Exercises for Algebraic Topology I

November 26, 2020

1 Introduction

Exercise 1.1. We computed the homology of the torus by thinking of it as built from a square by gluing opposite edges, and triangulating this by cutting it into two triangles along the diagonal. Here are two other (non-orientable!) surfaces we can build by identifying opposite sides of a square, but now with a twist in either one or both directions:

The corresponding spaces are the Klein bottle and the real projective plane $\mathbb{R} \mathbb{P}^{2}$, respectively. Triangulate these too by adding a diagonal and picking orientations, and compute the homology groups. [You should find that homology groups are not always free abelian groups.]

Exercise 1.2. The Euler characteristic of a triangulated surface is

$$
\chi:=V-E+F .
$$

(i) Show that $\chi=h_{0}-h_{1}+h_{2}$ where h_{i} is the rank of the abelian group $H_{i}(\Sigma)$. Conclude that the Euler characteristic is a topological invariant. [Hint: For abelian groups $B \subseteq A$ the rank of A / B is given by $\operatorname{rk} A / B=\operatorname{rk} A-\operatorname{rk} B$. You will also need to write the boundary groups $B_{i}(\Sigma)$ as quotients.]
(ii) Conclude that for any way of covering the oriented surface of genus g by polygons we must have

$$
V-E+F=2-2 g .
$$

[Hint: Subdivide the polygons into triangles.]
(iii)* In particular, any convex polyhedron must satisfy Euler's formula,

$$
V-E+F=2
$$

Use this to classify the Platonic solids. [Hint: first observe that we have $p F=$ $2 E=q V$ if the faces have p edges and q edges meet at each vertex, and show that $\frac{1}{p}+\frac{1}{q}>\frac{1}{2}$; since p and q are integers ≥ 3 there are not many possibilities.]

2 Some Basic Topology and Category Theory

Exercise 2.1. Let X be a topological space and S a set. Show that if we equip S with the discrete topology then any function $S \rightarrow X$ is continuous, and if we equip S with the indiscrete topology then any function $X \rightarrow S$ is continuous.

Exercise 2.2. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Show that a function $f: X \rightarrow Y$ is continuous if and only if for every $x \in X$ and every $\epsilon>0$ there exists $\delta>0$ such that if $d_{X}\left(x, x^{\prime}\right)<\delta$ then $d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon$. (Note that δ may depend on x.)

Exercise 2.3. Prove the following basic properties of isomorphisms in a category \mathfrak{C} :
(i) If $f: x \rightarrow y$ and $g: y \rightarrow z$ are isomorphisms, so is $g f: x \rightarrow z$.
(ii) Given $f: x \rightarrow y$, if there exist $g, h: y \rightarrow x$ such that

$$
g f=\operatorname{id}_{x}, \quad f h=\mathrm{id}_{y},
$$

then f is an isomorphism.
(iii) If f is an isomorphism, its inverse is unique.
(iv) If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor and $f: x \rightarrow y$ is an isomorphism in \mathcal{C}, then $F(f)$ is an isomorphism in \mathcal{D}.
(v) Being isomorphic is an equivalence relation on objects of \mathcal{C}.

Exercise 2.4. Let X be a topological space and $U \subseteq X$ a subset. Show that the subspace topology on U has the following universal property: if T is a topological space, then a continuous map from T to U is a map of sets $T \rightarrow U$ such that the composite $T \rightarrow U \hookrightarrow X$ is continuous.

Exercise 2.5. Show that there is a functor Top \rightarrow Set that takes a topological space to its underlying set (the "forgetful" functor) and two functors Set \rightarrow Top that take a set to itself equipped with the discrete and indiscrete topologies, respectively.

Exercise 2.6. Let x, y, z be objects of a category \mathcal{C}. Show that there is a canonical isomorphism

$$
x \times(y \times z) \cong(x \times y) \times z
$$

provided these products exist.
Exercise 2.7. Show that the cartesian product of (abelian) groups is also the categorical product in Grp and $A b$, when equipped with the canonical group structure.

Exercise 2.8 (*). Given a set I and a collection $x_{i}(i \in I)$ of objects of a category \mathcal{C}, their product (if it exists) is an object $\prod_{i \in I} x_{i}$ together with projections $\pi_{i}: \prod_{i \in I} x_{i} \rightarrow x_{i}$ satisfying the following universal property: given an object y and morphisms $f_{i}: y \rightarrow$ x_{i} for $i \in I$, there exists a unique morphism $f: y \rightarrow \prod_{i \in I} x_{i}$ such that $\pi_{i} f=f_{i}$. Show that I-indexed cartesian products are categorical products in the category Set, and also in the categories Ab, Grp, Top when equipped with canonical (abelian) group structures and topologies. (What is an I-indexed product when I is empty?)

Exercise 2.9. Show that the coproduct in Top of topological spaces X, Y is the disjoint union $X \amalg Y$ of sets, with a subset $U \subseteq X \amalg Y$ defined to be open if and only if $U \cap X$ is open in X and $U \cap Y$ is open in Y.

Exercise 2.10 (*). What is the coproduct of two copies of \mathbb{Z} in Grp?
Exercise 2.11 (*). Define I-indexed coproducts for any indexing set I, as in Exercise 2.8. Describe these in the categories Set and Top.

Exercise 2.12 (*). If \mathcal{C} is a category, we define the opposite category $\mathcal{C}{ }^{\circ}$ p to be the category with the same objects as \mathcal{C}, but with the direction of morphisms reversed thus $\operatorname{Hom}_{\mathcal{C}^{\text {op }}}(x, y):=\operatorname{Hom}_{\mathcal{C}}(y, x)$. Check that a coproduct in \mathcal{C} is the same thing as a product in \mathcal{C}°.

Exercise 2.13 (*). Suppose a topological space X can be written as a union of subsets $X_{i}(i \in I)$ such that the subsets X_{i} are open and disjoint. Show that $X \cong \coprod_{i \in I} X_{i}$ (i.e. the topology on X is the coproduct topology).

