊕

i∈I Ai →
⊕

i∈I Ai/Bi (defined as the sum of the
quotient maps) exhibits the target as the quotient by

⊕
i∈I Bi, by checking it satisfies

the universal property of the quotient.]



exercises for algebraic topology i 5

4 Relative Homology and Long Exact Sequences

Exercise 4.1. Prove the 5-Lemma.

Exercise 4.2. Suppose we have an exact sequence

(· · · )A
f−→ B

g−→ C h−→ D i−→ E(· · · ).

Show that there is a short exact sequence

0→ coker f → C → ker i→ 0,

where the cokernel coker f is the quotient B/ im f . (Thus we can in a sense “decom-
pose” a long exact sequence into a series of short exact sequences.)

Exercise 4.3. Let 0 → A i−→ B
q−→ C → 0 be a short exact sequence (SES). A splitting

of the SES is a section s : C → B, so that qs = idC. (The SES is splittable if a splitting
exists, while a split SES is a SES together with a choice of splitting.)

(i) Show that a splitting s induces an isomorphism A⊕ C ∼−→ B. [Note that different
splittings can give different isomorphisms.]

(ii) Show that if C is a free abelian group then the SES above is splittable. [Hint:
Use the universal property of free abelian groups.]

(iii) Give an example of a SES that is not splittable.

Exercise 4.4. Given a commutative diagram of chain complexes and chain maps

0 A• B• C• 0

0 A′• B′• C′• 0,

where the rows are exact, check that the boundary map on homology gives commuta-
tive squares

Hn(C) Hn−1(A)

Hn(C′) Hn−1(A′).

∂

∂

Exercise 4.5. Suppose A ⊆ B are subspaces of a topological space X, and the inclusion
i : A ↪→ B induces isomorphisms i∗ : Hn(A)

∼−→ Hn(B) for all n. Prove that the natural
homomorphism Hn(X, A) → Hn(X, B) is an isomorphism for all n. [Hint: Use the
5-Lemma and Exercise 4.4.]

Exercise 4.6. Let 0 → A•
i•−→ B•

q•−→ C• → 0 be a short exact sequence of chain
complexes. Show that the induced sequence of homology groups

· · · → Hn(A)
Hn(i)−−−→ Hn(B)

Hn(q)−−−→ Hn(C)
∂−→ Hn−1(A)→ · · ·

is a long exact sequence.

Exercise 4.7. Suppose h∗ is an ordinary homology theory satisfying the Eilenberg–
Steenrod axioms.
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(i) Suppose X = äi∈I Xi is a coproduct and Ai ⊆ Xi is a collection of subspaces.
If A := äi∈I Ai, show that the inclusions (Xi, Ai) ↪→ (X, A) induce an isomor-
phism ⊕

i∈I
h∗(Xi, Ai) ∼= h∗(X, A).

[Hint: Use the long exact sequence.]

(ii) If (Xi, xi) is a collection of pointed spaces, their wedge is the quotient space

∨
i∈I

Xi :=

(
ä
i∈I

Xi

)
/{xi : i ∈ I}

where we identify all the base points to a single point x. Show that if (Xi, {xi})
is a good pair for every i then there is a canonical isomorphism⊕

i∈I
h̃∗(Xi) ∼= h̃∗(

∨
i∈I

Xi),

where for a pointed space (X, x) we write h̃∗(X) := h∗(X, x).

Exercise 4.8. Use the Mayer–Vietoris sequence to compute the homology of the
orientable surface Σg of genus g. [Hint: Find a way to induct on g.]

Exercise 4.9. Think of RP2 as the quotient of D2 where we identify x with −x for
x ∈ ∂D2. Compute the homology of RP2 using the Mayer–Vietoris sequence with
A = a neighbourhood of the image of ∂D2 and B = the image of a smaller disc inside
D2. [Assume that the map S1 → S1 that loops around twice is given on H1(S1) by
multiplication by 2.]

Exercise 4.10. The cone on a topological space X is the quotient (X× [0, 1])/(X× {0}),
and the suspension ΣX of X is the quotient of (X× [0, 1]) where we collapse X× {0} to
a point and X× {1} to a different point.

