Topography and Force Estimation in Atomic Force Microscopy by State and Parameter Estimation

Department of Engineering Cybernetics, Norwegian University of Science and Technology
ACC Chicago, July 1–3, 2015
Introduction – AFM AM Loop

[Diagram of AFM AM Loop]

- Function generator
- Lock-in amplifier
- Phase
- Amplitude
- Setpoint
- Sample
- xyz-scanner
- PID controller
- z
- Setpoint
- Cantilever
- Laser
- Photo detector
- Piezo
- Sample
- Function generator
- Lock-in amplifier
- Setpoint
- Cantilever
- Laser
- Photo detector
- Piezo
- Sample
- xyz-scanner
- PID controller
- z
- Setpoint
Introduction – AFM AM Loop

- Sensor
- Controller
- Piezo actuator
- Output image
- Sample height
- Tip-sample interaction force
- Cantilever response
- Setpoint
- Amplitude estimation
- Cantilever response
- Force F
- Sample height
- D
- θ
- Output image
- $\text{Amplitude estimation}$
- Sensor
- Controller
- Piezo actuator
- Sample height
- $\text{Tip-sample interaction force}$
- $\text{Cantilever response}$
- Setpoint
- $\text{Amplitude estimation}$
- Sensor
- Controller
- Piezo actuator
- Output image
- Sample height
- $\text{Tip-sample interaction force}$
- $\text{Cantilever response}$
- Setpoint
- $\text{Amplitude estimation}$
Introduction – AFM AM Loop

Setpoint

Amplitude estimation

Sensor

Cantilever response

Tip-sample interaction force

Controller

Piezo actuator

Output image

Sample height

F

D

θ
Introduction – AFM AM Loop
Introduction – AFM AM Loop

- Sensor
- Controller
- Piezo actuator
- Output image
- Sample height
- Tip-sample interaction force
- Cantilever response
- Setpoint
- Amplitude estimation
- Force
- Height
- D
- θ
- F

Introduction – AFM AM Loop

- **Amplitude estimation**
- **Controller**
- **Piezo actuator**
- **Output image**
- **Sample height**
- **Tip-sample interaction force**
- **Cantilever response**
- **State and parameter estimator**
- **Setpoint**
- **Sensor**
Introduction

— We will employ observers to directly estimate the topography
 • By considering the cantilever dynamics and interaction force
— Two observers were designed for the same purpose:
 • A nonlinear observer with well-defined exponential stability results.
 • An extended Kalman Filter for comparison.
Outline

Introduction

System Modeling

Observer Design

Simulation Results

Conclusion and Further Work
System Modeling

- G: Cantilever model from applied force, to tip deflection.
 - Second order harmonic oscillator.
- F_{ts}: Tip-sample interaction force: Modeled by Lennard-Jones potential.
System Modeling – Lennard-Jones potential

\[F_{ts}(D) = k_1 \left[\frac{\sigma^2}{D^2} - \frac{1}{30} \frac{\sigma^8}{D^8} \right] \] (1)
System Modeling – State-space form

System can be expressed as an extended state-space model suitable for the state- and parameter estimator.

\[
\begin{bmatrix}
\dot{x} \\
\dot{\phi}
\end{bmatrix} =
\begin{bmatrix}
A & E \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\phi
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} u +
\begin{bmatrix}
0 \\
1
\end{bmatrix} d
\]

(2)

\[
A =
\begin{bmatrix}
0 & 1 \\
-\omega_0^2 & -2\zeta\omega_0
\end{bmatrix},
B = E =
\begin{bmatrix}
0 \\
\frac{1}{m}
\end{bmatrix},
C =
\begin{bmatrix}
1 & 0
\end{bmatrix}
\]

(3)
System Modeling – State-space form

System can be expressed as an extended state-space model suitable for the state- and parameter estimator.