Exercise 2.14. Suppose R is a relation on a set I. Show that the quotient $I / R=I / \bar{R}$ together with the quotient map

$$
\pi: I \rightarrow I / R, \quad \pi(i)=[i]_{\bar{R}}
$$

has the following universal property: any function $f: I \rightarrow J$ for which $i \sim_{R} j$ implies $f(i)=f(j)$ factors uniquely through π,

Exercise 2.15. Let $D^{n}:=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ be the closed n-disk and

$$
\partial D^{n}:=S^{n-1}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}
$$

be the $(n-1)$-sphere, both equipped with the subspace topology from \mathbb{R}^{n}.
(i) Find explicit homeomorphisms $D^{1} / \partial D^{1} \cong S^{1}$ and $D^{2} / \partial D^{2} \cong S^{2}$. [Feel free to use that these are compact Hausdorff spaces, so that a continuous bijection is necessarily a homeomorphism.]
(ii) Show that the following three descriptions of the torus are homeomorphic:

$$
\begin{aligned}
& T_{1}:=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x, y \leq 1\right\} /((x, 0) \sim(x, 1),(0, y) \sim(1, y)) \\
& T_{2}:=S^{1} \times S^{1} \\
& \left.T_{3}:=\{(R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta)\right\} \subseteq \mathbb{R}^{3} \quad(R>r)
\end{aligned}
$$

(iii) * Find an explicit homeomorphism $D^{n} / \partial D^{n} \cong S^{n}$.

Exercise 2.16. Show that being homotopic is an equivalence relation on the set $C(X, Y)$ of continuous maps $X \rightarrow Y$.

Exercise 2.17. Prove that h Top is a well-defined category, with composition and identities induced from Top (so that there is a functor Top $\rightarrow h$ Top that takes each continuous map to its equivalence class). What does Exercise 2.3 then tell you about homotopy equivalences?

Exercise 2.18. Let S be a set. Show that:
(i) if S is equipped with the discrete topology then S is contractible if and only if S has exactly one element,
(ii) if S is equipped with the indiscrete topology then S is contractible if and only if S is non-empty.
[Hint: Prove that with the discrete topology the only continuous paths are the constant ones, while any path is continuous for the indiscrete topology.]

Exercise $2.19(* *)$. (A topological proof that S^{1} is not contractible.) View S^{1} as $\{z \in \mathbb{C}$: $|z|=1\}$ and let $\pi: \mathbb{R} \rightarrow S^{1}$ be the continuous map $x \mapsto e^{i x}$. We say that a continuous map $f: S^{1} \rightarrow S^{1}$ lifts to \mathbb{R} if there exists $\bar{f}: S^{1} \rightarrow \mathbb{R}$ such that $f=\pi \bar{f}$.
(i) Show that if $g: S^{1} \rightarrow S^{1}$ lifts to \mathbb{R} and $f: S^{1} \rightarrow S^{1}$ is another continuous map such that $f(x) / g(x) \neq-1$ for all $x \in S^{1}$ then f also lifts to \mathbb{R}.
(ii) Let $c_{1}: S^{1} \rightarrow S^{1}$ be the constant map with value 1 , and suppose f is homotopic to c_{1}, via a homotopy $H: S^{1} \times[0,1] \rightarrow S^{1}$. Since $S^{1} \times[0,1]$ is compact, we can choose $\delta>0$ such if $|x-y|<\delta$ then $|H(x)-H(y)|<2$ for all $x, y \in S^{1} \times[0,1]$ (viewed as a subset of \mathbb{R}^{3}). Use this to show that f lifts to \mathbb{R}.
(iii) Use (ii) to prove that S^{1} is not contractible (i.e. $\mathrm{id}_{S^{1}}$ is not homotopic to a constant map).

Exercise 2.20. Let X and Y be topological spaces.
(i) Show that any continuous map $f: X \rightarrow Y$ induces a function $\pi_{0} f: \pi_{0} X \rightarrow \pi_{0} Y$, and that this makes π_{0} a functor Top \rightarrow Set.
(ii) Show that if $f, g: X \rightarrow Y$ are homotopic, then $\pi_{0} f=\pi_{0} g$. [Hence π_{0} is a functor h Top \rightarrow Set.]
(iii) Show that if $f: X \rightarrow Y$ is a homotopy equivalence, then $\pi_{0} f$ is an isomorphism.

3 Simplices and Singular Homology

Exercise 3.1. If V is a vector space over a field k, consider the linear map $\eta_{V}: V \rightarrow V^{* *}$ to the double dual, taking $v \in V$ to the linear functional

$$
\eta_{V}(v): V^{*} \rightarrow k, \quad \phi \mapsto \phi(v) .
$$

Prove that these maps are natural, i.e. they determine a natural transformation η of functors $\mathrm{Vect}_{k} \rightarrow \mathrm{Vect}_{k}$ from the identity to the double dual. Show that if we restrict to finite-dimensional vector spaces η becomes a natural isomorphism.

Exercise 3.2. Let $A_{i}, i \in I$ be a collection of abelian groups indexed by a set I, and define the inclusion $I_{j}: A_{j} \rightarrow \bigoplus_{i \in I} A_{i}$ by $I_{j}(a)=\left(a_{i}\right)_{i \in I}$ where $a_{j}=a$ and $a_{i}=0$ otherwise. Show that the I_{j} 's exhibit the direct sum $\bigoplus_{i \in I} A_{i}$ as the I-indexed coproduct in Ab, i.e. given homomorphisms $\phi_{j}: A_{j} \rightarrow B$ there exists a unique homomorphism $\phi: \bigoplus_{i \in I} A_{i} \rightarrow B$ with $\phi_{j}=\phi \circ I_{j}$.
Exercise 3.3. Given sets $T_{i}, i \in I$, show that there is a natural isomorphism

$$
\mathbb{Z}\left(\coprod_{i} T_{i}\right) \cong \bigoplus_{i} \mathbb{Z} T_{i}
$$

[Hint: We can view the left-hand side as consisting of functions $f: \coprod_{i} T_{i} \rightarrow \mathbb{Z}$ that are 0 except at finitely many elements, while the right-hand side consists of a family of functions $f_{i}: T_{i} \rightarrow \mathbb{Z}$ that are all zero except at finitely many elements, and such that $f_{i}=0$ except for finitely many indices i.]