(i) Show that CX is contractible for any X, and that ΣX is the union of two copies
of CX with intersection X.

(ii) Use the Mayer–Vietoris sequence to show that Hn(ΣX) ∼= Hn−1(X) for n > 1.

(iii) By looking at what happens at the bottom of the Mayer–Vietoris sequence, show
that H̃n(ΣX) ∼= H̃n−1(X) for all n.

(iv) If X = Sn, convince yourself that ΣSn is homeomorphic to Sn+1. [Think of
the two cones as two “hemispheres” glued along the “equator”.] Use (iii) to
compute H̃∗(Sn) again.

5 Cellular Homology

Exercise 5.1. Show that in the category Ab of abelian groups, the pushout of two
homomorphisms f : A → B, g : A → C is the cokernel of the homomorphism
( f ,−g) : A→ B⊕ C.

Exercise 5.2. Consider a commutative diagram

A A′ A′′

B B′ B′′,
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in a category C. If the left square is a pushout, then the right square is a pushout if
and only if the outer (composite) square is a pushout.

Exercise 5.3 (Pushouts commute with coproducts). Suppose we have pushout squares

Ai Bi

Ci Di

for i ∈ I in some category C. If I-indexed coproducts exist in C, then the canonical
square

äi∈I Ai äi∈I Bi

äi∈I Ci äi∈I Di

is also a pushout. [Hint: Use the universal properties.]

Exercise 5.4. Show that a morphism of ∆-sets f : S → T induces a canonical continu-
ous map | f | : |S| → |T| between geometric realizations such that for every σ ∈ Sn the
triangle

∆n

|S| |T|

eσ
e f (σ)

| f |

commutes. Check that this makes |–| a functor Set∆ → Top.

Exercise 5.5. The combinatorial n-simplex is the ∆-set ∆n
comb with (∆n

comb)k being the set
of subsets of {0, . . . , n} of size k + 1; it is convenient to label these as [i0 · · · ik] with
0 ≤ i0 ≤ i1 ≤ · · · ≤ ik ≤ n. Then the face map ∂j : (∆n

comb)k → (∆n
comb)k−1 is given by

[i0 · · · ik] 7→ [i0 · · · ij−1ij+1 · · · ik].

The boundary of ∆n
comb is the ∆-set ∂∆n

comb obtained by removing the single n-simplex
[01 · · · n], so that

(∂∆n
comb)k =

(∆n
comb)k, 0 ≤ k ≤ n− 1,

∅, k ≥ n,

with the same face maps in degrees < n.

(i) Convince yourself that |∆n
comb| is homeomorphic to ∆n and |∂∆n

comb| to the
boundary of ∆n.

(ii) Compute the simplicial homology of the ∆-sets ∆3
comb and ∂∆3

comb. [The space
|∂∆3

comb| is a tetrahedron, which is topologically a sphere, so the result should
agree with the usual homology of the sphere.]

Exercise 5.6.

(i) Suppose we have subsets
S0 ⊆ S1 ⊆ S2 ⊆ · · · .

Show that the union
⋃∞

n=0 Sn is isomorphic to the sequential colimit of the
inclusions Sn ↪→ Sn+1.
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(ii) Suppose we have subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · .

Show that the union
⋃∞

n=0 Xn is homeomorphic to the sequential colimit of the
continuous inclusions Xn ↪→ Xn+1 if we give the union the topology where a
subspace U ⊆ ⋃∞

n=0 Xn is open if and only if U ∩ Xn is open in Xn for all n.

(iii) Also check the analogous statement for abelian groups.

Exercise 5.7. Suppose we have a sequence

X0
f0−→ X1

f1−→ X2
···−→

of morphisms fi : Xi → Xi+1 in a category C such that fi is an isomorphism for all
i ≥ N. Show that then XN is a colimit of the sequence. [Hint: We have compatible
isomorphisms XN

∼−→ Xi for i > N, inverting these we get compatible morphisms
Xi → XN for all N. Now check the universal property.]

Exercise 5.8. Show that the free abelian group functor Z(–) : Set → Ab preserves
sequential colimits.