\[
\begin{bmatrix}
\dot{x} \\
\dot{\phi}
\end{bmatrix} =
\begin{bmatrix}
A & E \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\phi
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} u +
\begin{bmatrix}
0 \\
1
\end{bmatrix} d
\] \(2\)

\[
A =
\begin{bmatrix}
0 & 1 \\
-\omega_0^2 & -2\zeta\omega_0
\end{bmatrix},
B = E =
\begin{bmatrix}
0 \\
\frac{1}{m}
\end{bmatrix},
C =
\begin{bmatrix}
1 & 0
\end{bmatrix}
\] \(3\)

where

— the state \(x \triangleq (x_1, x_2)^T\) represent the cantilever deflection and the deflection velocity
— the Lennard-Jones force \(F_{ts}\) has been introduced as a state \(\phi\)
— \(d\) is the time-derivative of \(\phi\)
— and the input \(u\) is the driving force of the cantilever.
Outline

Introduction

System Modeling

Observer Design

Simulation Results

Conclusion and Further Work
Nonlinear Observer

Based on Håvard F. Grip’s article: “Estimation of States and Parameters for linear systems with nonlinearily parameterized perturbations” (2011).

Structure of the state- and parameter estimator. From (Grip et al., 2011).
Nonlinear Observer – Modified High-Gain Observer

Observes the state \((\hat{x}, \hat{\phi})\) as if the parameter estimate \(\hat{\theta}\) is perfectly known.

\[
\dot{\hat{x}} = A\hat{x} + Bu + E\hat{\phi} + K_x(\varepsilon)(y - C\hat{x})
\]

\[
\dot{\hat{\theta}} = -\frac{\partial g}{\partial \theta} \hat{\theta} - \frac{\partial g}{\partial x} K_x(\varepsilon)(y - C\hat{x}) + K_\phi(\varepsilon)(y - C\hat{x})
\] (4)

\[
\hat{\phi} = g(\hat{x}_1, \hat{\theta}) + z
\]

— Need to determine \(K_x(\varepsilon), K_\phi(\varepsilon)\) such that the error dynamics of the observer are input-to-state stable.
Nonlinear Observer – Modified High-Gain Observer

Observes the state \((\hat{x}, \hat{\phi})\) as if the parameter estimate \(\hat{\theta}\) is perfectly known.

\[
\dot{\hat{x}} = A\hat{x} + Bu + E\hat{\phi} + K_x(\varepsilon)(y - C\hat{x}) \\
\dot{\hat{\phi}} = g(\hat{x}_1, \hat{\theta}) + z
\]

Need to determine \(K_x(\varepsilon), K_\phi(\varepsilon)\) such that the error dynamics of the observer are input-to-state stable.

Result

\[
K_x(\varepsilon) = \begin{bmatrix} 4.0\varepsilon^{-1} \\ 5.04\varepsilon^{-2} \end{bmatrix} \\
K_\phi(\varepsilon) = 4.0\omega_0^2\varepsilon^{-1} + 10.08\zeta\omega_0\varepsilon^{-2} + 2.08\varepsilon^{-3}
\]
Nonlinear Observer – Parameter Estimator

Need to find an update law

\[
\dot{\hat{\theta}} = u_\theta(\nu, \hat{x}, \hat{\phi}, \hat{\theta})
\]

such that the origin of the error dynamics

\[
\hat{\theta} = -u_\theta(\nu, \hat{x}, \hat{\phi}, \theta - \hat{\theta})
\]

is uniformly exponentially stable whenever \(\hat{x} = x \) and \(\hat{\phi} = \phi \).
Nonlinear Observer – Parameter Estimator

Need to find an update law

\[\dot{\hat{\theta}} = u_\theta(\nu, \hat{x}, \phi, \hat{\theta}) \]

(7)

such that the origin of the error dynamics

\[\dot{\tilde{\theta}} = -u_\theta(\nu, \hat{x}, \phi, \theta - \tilde{\theta}) \]

(8)

is uniformly exponentially stable whenever \(\hat{x} = x \) and \(\hat{\phi} = \phi \).