Exercise 3.4 (Direct sums commute with quotients in Ab). Show that given abelian groups A_{i} with subgroups $B_{i} \subseteq A_{i}$ for $i \in I$, there is a canonical isomorphism

$$
\bigoplus_{i \in I} A_{i} / B_{i} \cong\left(\bigoplus_{i \in I} A_{i}\right) /\left(\bigoplus_{i \in I} B_{i}\right) .
$$

[Hint: Show that homomorphism $\bigoplus_{i \in I} A_{i} \rightarrow \bigoplus_{i \in I} A_{i} / B_{i}$ (defined as the sum of the quotient maps) exhibits the target as the quotient by $\bigoplus_{i \in I} B_{i}$, by checking it satisfies the universal property of the quotient.]

4 Relative Homology and Long Exact Sequences

Exercise 4.1. Prove the 5-Lemma.
Exercise 4.2. Suppose we have an exact sequence

$$
(\cdots) A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{i} E(\cdots) .
$$

Show that there is a short exact sequence

$$
0 \rightarrow \operatorname{coker} f \rightarrow C \rightarrow \operatorname{ker} i \rightarrow 0
$$

where the cokernel coker f is the quotient $B / \operatorname{im} f$. (Thus we can in a sense "decompose" a long exact sequence into a series of short exact sequences.)
Exercise 4.3. Let $0 \rightarrow A \xrightarrow{i} B \xrightarrow{q} C \rightarrow 0$ be a short exact sequence (SES). A splitting of the SES is a section $s: C \rightarrow B$, so that $q s=\mathrm{id}_{C}$. (The SES is splittable if a splitting exists, while a split SES is a SES together with a choice of splitting.)
(i) Show that a splitting s induces an isomorphism $A \oplus C \xrightarrow{\sim} B$. [Note that different splittings can give different isomorphisms.]
(ii) Show that if C is a free abelian group then the SES above is splittable. [Hint: Use the universal property of free abelian groups.]
(iii) Give an example of a SES that is not splittable.

Exercise 4.4. Given a commutative diagram of chain complexes and chain maps

where the rows are exact, check that the boundary map on homology gives commutative squares

Exercise 4.5. Suppose $A \subseteq B$ are subspaces of a topological space X, and the inclusion $i: A \hookrightarrow B$ induces isomorphisms $i_{*}: H_{n}(A) \xrightarrow{\sim} H_{n}(B)$ for all n. Prove that the natural homomorphism $H_{n}(X, A) \rightarrow H_{n}(X, B)$ is an isomorphism for all n. [Hint: Use the 5-Lemma and Exercise 4.4.]

Exercise 4.6. Let $0 \rightarrow A_{\bullet} \xrightarrow{i_{\bullet}} B_{\bullet} \xrightarrow{q_{\bullet}} C_{\bullet} \rightarrow 0$ be a short exact sequence of chain complexes. Show that the induced sequence of homology groups

$$
\cdots \rightarrow H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(B) \xrightarrow{H_{n}(q)} H_{n}(C) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
$$

is a long exact sequence.
Exercise 4.7. Suppose h_{*} is an ordinary homology theory satisfying the EilenbergSteenrod axioms.
(i) Suppose $X=\coprod_{i \in I} X_{i}$ is a coproduct and $A_{i} \subseteq X_{i}$ is a collection of subspaces. If $A:=\coprod_{i \in I} A_{i}$, show that the inclusions $\left(X_{i}, A_{i}\right) \hookrightarrow(X, A)$ induce an isomorphism

$$
\bigoplus_{i \in I} h_{*}\left(X_{i}, A_{i}\right) \cong h_{*}(X, A) .
$$

[Hint: Use the long exact sequence.]
(ii) If $\left(X_{i}, x_{i}\right)$ is a collection of pointed spaces, their wedge is the quotient space

$$
\bigvee_{i \in I} X_{i}:=\left(\coprod_{i \in I} X_{i}\right) /\left\{x_{i}: i \in I\right\}
$$

where we identify all the base points to a single point x. Show that if $\left(X_{i},\left\{x_{i}\right\}\right)$ is a good pair for every i then there is a canonical isomorphism

$$
\bigoplus_{i \in I} \tilde{h}_{*}\left(X_{i}\right) \cong \tilde{h}_{*}\left(\bigvee_{i \in I} X_{i}\right)
$$

where for a pointed space (X, x) we write $\tilde{h}_{*}(X):=h_{*}(X, x)$.
Exercise 4.8. Use the Mayer-Vietoris sequence to compute the homology of the orientable surface Σ_{g} of genus g. [Hint: Find a way to induct on g.]
Exercise 4.9. Think of $\mathbb{R} \mathbb{P}^{2}$ as the quotient of D^{2} where we identify x with $-x$ for $x \in \partial D^{2}$. Compute the homology of $\mathbb{R P}^{2}$ using the Mayer-Vietoris sequence with $A=$ a neighbourhood of the image of ∂D^{2} and $B=$ the image of a smaller disc inside D^{2}. [Assume that the map $S^{1} \rightarrow S^{1}$ that loops around twice is given on $H_{1}\left(S^{1}\right)$ by multiplication by 2.]

Exercise 4.10. The cone on a topological space X is the quotient $(X \times[0,1]) /(X \times\{0\})$, and the suspension ΣX of X is the quotient of $(X \times[0,1])$ where we collapse $X \times\{0\}$ to a point and $X \times\{1\}$ to a different point.
(i) Show that $C X$ is contractible for any X, and that ΣX is the union of two copies of $C X$ with intersection X.
(ii) Use the Mayer-Vietoris sequence to show that $H_{n}(\Sigma X) \cong H_{n-1}(X)$ for $n>1$.
(iii) By looking at what happens at the bottom of the Mayer-Vietoris sequence, show that $\tilde{H}_{n}(\Sigma X) \cong \tilde{H}_{n-1}(X)$ for all n.
(iv) If $X=S^{n}$, convince yourself that ΣS^{n} is homeomorphic to S^{n+1}. [Think of the two cones as two "hemispheres" glued along the "equator".] Use (iii) to compute $\tilde{H}_{*}\left(S^{n}\right)$ again.

5 Cellular Homology

Exercise 5.1. Show that in the category Ab of abelian groups, the pushout of two homomorphisms $f: A \rightarrow B, g: A \rightarrow C$ is the cokernel of the homomorphism $(f,-g): A \rightarrow B \oplus C$.

Exercise 5.2. Consider a commutative diagram

in a category \mathcal{C}. If the left square is a pushout, then the right square is a pushout if and only if the outer (composite) square is a pushout.