Exercise 5.9. Given a diagram of abelian groups

A0
f0−→ A1 → · · · ,

and subgroups Bi ↪→ Ai such that fi(Bi) ⊆ Bi+1, show that there is a canonical
isomorphism

colimi Ai/Bi
∼= (colimi Ai) / (colimi Bi) .

Exercise 5.10. Suppose we have C• ∼= colimn Cn,•. Show that

Zk(C) ∼= colimn Zk(Cn), Bk(C) ∼= colimn Bk(Cn),

and conclude using the previous exercise that

Hk(C) ∼= colimn Hk(Cn).

Exercise 5.11. Compute the cellular homology of Sn using the cell structure with
two cells in each dimension ≤ n. [You need to keep track of the orientations of the
generators. There are two ways to define this cell structure: either attach both cells
using the identity, or attach one cell using the identity and one using an orientation-
reversing map; it may be instructive to look at both.]

Exercise 5.12. Find a cell structure on the torus and compute the cellular homology.

Exercise 5.13. By the classification of finitely generated abelian groups, we can write
any finitely generated abelian group A as a direct sum Zr ⊕ T where T is a torsion
group (i.e. all its elements have finite order). The integer r is called the rank rk A of
A. If C• is a chain complex such that Cn is a finitely generated abelian group for all n,
and vanishes except for finitely many n, then the Euler characteristic of C• is

χ(C•) = ∑
i
(−1)i rk Ci.
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(i) Show that
χ(C•) = ∑

i
(−1)i rk Hi(C).

[Assume that rank is additive in short exact sequences: if 0→ A→ B→ C → 0
is a short exact sequence of finitely generated abelian groups, then rk B =

rk A + rk C.]

(ii) If X is a finite cell complex with Γn its set of of n-cells, the Euler characteristic of
X is the alternating sum

χ(X) = ∑
i
(−1)i|Γn|.

Prove that χ(X) is independent of the cell structure of X, and only depends on
X up to homotopy equivalence.

6 Homotopy Invariance and Excision

Exercise 6.1. Show that the exterior product µn,m induces bilinear maps in homology
Hn(X)× Hm(Y)→ Hn+m(X×Y).

Exercise 6.2. Suppose the formula

∂ιk,l =
k

∑
i=0

(−1)i(di × id)∗ιk−1,l + (−1)k
l

∑
j=0

(−1)j(id× dj)∗ιk,l−1

holds for ιn−1,m and ιn,m−1. Show that then the chain

n

∑
i=0

(−1)i(di × id)∗ιn−1,m + (−1)n
m

∑
j=0

(−1)j(id× dj)∗ιn,m−1

is a cycle.

Exercise 6.3.

(i) Show that being chain homotopic is an equivalence relation on the set of chain
maps A• → B•.

(ii) Show the chain homotopies are compatible with compositions: if f , g : A• → B•
are chain homotopic, then so are φ f and φg for any chain map φ : B• → B′•, and
likewise for f ψ and gψ for any ψ : A′• → A•.

(iii) Define the homotopy category of chain complexes, where the objects are chain
complexes and the set of morphisms from A• to B• is the set of chain homotopy
classes of chain maps.

Exercise 6.4. Use the cone construction to show directly (without using homotopy
invariance) that for any convex subset K ⊆ Rn we have H∗(K) = 0, ∗ > 0.

Exercise 6.5. Suppose we have chains Rn ∈ Sn+1(∆n) with R0 the unique simplex
∆1 → ∆0, and define ρX

n : Sn(X) → Sn+1(X) by ρX
n (σ) := σ∗Rn for σ : ∆n → X and

extending linearly in σ. Show (by induction on n) that if the chains Rn satisfy

∂Rn = −ρn−1(∂ιn) + bs∆n

n ιn − ιn

then the homomorphisms ρX
n are a natural chain homotopy between bsX and id.
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7 Tensor Products and Homology with Coefficients

Exercise 7.1. For integers n, m, show that Z/n⊗Z/m ∼= Z/r where r = gcd(n, m) is
the greatest common divisor of n and m. In particular, if p and q are distinct primes,
then Z/p⊗Z/q ∼= 0.

Exercise 7.2. For sets S, T, show that there is a canonical isomorphism

ZS⊗ZT ∼= Z(S× T).