Assumption 6

There exist a differentiable function \(V_u: \mathbb{R}_{\geq 0} \times (\Theta - \Theta) \rightarrow \mathbb{R}_{\geq 0} \) and positive constants \(a_1, \ldots, a_4 \) such that for all \((t, \tilde{\theta}) \in \mathbb{R}_{\geq 0} \times (\Theta - \Theta) \),

\[
\begin{align*}
 a_1 \left\| \tilde{\theta} \right\|^2 & \leq V_u(t, \tilde{\theta}) \leq a_2 \left\| \tilde{\theta} \right\|^2 \\
 \frac{\partial V_u}{\partial t}(t, \tilde{\theta}) - \frac{\partial V_u}{\partial \tilde{\theta}}(t, \tilde{\theta})u_\theta(\nu, x, \phi, \theta - \tilde{\theta}) & \leq -a_3 \left\| \tilde{\theta} \right\| \\
 \left\| \frac{\partial V_u}{\partial \tilde{\theta}}(t, \tilde{\theta}) \right\| & \leq a_4 \left\| \tilde{\theta} \right\|
\end{align*}
\]

Furthermore, the update law (7) ensures that if \(\hat{\theta}(0) \in \Theta \), then for all \(t \geq 0 \), \(\hat{\theta} \in \Theta \).
Nonlinear Observer – Parameter Estimator

Need to find an update law
\[\dot{\hat{\theta}} = u_\theta(\nu, \hat{x}, \hat{\phi}, \hat{\theta}) \] (7)
such that the origin of the error dynamics
\[\hat{\theta} = -u_\theta(\nu, \hat{x}, \hat{\phi}, \theta - \tilde{\theta}) \] (8)
is uniformly exponentially stable whenever \(\hat{x} = x \) and \(\hat{\phi} = \phi \).

Assumption 6 satisfied by the following update law:
\[u_\theta(\nu, \hat{x}, \hat{\phi}, \hat{\theta}) = \text{Proj} \left(\Gamma M(\nu, \hat{x}, \hat{\theta})(\hat{\phi} - g(\nu, \hat{x}, \hat{\theta})) \right) \] (9)
\[M = \frac{1}{2} M_{\text{max}} \left[\tanh(M_{\text{rate}}(\hat{D} - D_M)) + 1 \right] \] (10)
Nonlinear Observer – Assumptions

— Bounded topography, well defined input signal and time-derivative
Nonlinear Observer – Assumptions

— Bounded topography, well defined input signal and time-derivative
— Operation in noncontact mode – allows the force profile to be represented by a monotonic function
Nonlinear Observer – Assumptions

— Bounded topography, well defined input signal and time-derivative
— Operation in noncontact mode – allows the force profile to be represented by a monotonic function
— Known Lennard-Jones parameters
 • Parameters appear linearly in Lennard-Jones function ⇒ Method can easily be extended to simultaneously determine these.
Nonlinear Observer – Stability Theorem

Theorem 1 (Abbreviated)

If all assumptions are satisfied and \(\hat{\theta}(0) \in \Theta \), there exists \(0 < \varepsilon^* \leq 1 \) such that for all \(0 < \varepsilon \leq \varepsilon^* \), the origin of the error dynamics of the observer and parameter estimator is exponentially stable.
Outline

Introduction

System Modeling

Observer Design

Simulation Results

Conclusion and Further Work
Simulation Results

Topography estimate with output noise.
Simulation Results

Estimated interaction force ϕ with noise.

Outline

Introduction

System Modeling

Observer Design

Simulation Results

Conclusion and Further Work
Conclusion

— New dynamic mode imaging method.
— Cantilever dynamics and interaction force "inverted" to estimate topography.
— Avoids bandwidth-limiting amplitude estimation.
— Exponentially stable observer.
Further Work

— Experimental results.
— Include estimation of Lennard-Jones parameters.
— Use observer in feedback loop for control.
— Proper analysis of closed-loop bandwidth.
Further Work

— Experimental results.
— Include estimation of Lennard-Jones parameters.
— Use observer in feedback loop for control.
— Proper analysis of closed-loop bandwidth.

Questions?
References