Exercise 5.3 (Pushouts commute with coproducts). Suppose we have pushout squares

for $i \in I$ in some category \mathcal{C}. If I-indexed coproducts exist in \mathcal{C}, then the canonical square

is also a pushout. [Hint: Use the universal properties.]
Exercise 5.4. Show that a morphism of Δ-sets $f: S \rightarrow T$ induces a canonical continuous map $|f|:|S| \rightarrow|T|$ between geometric realizations such that for every $\sigma \in S_{n}$ the triangle

commutes. Check that this makes $|-|$ a functor Set $_{\Delta} \rightarrow$ Top.
Exercise 5.5. The combinatorial n-simplex is the Δ-set $\Delta_{\text {comb }}^{n}$ with $\left(\Delta_{\text {comb }}^{n}\right)_{k}$ being the set of subsets of $\{0, \ldots, n\}$ of size $k+1$; it is convenient to label these as $\left[i_{0} \cdots i_{k}\right]$ with $0 \leq i_{0} \leq i_{1} \leq \cdots \leq i_{k} \leq n$. Then the face map $\partial_{j}:\left(\Delta_{\text {comb }}^{n}\right)_{k} \rightarrow\left(\Delta_{\text {comb }}^{n}\right)_{k-1}$ is given by

$$
\left[i_{0} \cdots i_{k}\right] \mapsto\left[i_{0} \cdots i_{j-1} i_{j+1} \cdots i_{k}\right]
$$

The boundary of $\Delta_{\text {comb }}^{n}$ is the Δ-set $\partial \Delta_{\text {comb }}^{n}$ obtained by removing the single n-simplex [01 $\cdots n$], so that

$$
\left(\partial \Delta_{\mathrm{comb}}^{n}\right)_{k}= \begin{cases}\left(\Delta_{\mathrm{comb}}^{n}\right)_{k}, & 0 \leq k \leq n-1 \\ \varnothing, & k \geq n,\end{cases}
$$

with the same face maps in degrees $<n$.
(i) Convince yourself that $\left|\Delta_{\text {comb }}^{n}\right|$ is homeomorphic to Δ^{n} and $\left|\partial \Delta_{\text {comb }}^{n}\right|$ to the boundary of Δ^{n}.
(ii) Compute the simplicial homology of the Δ-sets $\Delta_{\text {comb }}^{3}$ and $\partial \Delta_{\text {comb }}^{3}$. [The space $\left|\partial \Delta_{\text {comb }}^{3}\right|$ is a tetrahedron, which is topologically a sphere, so the result should agree with the usual homology of the sphere.]

Exercise 5.6.

(i) Suppose we have subsets

$$
S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq \cdots
$$

Show that the union $\bigcup_{n=0}^{\infty} S_{n}$ is isomorphic to the sequential colimit of the inclusions $S_{n} \hookrightarrow S_{n+1}$.
(ii) Suppose we have subspaces

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots
$$

Show that the union $\bigcup_{n=0}^{\infty} X_{n}$ is homeomorphic to the sequential colimit of the continuous inclusions $X_{n} \hookrightarrow X_{n+1}$ if we give the union the topology where a subspace $U \subseteq \bigcup_{n=0}^{\infty} X_{n}$ is open if and only if $U \cap X_{n}$ is open in X_{n} for all n.
(iii) Also check the analogous statement for abelian groups.

Exercise 5.7. Suppose we have a sequence

$$
X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{\cdots}
$$

of morphisms $f_{i}: X_{i} \rightarrow X_{i+1}$ in a category \mathcal{C} such that f_{i} is an isomorphism for all $i \geq N$. Show that then X_{N} is a colimit of the sequence. [Hint: We have compatible isomorphisms $X_{N} \xrightarrow{\sim} X_{i}$ for $i>N$, inverting these we get compatible morphisms $X_{i} \rightarrow X_{N}$ for all N. Now check the universal property.]

Exercise 5.8. Show that the free abelian group functor $\mathbb{Z}(-)$: Set \rightarrow Ab preserves sequential colimits.

Exercise 5.9. Given a diagram of abelian groups

$$
A_{0} \xrightarrow{f_{0}} A_{1} \rightarrow \cdots,
$$

and subgroups $B_{i} \hookrightarrow A_{i}$ such that $f_{i}\left(B_{i}\right) \subseteq B_{i+1}$, show that there is a canonical isomorphism

$$
\operatorname{colim}_{i} A_{i} / B_{i} \cong\left(\operatorname{colim}_{i} A_{i}\right) /\left(\operatorname{colim}_{i} B_{i}\right) .
$$

Exercise 5.10. Suppose we have $C_{\bullet} \cong \operatorname{colim}_{n} C_{n, \bullet}$. Show that

$$
Z_{k}(C) \cong \operatorname{colim}_{n} Z_{k}\left(C_{n}\right), \quad B_{k}(C) \cong \operatorname{colim}_{n} B_{k}\left(C_{n}\right)
$$

and conclude using the previous exercise that

$$
H_{k}(C) \cong \operatorname{colim}_{n} H_{k}\left(C_{n}\right)
$$

Exercise 5.11. Compute the cellular homology of S^{n} using the cell structure with two cells in each dimension $\leq n$. [You need to keep track of the orientations of the generators. There are two ways to define this cell structure: either attach both cells using the identity, or attach one cell using the identity and one using an orientationreversing map; it may be instructive to look at both.]

Exercise 5.12. Find a cell structure on the torus and compute the cellular homology.
Exercise 5.13. By the classification of finitely generated abelian groups, we can write any finitely generated abelian group A as a direct sum $\mathbb{Z}^{r} \oplus T$ where T is a torsion group (i.e. all its elements have finite order). The integer r is called the rank $\mathrm{rk} A$ of A. If C_{\bullet} is a chain complex such that C_{n} is a finitely generated abelian group for all n, and vanishes except for finitely many n, then the Euler characteristic of C_{\bullet} is

$$
\chi\left(C_{\bullet}\right)=\sum_{i}(-1)^{i} \text { rk } C_{i} .
$$

(i) Show that

$$
\chi\left(C_{\bullet}\right)=\sum_{i}(-1)^{i} \operatorname{rk} H_{i}(C) .
$$

[Assume that rank is additive in short exact sequences: if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of finitely generated abelian groups, then rk $B=$ rk $A+\mathrm{rk} C$.]
(ii) If X is a finite cell complex with Γ_{n} its set of of n-cells, the Euler characteristic of X is the alternating sum

$$
\chi(X)=\sum_{i}(-1)^{i}\left|\Gamma_{n}\right| .
$$

Prove that $\chi(X)$ is independent of the cell structure of X, and only depends on X up to homotopy equivalence.