Exercise 7.3. Prove the formal properties of ⊗ using the universal property.

Exercise 7.4. Show that M⊗R N is the quotient of M⊗ N by the subgroup generated
by elements of the form rm⊗ n−m⊗ rn for r ∈ R, m ∈ M, n ∈ N.

Exercise 7.5.

(i) Let R be an (associative, unital) ring. Show that an R-module is the same as an
abelian group M and a homomorphism α : R⊗M→ M such that the square

R⊗ R⊗M R⊗M

R⊗M M

idR⊗α

µ⊗idM µ

α

and the triangle

M Z⊗M R⊗M

M

∼ η⊗idM

α

commute, where the homomorphism µ : R⊗ R→ R is given by multiplication in
R and η : Z→ R is given by the unit of R (i.e. η(1) = 1).

(ii) Show that an R-module homomorphism φ : M → N is the same as a homomor-
phism of abelian groups such that the square

R⊗M R⊗ N

M N

id⊗φ

φ

commutes.

(iii) Show that if M is an abelian group and R is a ring, then R⊗ M has a natural
R-module structure. [Hint: Use the multiplication in R.]

(iv) Show that if M is an abelian group and N is an R-module, there is a natural
correspondence between R-module homomorphisms R⊗M→ N and homomor-
phisms of abelian groups M→ N.

(v) If S is a set and R is a ring, show that R⊗ZS has the universal property of the
free R-module RS on S: R-module homomorphisms RS → M correspond to
functions S→ M.

Exercise 7.6. If k is a field and V, W are k-vector spaces, with bases {xi}i∈I and {yj}j∈J ,
respectively, show that xi ⊗ yj is a basis for V ⊗k W. If V and W are finite-dimensional,
conclude that

dim(V ⊗k W) = dim V · dim W.
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Exercise 7.7. Show that for C• a chain complex, the natural map

Hk(C)⊗Z→ Hk(C⊗Z) ∼= HkC

is an isomorphism.

Exercise 7.8. Show that a chain homotopy h between chain maps f , g : C• → D•
induces a chain homotopy between f ⊗M, g⊗M : C• ⊗M→ D• ⊗M for any abelian
group M.

Exercise 7.9. For an integer n, let us write n : Z→ Z for the homomorphism given by
multiplication with n.

(i) For any abelian group M, use the universal property of ⊗ to show that under
the natural isomorphism M ∼= M ⊗Z the homomorphism id⊗ n : M ⊗Z →
M⊗Z corresponds to the homomorphism M→ M given by multiplication with
n.

(ii) Use the natural isomorphism from Exercise 7.7 to show that the natural map
m∗ : Hn(X, A; Z) → Hn(X, A; Z) induced by m : Z → Z on coefficients is again
given by multiplication with m.

Exercise 7.10. Show that for integers n, m we have Tor(Z/n, Z/m) ∼= Z/r, where
r = gcd(n, m).

Exercise 7.11. For a continuous map f : X → Y, the mapping cone M( f ) of M is defined
as the pushout

X Y

CX M( f ),

f

where CX is the cone on X, as in exercise 5 from week 4.

(i) Show that Hi(M( f ), Y) ∼= H̃i−1(X) and the boundary map

Hi(M( f ), Y)→ Hi−1(Y)

corresponds to f∗ : Hi−1(X) → Hi−1(Y) (for i > 1). [Hint: M( f )/Y ∼= CX/X ∼=
ΣX plus Exercise 4.10; to identify the map use the naturality of the boundary
map for (CX, X)→ (M( f ), Y).]

(ii) From (i) the long exact sequence for the pair (M( f ), Y) looks like

· · · → Hi(M( f ))→ Hi−1(X)
f∗−→ Hi−1(Y)→ Hi−1(M( f ))→ · · ·

for i > 1. Use this to prove that f∗ : H∗(X) → H∗(Y) is an isomorphism if and
only if H̃∗(M( f )) = 0.

(iii) Complete the proof that f∗ is an isomorphism in integral homology if it is an
isomorphism in homology with Q- and Fp-coefficients for all primes p.

