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Introdution

This ourse intends to introdue to modelling of physial-hemial proesses.

It aims at providing an overview and onatenate the material that has been

part of the earlier urriulum: the introdutory proess engineering ourse,

thermodynamis and transport as well as reation kinetis. Why? beause

in order to model the proess one needs them all: behaviour of apaities,

�ows, and hanges of the handled material's nature. Also ontrol is part

of the desription, as it hanges the dynami behaviour of the proess to

math the requested spei�ations. So dynamis are part of the game. This

ourse breaks out of the stationary view that is traditional to hemial engi-

neering mainly beause it ompletes the piture and provides the neessary

insight to ahieve ontrol over the proess. With ontrol being an enabling

tehnology, this extension to the early urriulum material represents an

essential knowledge omponent to a hemial engineer.

The ourse also makes use of the mathematis that is part of the standard

math ourses. In partiular we use vetors and matries to handle multi-

dimensional objets; after all, we do not deal with only one speies, but

many and the desription of a plant will in general inlude more than just

a few apaity elements in the form of hold ups, material bodies, units and

the likes. To give an example, a model of a distillation olumn for only a

ouple of speies easily requires a ouple of hundred di�erential equations

and a multiple of algebrai equations. The dimensions are suh that one

has to resort to a higher abstration level, in this ase to apture multiple-

dimensional objets in orresponding strutures.

Another little headahe is aused by the notation. It is ompliated as we

want to be preise and avoid misunderstandings. The used haraters indi-

ate the nature of the quantity, for example we use �n� for molar mass and

vetor n: n̂ for a vetor of molar masses. We use a high dot for the time

derivative giving a measure for the hange of the extensive quantity in a

apaity. A hat is used to indiate a �ow and a tilde for the transposition

/ reation hanging the nature of the extensive quantity. All of this will be

introdued very arefully - step by step with the appropriate explanations

being attahed. In order to make the readers life easier, links to a ompre-

hensive nomenlature setion have been introdued, whih beome ative

in the eletroni version of this book.

When disussing a partiular subjet, one intrinsially uses a set of on-

text dependent terms. The likelihood, that the individual reader may not

interpret the same way as the author does, an ause some nasty misunder-

standings. So an e�ort is made to de�ne some of the key terms in the form

of a glossary added at the end.
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Modelling, a ore ativity

Synopsis Modelling is a ore ativity in engineering and siene: it pro-

vides insight, understanding and models are great sand-boxes � any game

an be played.

Modelling is entral to nearly all engineering and siene ativities and

onsequently the term model is used in a wide range of ontexts. In hemial

engineering and more spei�ally proess systems engineering, models are

the basis for design and operations. The use in design spreads the whole

range of design, inluding rude design, plant design all the way to detailed

unit design. In operations models are the basis for ontroller design on the

basi level, the intermediate level where more advaned model-based ontrol

tehnologies are employed and also on the high level where the operation of

whole plants and prodution sites are oordinated. Also on the top level,

the prodution planning and all logistis operations are omputed based on

the models one has of the involved proesses, storage and transportation

systems.

1.1 Models in hemial engineering

1.1 shows a seletion of ommon engineering ativities in whih models are

being used as basi ingredients. Traditionally, the plant design is separated

from the operations domain, latter often being split into three sub-domains,

namely ontrol, whih usually deals with low-level ontrol using basi on-

trollers, medium-level on whih the model-based ontrollers are often be-

ing used today, with Model-Preditive Controllers being a very suessful

tehnology. On the top level optimising ontrol is a ommon model-based

tehnology. Things that just happen are typially on the very low and the

very high level. These are proesses that are driven by events, suh as

a temperature boundary has been rossed or a swith has been hanged.

These proesses are alled disrete-event dynami proesses. In terms of

using mehanisti models, the disrete-event domain is probably the area

5
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designscreening

structure

layout

unit
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Figure 1.1: Di�erent domains where models are used in design and opera-

tions

lagging somewhat behind the ontinuous proesses. Here often empirial

models ome in use to onstrut start-up and shut-down proedures, whih

for supervisory ontrol of bath proesses is very muh the same. On the

plant or site level and the geographially disjunt level of a ooperation,

the planning is done using rather simple and generi models. Issue is that

essentially eah of appliation uses a di�erent model of the same plant,

where the struture of the model is largely de�ned by the appliation. For

example for the design of the intermediate-level ontroller one uses models

figures/P1_C_01__ModellingCoreActivity/UseOfModels.eps
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of the plant fousing on the time-sales assoiated with this intermediate

level, whih ommonly is a omplex unit or a group of units. On the plant

level it is usually su�ient to use rude steady-state models, whih desribe

the relation of what is oming into the plant (raw produts and energy)

with what is oming out of the plant in terms of produts and waste in a

average over a setion of the planning period.