6 Homotopy Invariance and Excision

Exercise 6.1. Show that the exterior product $\mu_{n, m}$ induces bilinear maps in homology $H_{n}(X) \times H_{m}(Y) \rightarrow H_{n+m}(X \times Y)$.

Exercise 6.2. Suppose the formula

$$
\partial l_{k, l}=\sum_{i=0}^{k}(-1)^{i}\left(d^{i} \times \mathrm{id}\right)_{* \iota_{k-1, l}}+(-1)^{k} \sum_{j=0}^{l}(-1)^{j}\left(\mathrm{id} \times d^{j}\right)_{* \iota_{k, l-1}}
$$

holds for $\iota_{n-1, m}$ and $\iota_{n, m-1}$. Show that then the chain
is a cycle.

Exercise 6.3.

(i) Show that being chain homotopic is an equivalence relation on the set of chain maps $A_{\bullet} \rightarrow B_{\bullet}$.
(ii) Show the chain homotopies are compatible with compositions: if $f, g: A_{\bullet} \rightarrow B_{\bullet}$ are chain homotopic, then so are ϕf and ϕg for any chain map $\phi: B_{\bullet} \rightarrow B_{\bullet}^{\prime}$, and likewise for $f \psi$ and $g \psi$ for any $\psi: A_{\bullet}^{\prime} \rightarrow A_{\bullet}$.
(iii) Define the homotopy category of chain complexes, where the objects are chain complexes and the set of morphisms from A_{\bullet} to B_{\bullet} is the set of chain homotopy classes of chain maps.

Exercise 6.4. Use the cone construction to show directly (without using homotopy invariance) that for any convex subset $K \subseteq \mathbb{R}^{n}$ we have $H_{*}(K)=0, *>0$.

Exercise 6.5. Suppose we have chains $R_{n} \in S_{n+1}\left(\Delta^{n}\right)$ with R_{0} the unique simplex $\Delta^{1} \rightarrow \Delta^{0}$, and define $\rho_{n}^{X}: S_{n}(X) \rightarrow S_{n+1}(X)$ by $\rho_{n}^{X}(\sigma):=\sigma_{*} R_{n}$ for $\sigma: \Delta^{n} \rightarrow X$ and extending linearly in σ. Show (by induction on n) that if the chains R_{n} satisfy

$$
\partial R_{n}=-\rho_{n-1}\left(\partial \iota_{n}\right)+\mathrm{bs}_{n}^{\Delta^{n}} \iota_{n}-\iota_{n}
$$

then the homomorphisms ρ_{n}^{X} are a natural chain homotopy between bs^{X} and id.

7 Tensor Products and Homology with Coefficients

Exercise 7.1. For integers n, m, show that $\mathbb{Z} / n \otimes \mathbb{Z} / m \cong \mathbb{Z} / r$ where $r=\operatorname{gcd}(n, m)$ is the greatest common divisor of n and m. In particular, if p and q are distinct primes, then $\mathbb{Z} / p \otimes \mathbb{Z} / q \cong 0$.

Exercise 7.2. For sets S, T, show that there is a canonical isomorphism

$$
\mathbb{Z} S \otimes \mathbb{Z} T \cong \mathbb{Z}(S \times T)
$$

Exercise 7.3. Prove the formal properties of \otimes using the universal property.
Exercise 7.4. Show that $M \otimes_{R} N$ is the quotient of $M \otimes N$ by the subgroup generated by elements of the form $r m \otimes n-m \otimes r n$ for $r \in R, m \in M, n \in N$.

Exercise 7.5.

(i) Let R be an (associative, unital) ring. Show that an R-module is the same as an abelian group M and a homomorphism $\alpha: R \otimes M \rightarrow M$ such that the square

and the triangle

commute, where the homomorphism $\mu: R \otimes R \rightarrow R$ is given by multiplication in R and $\eta: \mathbb{Z} \rightarrow R$ is given by the unit of R (i.e. $\eta(1)=1$).
(ii) Show that an R-module homomorphism $\phi: M \rightarrow N$ is the same as a homomorphism of abelian groups such that the square

commutes.
(iii) Show that if M is an abelian group and R is a ring, then $R \otimes M$ has a natural R-module structure. [Hint: Use the multiplication in R.]
(iv) Show that if M is an abelian group and N is an R-module, there is a natural correspondence between R-module homomorphisms $R \otimes M \rightarrow N$ and homomorphisms of abelian groups $M \rightarrow N$.
(v) If S is a set and R is a ring, show that $R \otimes \mathbb{Z} S$ has the universal property of the free R-module $R S$ on $S: R$-module homomorphisms $R S \rightarrow M$ correspond to functions $S \rightarrow M$.

Exercise 7.6. If k is a field and V, W are k-vector spaces, with bases $\left\{x_{i}\right\}_{i \in I}$ and $\left\{y_{j}\right\}_{j \in J}$, respectively, show that $x_{i} \otimes y_{j}$ is a basis for $V \otimes_{k} W$. If V and W are finite-dimensional, conclude that

$$
\operatorname{dim}\left(V \otimes_{k} W\right)=\operatorname{dim} V \cdot \operatorname{dim} W
$$

Exercise 7.7. Show that for C. a chain complex, the natural map

$$
H_{k}(C) \otimes \mathbb{Z} \rightarrow H_{k}(C \otimes \mathbb{Z}) \cong H_{k} C
$$

is an isomorphism.
Exercise 7.8. Show that a chain homotopy h between chain maps $f, g: C_{\bullet} \rightarrow D_{\bullet}$ induces a chain homotopy between $f \otimes M, g \otimes M: C \bullet M \rightarrow D \bullet \otimes M$ for any abelian group M.