8 Cohomology

Exercise 8.1. For M an abelian group, show that Hom(Z/n, M) is the group of n-
torsion elements in M; in particular Hom(Z/n, Z/m) ∼= Z/r where r = gcd(n, m).
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Exercise 8.2. If S is a set and M an abelian group, then we have canonical isomor-
phisms

Hom(ZS, M) ∼= MS ∼= ∏
s∈S

M,

of abelian groups.

Exercise 8.3. Prove the basic formal properties of Hom.

Exercise 8.4.

(i) Show that for abelian groups A, B, C there is a natural bijection between the sets
of homomorphisms A⊗ B→ C and A→ Hom(B, C).

(ii) Show that this bijection is moreover an isomorphism of abelian groups

Hom(A⊗ B, C) ∼= Hom(A, Hom(B, C)).

(iii) Show that composition of homomorphisms of abelian groups gives a homomor-
phism

Hom(A, B)⊗Hom(B, C)→ Hom(A, C).

Exercise 8.5. If m : Z → Z is the map given by multiplication with m, show that
m∗ : Hom(Z, M) → Hom(Z, M) corresponds under the isomorphism Hom(Z, M) ∼=
M to the map M→ M given by multiplication with m.

Exercise 8.6. Show that a chain homotopy between chain maps f , g : C• → D• induces
a natural chain homotopy between f ∗, g∗ : Hom(D, M)→ Hom(C, M) for any abelian
group M.

Exercise 8.7. Show that for A ⊆ X the relative cochains Sn(X, A) can be identified
with the subgroup of Sn(X) ∼= ZSingn(X) consisting of functions f : Singn(X) → Z

such that f (α) = 0 for α ∈ Singn(A) ⊆ Singn(X).

Exercise 8.8. Use the Mayer-Vietoris sequence for cohomology to compute H̃∗(Sn; M).

Exercise 8.9.

(i) Show that if we have short exact sequences 0→ Ai
ji−→ Bi

qi−→ Ci → 0 for all i ∈ I,
then there is a short exact sequence

0→∏
i∈I

Ai
∏i∈I ji−−−→∏

i∈I
Bi

∏i∈I qi−−−→∏
i∈I

Ci → 0.

(ii) Use (i) to prove the additivity axiom for cohomology: for a disjoint union
X = äi∈I Xi the inclusions Xi ↪→ X induce an isomorphism

H∗(X)
∼−→∏

i
H∗(Xi).

Exercise 8.10 (Change of coefficients in cohomology). Let (X, A) be a subspace pair.

(i) Show that a homomorphism of abelian groups φ : M → M′ induces natural
maps φ∗ : H∗(X, A; M)→ H∗(X, A; M′).

(ii) Let 0→ M′ i−→ M
q−→ M′′ → 0 be a short exact sequence of abelian groups. Show

that this induces a long exact sequence in cohomology

· · · → Hn(X, A; M′) i∗−→ Hn(X, A; M)
q∗−→ Hn(X, A; M′′)→ Hn+1(X, A; M′)→ · · · .
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Exercise 8.11. Let (X, A) be a subspace pair and M an abelian group. Show that the
natural maps H∗(–; M)→ Hom(H∗(–), M) fit in a commutative square

Hn(A; M) Hn+1(X, A; M)

Hom(Hn(A); M) Hom(Hn+1(X, A); M),

δ

∂∗

where ∂ and δ denote the connecting maps in the homology and cohomology long
exact sequences for (X, A), respectively.

9 Homology of Products

Exercise 9.1. Let I• denote the chain complex with I1 = Z, I0 = Z{[0], [1]} and
In = 0 otherwise, with differential ∂ : I1 → I0 given by ∂(1) = [1]− [0]. Show that
a chain homotopy between chain maps C• → D• is the same thing as a chain map
C• ⊗ I• → D•. (Thus if we think of I• as an “algebraic interval”, chain homotopies are
an algebraic version of homotopies between continuous maps.)

Exercise 9.2. Let C• be a chain complex.

(i) Prove that the functor C• ⊗ – preserves chain homotopies and levelwise splittable
short exact sequences of chain complexes. [Hint: For chain homotopies you can
use Exercise 9.1.]

(ii) If C• is levelwise free, show that C• ⊗ – preserves all short exact sequences of
chain complexes.