Figure 1.2: A omputer-rendered heart model

Figure 1.3: Model loomotives

1.2 What is a model

So what is a model? Looking into the ditionaries and similar soures,

one �nds nearly as many de�nitions as there are ontexts in whih the

term model is being used. Thus giving a omprehensive de�nition of model

is always going to be very abstrat and generi (Apostel, 1960). Rather

than providing an expliit de�nition of the term model, it may be more

desriptive to talk about key properties or inentives for making models:

The main property of a model and the modelled objet is the fat that there

must be some similarities de�ning the relation model-plant. Taking suh

a view immediately opens the term model to inlude very many di�erent

figures/P1_C_01__ModellingCoreActivity/Heart1.eps
figures/P1_C_01__ModellingCoreActivity/Heart1.eps
figures/P1_C_01__ModellingCoreActivity/Heart1.eps
figures/P1_C_01__ModellingCoreActivity/Heart1.eps
figures/P1_C_01__ModellingCoreActivity/RocketModel.eps
figures/P1_C_01__ModellingCoreActivity/Lionel_726_BerkshireSteamLocomotive_1947.eps
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Figure 1.4: Gaudi: funiular model of Sagrada Familia: A method that

Gaudi used to design buildings based on atanery arhes (the arhes that

result from hanging hains � the same method used in many medieval athe-

drals) � Gaudi used string and little sand-�lled bags to load the strings. The

result is a geometrial model that represents the strutural elements upside

down. This is a reonstrution, whih is based on a photographs of the

original. The original was lost when Gaudi's studio burned down. It is

displayed in the 'museum' at Sagrada Familia. One of the most fasinating

exhibition piees.

models suh as physial models of a physial objet: model trains modelling

a real-world train, a network of pipes, pumps and valves representing the

urrent �ow in a omplex eletrial urrent distribution network. But it also

inludes people being models for others: role models, stage players model

other people behaviours and ations, arheotypes as models for ideas or

mode of behaviours for people in a soiety, plasti models of organs, toys,

miniatures of any kind, et et.

Making a model is done with having a purpose in mind (Apostel, 1960;

Aris, 1978). Models are used to mimi behaviours, to map behaviours into

objets. One an then manipulated these objets and do experiments, play

with the model without having to �fool� with the real system, and not at

least one an explore operational domains that the real-world system may

not permit. Models give freedom to the mind, allow tampering and testing,

figures/P1_C_01__ModellingCoreActivity/SagradaFamilia_01.eps
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playing with what ould beome real before it has real-world onsequenes

beyond the use of modelling and simulation time. Models are thus entral to

any type of exploratory work that has the objetive to exploit the objet's

behaviour.

If we de�ne the ontext of physial-hemial-biologial systems and further

onstrain the purpose to proess design and operations, then the most om-

mon ore appliations are simulation and model inversion. Why? Beause

design, being the synthesis of an input/output behaviour is mostly done by

trial, that is given an input keep on adjusting the plant's behaviour until

the desired output is obtained and optimising a proess is hanging some

of the inputs so as to ahieve the �best� results by a given measure. Having

said so, one seems to point to mathematial textures. Indeed today this is

usually the preferred type of models, though physial models may ertainly

also be an option.

Sine models are used so widely, it is no surprise that the use of the term

modelling varies with the ontexts and models represents are used to rep-

resent an equally wide a range of di�erent �things�. Here, we shall refer to

modelling as the proess of generating a mathematial onstrut that mim-

is the behaviour of the piee of world being modelled. The piee of world

an nearly be anything, a proessing plant, any part thereof, in any detail,

a living speies, mirobes, green plant, a piee of rok, tetoni plate, really

anything that exists, but also any arti�ial objet suh as an algorithm, a

program, to mention just two.

The task of generating a mathematial model takes a number of major steps

and we an identify at least three primary ativities Figure 1.5:

1. Primary mapping: The �rst major step is to map the real-world

objet of interest, the �plant�, into a mathematial objet. The basis

for this operation is some kind of theory, whih is usually the subjet

of a spei� disipline, suh as �uid mehanis to model �ows, mate-

rial sienes and thermodynamis to model the material properties,

to mention just two. The result of this operation is a set of equations,

whih, if dynamis are desribed, are either a set of ordinary di�eren-

tial equations (ODE)ombined with a set of algebrai equations (AE)

or a set of partial di�erential equations (PDE) ombined with a set

of algebrai equations (AE). The �rst type of model is a di�erential

algebrai model (DAE model) whilst the seond is a partial di�eren-

tial algebrai model (PDAE). The �rst one will be referred to as a

lumped model whilst the seond will be alled a distributed model.