Exercise 7.9. For an integer n, let us write $n: \mathbb{Z} \rightarrow \mathbb{Z}$ for the homomorphism given by multiplication with n.
(i) For any abelian group M, use the universal property of \otimes to show that under the natural isomorphism $M \cong M \otimes \mathbb{Z}$ the homomorphism id $\otimes n: M \otimes \mathbb{Z} \rightarrow$ $M \otimes \mathbb{Z}$ corresponds to the homomorphism $M \rightarrow M$ given by multiplication with n.
(ii) Use the natural isomorphism from Exercise 7.7 to show that the natural map $m_{*}: H_{n}(X, A ; \mathbb{Z}) \rightarrow H_{n}(X, A ; \mathbb{Z})$ induced by $m: \mathbb{Z} \rightarrow \mathbb{Z}$ on coefficients is again given by multiplication with m.

Exercise 7.10. Show that for integers n, m we have $\operatorname{Tor}(\mathbb{Z} / n, \mathbb{Z} / m) \cong \mathbb{Z} / r$, where $r=\operatorname{gcd}(n, m)$.

Exercise 7.11. For a continuous map $f: X \rightarrow Y$, the mapping cone $M(f)$ of M is defined as the pushout

where $C X$ is the cone on X, as in exercise 5 from week 4 .
(i) Show that $H_{i}(M(f), Y) \cong \tilde{H}_{i-1}(X)$ and the boundary map

$$
H_{i}(M(f), Y) \rightarrow H_{i-1}(Y)
$$

corresponds to $f_{*}: H_{i-1}(X) \rightarrow H_{i-1}(Y)$ (for $i>1$). [Hint: $M(f) / Y \cong C X / X \cong$ ΣX plus Exercise 4.10; to identify the map use the naturality of the boundary map for $(C X, X) \rightarrow(M(f), Y)$.]
(ii) From (i) the long exact sequence for the pair $(M(f), Y)$ looks like

$$
\cdots \rightarrow H_{i}(M(f)) \rightarrow H_{i-1}(X) \xrightarrow{f_{*}} H_{i-1}(Y) \rightarrow H_{i-1}(M(f)) \rightarrow \cdots
$$

for $i>1$. Use this to prove that $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ is an isomorphism if and only if $\tilde{H}_{*}(M(f))=0$.
(iii) Complete the proof that f_{*} is an isomorphism in integral homology if it is an isomorphism in homology with \mathbb{Q} - and \mathbb{F}_{p}-coefficients for all primes p.

8 Cohomology

Exercise 8.1. For M an abelian group, show that $\operatorname{Hom}(\mathbb{Z} / n, M)$ is the group of n torsion elements in M; in particular $\operatorname{Hom}(\mathbb{Z} / n, \mathbb{Z} / m) \cong \mathbb{Z} / r$ where $r=\operatorname{gcd}(n, m)$.

Exercise 8.2. If S is a set and M an abelian group, then we have canonical isomorphisms

$$
\operatorname{Hom}(\mathbb{Z S}, M) \cong M^{S} \cong \prod_{s \in S} M
$$

of abelian groups.
Exercise 8.3. Prove the basic formal properties of Hom.

Exercise 8.4.

(i) Show that for abelian groups A, B, C there is a natural bijection between the sets of homomorphisms $A \otimes B \rightarrow C$ and $A \rightarrow \operatorname{Hom}(B, C)$.
(ii) Show that this bijection is moreover an isomorphism of abelian groups

$$
\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(A, \operatorname{Hom}(B, C))
$$

(iii) Show that composition of homomorphisms of abelian groups gives a homomorphism

$$
\operatorname{Hom}(A, B) \otimes \operatorname{Hom}(B, C) \rightarrow \operatorname{Hom}(A, C) .
$$

Exercise 8.5. If $m: \mathbb{Z} \rightarrow \mathbb{Z}$ is the map given by multiplication with m, show that $m^{*}: \operatorname{Hom}(\mathbb{Z}, M) \rightarrow \operatorname{Hom}(\mathbb{Z}, M)$ corresponds under the isomorphism $\operatorname{Hom}(\mathbb{Z}, M) \cong$ M to the $\operatorname{map} M \rightarrow M$ given by multiplication with m.

Exercise 8.6. Show that a chain homotopy between chain maps $f, g: C_{\bullet} \rightarrow D_{\bullet}$ induces a natural chain homotopy between $f^{*}, g^{*}: \operatorname{Hom}(D, M) \rightarrow \operatorname{Hom}(C, M)$ for any abelian group M.

Exercise 8.7. Show that for $A \subseteq X$ the relative cochains $S^{n}(X, A)$ can be identified with the subgroup of $S^{n}(X) \cong \mathbb{Z}^{\operatorname{Sing}_{n}(X)}$ consisting of functions $f: \operatorname{Sing}_{n}(X) \rightarrow \mathbb{Z}$ such that $f(\alpha)=0$ for $\alpha \in \operatorname{Sing}_{n}(A) \subseteq \operatorname{Sing}_{n}(X)$.
Exercise 8.8. Use the Mayer-Vietoris sequence for cohomology to compute $\tilde{H}^{*}\left(S^{n} ; M\right)$.

Exercise 8.9.

(i) Show that if we have short exact sequences $0 \rightarrow A_{i} \xrightarrow{j_{i}} B_{i} \xrightarrow{q_{i}} C_{i} \rightarrow 0$ for all $i \in I$, then there is a short exact sequence

$$
0 \rightarrow \prod_{i \in I} A_{i} \xrightarrow{\prod_{i \in I} j_{i}} \prod_{i \in I} B_{i} \xrightarrow{\prod_{i \in I} q_{i}} \prod_{i \in I} C_{i} \rightarrow 0
$$

(ii) Use (i) to prove the additivity axiom for cohomology: for a disjoint union $X=\coprod_{i \in I} X_{i}$ the inclusions $X_{i} \hookrightarrow X$ induce an isomorphism

$$
H^{*}(X) \xrightarrow{\sim} \prod_{i} H^{*}\left(X_{i}\right)
$$

Exercise 8.10 (Change of coefficients in cohomology). Let (X, A) be a subspace pair.
(i) Show that a homomorphism of abelian groups $\phi: M \rightarrow M^{\prime}$ induces natural maps $\phi_{*}: H^{*}(X, A ; M) \rightarrow H^{*}\left(X, A ; M^{\prime}\right)$.
(ii) Let $0 \rightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{q} M^{\prime \prime} \rightarrow 0$ be a short exact sequence of abelian groups. Show that this induces a long exact sequence in cohomology
$\cdots \rightarrow H^{n}\left(X, A ; M^{\prime}\right) \xrightarrow{i_{*}} H^{n}(X, A ; M) \xrightarrow{q_{*}} H^{n}\left(X, A ; M^{\prime \prime}\right) \rightarrow H^{n+1}\left(X, A ; M^{\prime}\right) \rightarrow \cdots$.