Exercise 9.3. Show that if two chain complexes differ only by the signs of the boundary
maps, then they are isomorphic.

Exercise 9.4.

(i) Show that for M an abelian group and C•, D• chain complexes, there is a
natural bijection between chain maps C• → Hom(D, M)• and chain maps
C• ⊗ D• → M[0]. [With our sign convention for the differential in Hom(D, M)•
this bijection involves some signs. Alternatively, we can define the differential
δφ for φ : D−n → M to be given by (δφ)(d) = (−1)n+1φ(∂d) (without changing
the homology, by Exercise 9.3).]

(ii)∗ For chain complexes C•, D•, define a chain complex Hom(C, D)• so that there
is a natural bijection between chain maps C• ⊗ D• → E• and chain maps
C• → Hom(D•, E•). [Hint: Do it first for graded abelian groups and then figure
out the differential. This again involves some signs, and if you want a sign con-
vention that recovers our previous definition of Hom(D, M) as Hom(D, M[0])
then the bijection between maps also needs some signs.]

Exercise 9.5. Check that the properties of the exterior multiplication maps µn,m : Sn(X)×
Sm(Y)→ Sn+m(X×Y) imply that these fit together into a natural chain map

µ : S•(X)⊗ S•(Y)→ S•(X×Y).

Exercise 9.6. Use the Künneth Theorem to compute the homology of RP2 ×RP2.
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10 The Ring Structure on Cohomology

Exercise 10.1.

(i) Prove that there is a natural homomorphism of abelian groups

Hom(A, M)⊗Hom(B, N)→ Hom(A⊗ B, M⊗ N),

where A, B, M, N are abelian groups, given by tensoring homomorphisms.

(ii) Use this to define a natural chain map

Hom(C, M)• ⊗Hom(D, N)• → Hom(C⊗ D, M⊗ N)•,

where C•, D• are chain complexes and M, N are abelian groups.

Exercise 10.2.

(i) Show that the cross product H∗(X)⊗ H∗(Y) → H∗(X × Y) can be expressed in
terms of the cup product by the formula

ξ × η = p∗Xξ ^ p∗Yη

where pX , pY are the projections from X × Y to X and Y. [Hint: Use the explicit
formula for the cup and cross products.]

(ii) If R, R′ are commutative rings, we can equip the tensor product R⊗ R′ with a
commutative ring structure with the multiplication defined on generators by

(r1 ⊗ r′1) · (r2 ⊗ r′2) = r1r′1 ⊗ r2r′2.

Check that the analogous construction for graded rings also makes sense. [Note
that to get commutativity in the graded cases we need to add a sign.]

(iii) Show that the cross product map H∗(X) ⊗ H∗(Y) → H∗(X × Y) is a ring
homomorphism with respect to the tensor product of the cup product on X and
Y and the cup product on X×Y. [Hint: This amounts to checking the relation

(ξ ^X ξ ′)× (η ^Y η′) = (ξ × η) ^X×Y (ξ ′ × η′),

for which you can use part (i) and naturality of cup products.]

(iv) Prove that if X and Y are finite type cell complexes and the integral cohomology
groups of X are all free abelian groups, then the cross product map

H∗(X)⊗ H∗(Y)→ H∗(X×Y)

is an isomorphism of rings. [Hint: Use the Künneth Theorem for cohomology.]

(v) Compute the ring structure on H∗(Sn × Sm).

Exercise 10.3. Convince yourself that the diagrammatic definition of a (commutative)
ring agrees with the (equational) one you have seen before.

Exercise 10.4. Show that if we define the cup product on the chain level using the
Alexander–Whitney map, then S•(X; R) is a (strictly) associative and unital dg-ring
for any ring R.
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Exercise 10.5.

1. Show that under the isomorphism H0(X; R) ∼= Rπ0X, the cup product in degree 0
corresponds to the pointwise multiplication of functions π0X → R, with unit the
constant function with value 1 ∈ R and product ( f · g)(x) = f (x) · g(x). [Hint: Use
the explicit formula from the Alexander–Whitney map.]