The hosen struture represents the implementation of a �rst set of

assumptions primarily onsidering time sales and length sales.
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experimental results predictions

solver

adjust

experiment design
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Figure 1.5: Modelling overview: three major domains 1. primary mod-

elling: maps the world into a mathematial objet using theory T 2.

model simpli�ation: simpli�es to math the use of the model using simpli-

�ation S 3. model identi�ation: �ts model to plant adjusting the model

to minimize predition-result mismath.

figures/P1_C_01__ModellingCoreActivity/Overview.eps
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2. Model simpli�ation: Here, the model �delity is adjusted. This

adjustment is in all ases a simpli�ation. We onsider model re-

�nement to be part of the primary domain. Simpli�ations are of the

type to implement additional time sale and length sale assumptions.

Often they are order-of-magnitude assumptions, whih lead to simpli-

�ations of the model. Additionally pure mathematially motivated

simpli�ations may be introdued, suh as a polynomial approxima-

tion, of whih linearisation is a ommon operation.

3. Model �tting: The third domain �ts the available �free� variables of

the model suh that the preditions obtained from the model math

the experimental results best in the sense of a de�ned objetive fun-

tion and a measure for the mismath. This is usually referred to as

model identi�ation or parameter identi�ation. In the �rst ase the

struture of the model may hange as well as the respetive param-

eters, whilst in the seond ase the struture is �xed and only the

parameters may hange.

Models ome in many di�erent �avours: mehanisti desriptions that are

based on the priniples that form the foundation of siene, whih are math-

ematial onstruts that apture a ertain part of the nature of a natural

system. The former is often referred to as a white box model indiating that

one an �see� the mehanis of the box whilst the latter are referred to as

blak box models, as there is no real mehanisti onsideration behind the

formulation of the mathematial objet representing the modelled systems

behaviour. Both boxes do nearly never exist in a pure form, but most often

one makes use of a ombination of the two approahes. Often the reason

for resorting to blak box models is simply the fat that one does not know

enough about the mehanis of the proess or it is far too ompliated for

the intended use. Another reason is omplexity, as blak box models are

often very simple and partiularly in omputer appliations lead to a lower

omputational omplexity and thus redued omputation time.
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2

Proesses as a set of volumes

Synopsis Physial proesses oupy a spatial domain, whih for the pur-

pose of modelling we split into a set of interating volumes. The modelled

behaviour of the overall proess is the onerted behaviour of the individu-

ally modelled volumes and interations. Core is thus desription on how the

onstituent �volumes� behave together with a desription of the basi hara-

teristis of the interations.a Some things just happen, whilst others take for

ever. Some volumes are pretty uniform, whilst others are not at all. We in-

trodue lumped and distributed system and very fast systems where �things�,

for all pratial purpose, just happen as well as reservoirs that are on the

other end of the sale, are in�nitely large and behave in the opposite way:

their intensive properties remain onstant over time. All this is exposed by

looking at an example, a very basi, simple physial system: a up of water,

o�ee or tea for that matter.

2.1 About proess' guts

How do we build models for proesses? Being urious, we onsider the

proess to be like the orpse of a living speies of whih we would like to

understand its funtioning. So we have a look at all of its parts and explore

their respetive funtion. Take for example a frog 2.1.

Figure 2.1: A frog

The external anatomy of the frog in-

ludes the head, the trunk and the two

pairs of legs. The head is equipped with

sensors: the eyes and the ears and is

also taking up the food with the mouth.

The tongue serves the purpose of a-

quiring the food. The front legs will

help this proess besides giving support

for the trunk when sitting and moving.

The hind leg provide the main means

of loomotion. The digits of the four

13
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feet are onneted by membranes that help to transfer the fore from the

extremity to the water. The loaa loated at the hind side of the orpse

serves the purpose of expelling waste and seeds or eggs. The skin varies in

texture over the body and is also equipped with di�erent sensors suh as

tatile sensors and heat sensors. The skin is represents the boundary of the

animal and separates it from its environment.

The frog lives in an environment: it mainly takes up food and expels waste,

senses light, mehanial fores and pressure waves and it seeks interation

with other individuals of its speies. All of whih is to be onsidered when

trying to understand the frog's way of life.

What is the �orpse� for the life sienes is the �plant� for the engineer.

One may also use the term �system�. The term �system� is very general

whilst the term �plant� has beome the de fato standard in ontrol more

or less independent of the spei� appliation �eld. For the time being, let

us remain general and use the term system. Later, when we get to disuss

appliations to a plant that atually produes a produt of one or the other

kind, we shall use the term plant.

Figure 2.2: Frog anatomy model

Like the frog, any physial system is

seen as a spatial domain bounded by

its boundary. It is also always embed-

ded in its environment, with whih it

shares its boundary. The environment

a�ets the embedded system and thus

the modelling of the system's behaviour

requires the model of the immediate

environment.