Exercise 8.11. Let (X, A) be a subspace pair and M an abelian group. Show that the natural maps $H^{*}(-; M) \rightarrow \operatorname{Hom}\left(H_{*}(-), M\right)$ fit in a commutative square

where ∂ and δ denote the connecting maps in the homology and cohomology long exact sequences for (X, A), respectively.

9 Homology of Products

Exercise 9.1. Let I_{\bullet} denote the chain complex with $I_{1}=\mathbb{Z}, I_{0}=\mathbb{Z}\{[0],[1]\}$ and $I_{n}=0$ otherwise, with differential $\partial: I_{1} \rightarrow I_{0}$ given by $\partial(1)=[1]-[0]$. Show that a chain homotopy between chain maps $C_{\bullet} \rightarrow D_{\bullet}$ is the same thing as a chain map $C_{\bullet} \otimes I_{\bullet} \rightarrow D_{\bullet}$. (Thus if we think of I_{\bullet} as an "algebraic interval", chain homotopies are an algebraic version of homotopies between continuous maps.)

Exercise 9.2. Let C • be a chain complex.
(i) Prove that the functor $C \bullet \otimes$ - preserves chain homotopies and levelwise splittable short exact sequences of chain complexes. [Hint: For chain homotopies you can use Exercise 9.1.]
(ii) If C_{\bullet} is levelwise free, show that $C_{\bullet} \otimes$ - preserves all short exact sequences of chain complexes.

Exercise 9.3. Show that if two chain complexes differ only by the signs of the boundary maps, then they are isomorphic.

Exercise 9.4.

(i) Show that for M an abelian group and C_{\bullet}, D_{\bullet} chain complexes, there is a natural bijection between chain maps $C_{\bullet} \rightarrow \operatorname{Hom}(D, M) \bullet$ and chain maps $C \bullet \otimes D_{\bullet} \rightarrow M[0]$. [With our sign convention for the differential in $\operatorname{Hom}(D, M) \bullet$ this bijection involves some signs. Alternatively, we can define the differential $\delta \phi$ for $\phi: D_{-n} \rightarrow M$ to be given by $(\delta \phi)(d)=(-1)^{n+1} \phi(\partial d)$ (without changing the homology, by Exercise 9.3).]
(ii)* For chain complexes C_{\bullet}, D_{\bullet}, define a chain complex $\operatorname{Hom}(C, D)$ • so that there is a natural bijection between chain maps $C_{\bullet} \otimes D_{\bullet} \rightarrow E_{\bullet}$ and chain maps $C_{\bullet} \rightarrow \operatorname{Hom}\left(D_{\bullet}, E_{\bullet}\right)$. [Hint: Do it first for graded abelian groups and then figure out the differential. This again involves some signs, and if you want a sign convention that recovers our previous definition of $\operatorname{Hom}(D, M)$ as $\operatorname{Hom}(D, M[0])$ then the bijection between maps also needs some signs.]

Exercise 9.5. Check that the properties of the exterior multiplication maps $\mu_{n, m}: S_{n}(X) \times$ $S_{m}(Y) \rightarrow S_{n+m}(X \times Y)$ imply that these fit together into a natural chain map

$$
\mu: S_{\bullet}(X) \otimes S_{\bullet}(Y) \rightarrow S_{\bullet}(X \times Y)
$$

Exercise 9.6. Use the Künneth Theorem to compute the homology of $\mathbb{R} \mathbb{P}^{2} \times \mathbb{R} \mathbb{P}^{2}$.

10
 The Ring Structure on Cohomology

Exercise 10.1.

(i) Prove that there is a natural homomorphism of abelian groups

$$
\operatorname{Hom}(A, M) \otimes \operatorname{Hom}(B, N) \rightarrow \operatorname{Hom}(A \otimes B, M \otimes N)
$$

where A, B, M, N are abelian groups, given by tensoring homomorphisms.
(ii) Use this to define a natural chain map

$$
\operatorname{Hom}(C, M) \bullet \otimes \operatorname{Hom}(D, N) \bullet \rightarrow \operatorname{Hom}(C \otimes D, M \otimes N)_{\bullet}
$$

where C_{\bullet}, D_{\bullet} are chain complexes and M, N are abelian groups.

Exercise 10.2 .

(i) Show that the cross product $H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)$ can be expressed in terms of the cup product by the formula

$$
\xi \times \eta=p_{X}^{*} \xi \smile p_{Y}^{*} \eta
$$

where p_{X}, p_{Y} are the projections from $X \times Y$ to X and Y. [Hint: Use the explicit formula for the cup and cross products.]
(ii) If R, R^{\prime} are commutative rings, we can equip the tensor product $R \otimes R^{\prime}$ with a commutative ring structure with the multiplication defined on generators by

$$
\left(r_{1} \otimes r_{1}^{\prime}\right) \cdot\left(r_{2} \otimes r_{2}^{\prime}\right)=r_{1} r_{1}^{\prime} \otimes r_{2} r_{2}^{\prime} .
$$

Check that the analogous construction for graded rings also makes sense. [Note that to get commutativity in the graded cases we need to add a sign.]
(iii) Show that the cross product map $H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)$ is a ring homomorphism with respect to the tensor product of the cup product on X and Y and the cup product on $X \times Y$. [Hint: This amounts to checking the relation

$$
\left(\xi \smile_{X} \xi^{\prime}\right) \times\left(\eta \smile_{Y} \eta^{\prime}\right)=(\xi \times \eta) \smile_{X \times Y}\left(\xi^{\prime} \times \eta^{\prime}\right),
$$

for which you can use part (i) and naturality of cup products.]
(iv) Prove that if X and Y are finite type cell complexes and the integral cohomology groups of X are all free abelian groups, then the cross product map

$$
H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)
$$

is an isomorphism of rings. [Hint: Use the Künneth Theorem for cohomology.]
(v) Compute the ring structure on $H^{*}\left(S^{n} \times S^{m}\right)$.

Exercise 10.3. Convince yourself that the diagrammatic definition of a (commutative) ring agrees with the (equational) one you have seen before.