2. By additivity for cohomology we have an isomorphism Hi(X; R) ∼= ∏t∈π0(X) Hi(Xt; R)
where Xt denotes the path-component of X corresponding to t ∈ π0X. Show that
under this isomorphism the cup product

H0(X; R)× Hi(X; R)→ Hi(X; R)

for i > 0 takes f : π0X → R and (αt)t∈π0X to ( f (t)αt)t (in terms of the natural
R-module structure on Hi(Xt; R)).

Exercise 10.6.

(i) If Ri, i ∈ I, are rings, then the cartesian product ∏i∈I Ri can be given a commu-
tative ring structure with pointwise multiplication (i.e. (ri)i∈I · (r′i)i∈I = (rir′i)i∈I).
Check that this has the universal property of the product in the category of
rings (i.e. given ring homomorphisms φi : R′ → Ri for each i, there exists a
unique ring homomorphism R′ → ∏i∈I Ri that projects to φi in the ith coordi-
nate). Also check the analogous statement holds for graded rings (where the
cartesian product is taken degreewise).

(ii) Show that for topological spaces Xi, i ∈ I, the map

H∗(ä
i∈I

Xi)→∏
i∈I

H∗(Xi),

induced by the inclusions Xi ↪→ äi∈I Xi, is an isomorphism of rings.

(iii) Compute the ring structure on H∗(Sn ∨ Sm). [Hint: The canonical map Sn q
Sm → Sn ∨ Sm induces a ring homomorphism H∗(Sn ∨ Sm) → H∗(Sn q Sm);
check that this is an isomorphism in degrees ∗ > 0.]

Exercise 10.7 (∗). Let Σg be the orientable closed surface of genus g. There is a continu-
ous map from Σg to a wedge of g tori that pinches the “necks” between the g holes to
points,

q : Σg →
∨
g
(S1 × S1)

Using that the induced map in cohomology is a ring homomorphism, compute the
ring structure on H∗(Σg). [Recall that in Exercise 4.8 you computed that

H∗(Σg) ∼=


Z, ∗ = 0, 2

Z2g, ∗ = 1,

0, otherwise,

and use Exercise 10.6 and Exercise 10.2 to compute the ring structure for the wedge
of tori.]

Exercise 10.8 (∗). Show that H∗(CPn ×CPm) is a truncated graded polynomial ring in
two variables,

H∗(CPn ×CPm) ∼= Z[x, y]/(xn+1, ym+1),

where both generators are in degree 2. [Hint: First check that there is an isomorphism
of (ungraded) polynomial rings Z[x]⊗Z[y] ∼= Z[x, y]. Use Exercise 10.2.]
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11 Manifolds and Poincaré Duality

Exercise 11.1. Use the explicit formula for the Alexander–Whitney map to get a
formula for the chain-level cap product, and use this to prove the identities relating
the cap product to the cup product and Kronecker pairing.

Exercise 11.2. Let M be a compact n-manifold whose homology groups are all finitely
generated. (This is in fact true for all compact smooth manifolds.)

(i) Show that if M is orientable, then it is R-orientable for every commutative ring
R. [Use the universal coefficient theorem.]

(ii) Show that if M is orientable, then Hn−1(M) contains no torsion. [Apply Poincaré
duality with Z/p-coefficients and the universal coefficient theorem for every
prime p.]

(iii) Suppose M is non-orientable and assume this implies M is also not Z/p-
orientable for any odd prime p, and that Hn(M) = Hn(M; Z/p) = 0. Show
that the torsion subgroup of Hn−1(M) is Z/2.

Exercise 11.3. Use Poincaré duality to show that Sn ∨ Sm is not homotopy equivalent
to a compact manifold for n, m > 0. [In the case m = 2n you need to use the cup
product, which you computed in Exercise 10.6.]

Exercise 11.4. Use the Künneth theorem to compute the integral (co)homology of the
n-torus

Tn := (S1)×n.

Apply Poincaré duality to deduce the binomial coefficient identity(
n
k

)
=

(
n

n− k

)
.

What is the ring structure?

Exercise 11.5. For which n does there exist a compact connected oriented 2n-manifold
M such that Hn(M) ∼= Z?

Exercise 11.6. Show that if X is path-connected and non-compact, then H0
c (X) = 0.

[Hint: Use the definition of S•c (X) as a subcomplex of S•(X).]
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