Exercise 10.4. Show that if we define the cup product on the chain level using the Alexander-Whitney map, then $S^{\bullet}(X ; R)$ is a (strictly) associative and unital dg-ring for any ring R.

Exercise 10.5.

1. Show that under the isomorphism $H^{0}(X ; R) \cong R^{\pi_{0} X}$, the cup product in degree 0 corresponds to the pointwise multiplication of functions $\pi_{0} X \rightarrow R$, with unit the constant function with value $1 \in R$ and product $(f \cdot g)(x)=f(x) \cdot g(x)$. [Hint: Use the explicit formula from the Alexander-Whitney map.]
2. By additivity for cohomology we have an isomorphism $H^{i}(X ; R) \cong \prod_{t \in \pi_{0}(X)} H^{i}\left(X_{t} ; R\right)$ where X_{t} denotes the path-component of X corresponding to $t \in \pi_{0} X$. Show that under this isomorphism the cup product

$$
H^{0}(X ; R) \times H^{i}(X ; R) \rightarrow H^{i}(X ; R)
$$

for $i>0$ takes $f: \pi_{0} X \rightarrow R$ and $\left(\alpha_{t}\right)_{t \in \pi_{0} X}$ to $\left(f(t) \alpha_{t}\right)_{t}$ (in terms of the natural R-module structure on $H^{i}\left(X_{t} ; R\right)$).

Exercise 10.6.

(i) If $R_{i}, i \in I$, are rings, then the cartesian product $\prod_{i \in I} R_{i}$ can be given a commutative ring structure with pointwise multiplication (i.e. $\left.\left(r_{i}\right)_{i \in I} \cdot\left(r_{i}^{\prime}\right)_{i \in I}=\left(r_{i} r_{i}^{\prime}\right)_{i \in I}\right)$. Check that this has the universal property of the product in the category of rings (i.e. given ring homomorphisms $\phi_{i}: R^{\prime} \rightarrow R_{i}$ for each i, there exists a unique ring homomorphism $R^{\prime} \rightarrow \prod_{i \in I} R_{i}$ that projects to ϕ_{i} in the i th coordinate). Also check the analogous statement holds for graded rings (where the cartesian product is taken degreewise).
(ii) Show that for topological spaces $X_{i}, i \in I$, the map

$$
H^{*}\left(\coprod_{i \in I} X_{i}\right) \rightarrow \prod_{i \in I} H^{*}\left(X_{i}\right),
$$

induced by the inclusions $X_{i} \hookrightarrow \coprod_{i \in I} X_{i}$, is an isomorphism of rings.
(iii) Compute the ring structure on $H^{*}\left(S^{n} \vee S^{m}\right)$. [Hint: The canonical map $S^{n} \amalg$ $S^{m} \rightarrow S^{n} \vee S^{m}$ induces a ring homomorphism $H^{*}\left(S^{n} \vee S^{m}\right) \rightarrow H^{*}\left(S^{n} \amalg S^{m}\right)$; check that this is an isomorphism in degrees $*>0$.]

Exercise $\mathbf{1 0 . 7}(*)$. Let Σ_{g} be the orientable closed surface of genus g. There is a continuous map from Σ_{g} to a wedge of g tori that pinches the "necks" between the g holes to points,

$$
q: \Sigma_{g} \rightarrow \bigvee_{g}\left(S^{1} \times S^{1}\right)
$$

Using that the induced map in cohomology is a ring homomorphism, compute the ring structure on $H^{*}\left(\Sigma_{g}\right)$. [Recall that in Exercise 4.8 you computed that

$$
H_{*}\left(\Sigma_{g}\right) \cong \begin{cases}\mathbb{Z}, & *=0,2 \\ \mathbb{Z}^{2 g}, & *=1 \\ 0, & \text { otherwise }\end{cases}
$$

and use Exercise 10.6 and Exercise 10.2 to compute the ring structure for the wedge of tori.]

Exercise $10.8(*)$. Show that $H^{*}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{m}\right)$ is a truncated graded polynomial ring in two variables,

$$
H^{*}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{m}\right) \cong \mathbb{Z}[x, y] /\left(x^{n+1}, y^{m+1}\right)
$$

where both generators are in degree 2. [Hint: First check that there is an isomorphism of (ungraded) polynomial rings $\mathbb{Z}[x] \otimes \mathbb{Z}[y] \cong \mathbb{Z}[x, y]$. Use Exercise 10.2.]

11 Manifolds and Poincaré Duality

Exercise 11.1. Use the explicit formula for the Alexander-Whitney map to get a formula for the chain-level cap product, and use this to prove the identities relating the cap product to the cup product and Kronecker pairing.

Exercise 11.2. Let M be a compact n-manifold whose homology groups are all finitely generated. (This is in fact true for all compact smooth manifolds.)
(i) Show that if M is orientable, then it is R-orientable for every commutative ring R. [Use the universal coefficient theorem.]
(ii) Show that if M is orientable, then $H_{n-1}(M)$ contains no torsion. [Apply Poincaré duality with \mathbb{Z} / p-coefficients and the universal coefficient theorem for every prime p.]
(iii) Suppose M is non-orientable and assume this implies M is also not \mathbb{Z} / p orientable for any odd prime p, and that $H_{n}(M)=H_{n}(M ; \mathbb{Z} / p)=0$. Show that the torsion subgroup of $H_{n-1}(M)$ is $\mathbb{Z} / 2$.

Exercise 11.3. Use Poincaré duality to show that $S^{n} \vee S^{m}$ is not homotopy equivalent to a compact manifold for $n, m>0$. [In the case $m=2 n$ you need to use the cup product, which you computed in Exercise 10.6.]

Exercise 11.4. Use the Künneth theorem to compute the integral (co)homology of the n-torus

$$
T^{n}:=\left(S^{1}\right)^{\times n} .
$$

Apply Poincaré duality to deduce the binomial coefficient identity

$$
\binom{n}{k}=\binom{n}{n-k}
$$

What is the ring structure?
Exercise 11.5. For which n does there exist a compact connected oriented $2 n$-manifold M such that $H_{n}(M) \cong \mathbb{Z}$?

Exercise 11.6. Show that if X is path-connected and non-compact, then $H_{c}^{0}(X)=0$. [Hint: Use the definition of $S_{c}^{\bullet}(X)$ as a subcomplex of $S^{\bullet}(X)$.]