If we want to understand more about

the frog's funtioning, we need to get to

look inside and explore the funtional-

ity and interations of all internal pars.

So we go about disseting the beast's

orps and analyse eah part that we �nd

in isolation and explore on how it inter-

ats with the parts it is onneted to.

When opening the frog's orps we will

�rst �nd the di�erent organs, the heart with the small lungs behind on eah

side, the stomah, liver below and the intestines attahed to the stomah.

The kidneys are hidden behind the liver and several other organs are oming

to the light as one moves others out of the way, for example the panreas.

The organs are learly identi�able entities that are oupled together, and the

figures/C_02__ControlVolumes/FrogAnatomy_01.eps


2.1. ABOUT PROCESS' GUTS 15

funtioning of the frog is given by the onerted operation of the onneted

organs ombined with the musular strutures, supported by the skeleton

and wrapped into the skin.

On this level, the subdivision is based on a visible boundary, the skin of the

organ.

The system may not be simple but may have internal struture. The stru-

ture is aptured by sub-dividing the spae being oupied by the system

into smaller parts. The behaviour of the system is then aptured by de-

sribing the behaviour of the individual sub-systems and their interations.

The approah taken to analyse and desribe the funtioning of a plant is

essentially the same: one subdivides the plant based on the argument of

�visible� boundaries. These de�ne units, phases, partiles or the like. The

visibility is often haraterised by a type of density, whih hanges disretely

as one moves in the spae of the marosopi world. The disontinuities are

usually taken as the boundaries de�ning the �parts� or subsystems.

2.1.1 Coneptual system parts

2.1.1.1 Distribution e�ets

When using intensive quantities to identify subsystems, one �nds quikly

that whilst they do hange quite abruptly when rossing the boundary,

they also hange as one moves to a di�erent loation inside, though the

variations may or may not be of relevant magnitude. The term relevant will

be subjet of many more disussions throughout the book. So we will ome

bak to it later. The fat that the intensities may or may not be onsidered

onstant throughout the volume oupied by the (sub)-system gives raise to

the de�nition of two oneptual systems: lumped and distributed systems.

De�nition � Lumped system: is a spatial domain in whih the

intensive quantities do not hange with the position.

De�nition � Distributed system: is a spatial domain in whih

the intensive quantities do hange with the position.

De�ning a Cartesian o-ordinate systems, the variations may our only in

one or two dimensions, in whih ase one refers to a 1D or 2D distributed

system, where the �D� stands for Dimension. Obviously there is also a 3D

distributed system. In many ases it is also an advantage to adapt the o-

ordinate system to the peuliarity of the geometry of the system, so for a

ylindrial system the model equations may be simpler in a ylindrial o-

ordinate system, whih is the ase if things do not hange in the rotational

o-ordinate but only in the radial and/or the axial diretion. Similarly for

a spherial geometry, a spherial o-ordinate system may be of advantage.
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If the geometry is not ylindrial or spherial, one may onsider a map-

ping of the geometrial spae into one of the regular spaes retaining the

angles, whih makes mathematis easier. Suh a transformation is alled a

�onformal mapping� (Rudin, 1987).

2.1.1.2 Time-sale e�ets

Another riteria haraterising systems is assoiated with the time-sale in

whih the model is drawn up. It is the appliation that determines on how

well the model must mimi reality. If we are interested in using the model

for designing a ontinuous plant that primarily operates in a stationary

mode, then we need to put the emphasis on the stationary behaviour of the

plant. In ontrast, if we want to ontrol a fast reative system, we need to

fous on the fast dynamis of the part in whih the reation takes plae.

Often, we also assume that things �just happen�, i.e. in the time frame we

are interested some things an be onsidered to our instantaneously.

In general, the time sale always splits into three parts, The dynami domain

of a proess desription splits into three parts: one whih one assumes

onstant, whih map into our reservoirs, one whih is very fast, so fast

that it is assumed to happen in an instant, mapped into our event-dynami

systems, and the third one is in between, what we refer to as the dynami

part. So if we look at the time sale, every model ontains these three parts.

event dynamic constant

time scale

Figure 2.3: Three time domains of time sales: event - just happens, dy-

namis - everything happens, onstant - nothing happens

Given a time sale split into onstant, dynami, event dynami systems

an be lassi�ed into three lasses of dynami behaviour:

De�nition � Constant system: does not hange with time;

thus all its intensive properties remain onstant over time. It is

onsequently also in�nite.

De�nition � Dynami system: does hange ontinuously in

time. Its apaity may vary over the whole sale.

De�nition � Event-dynami system: does hange in an in-

stane thus some properties hange step-wise in time. This may be

for intensive as well as for extensive quantities.

Constant systems are also alled reservoirs mostly following thermody-

namis' terminology. They are always part of the environment in whih the

figures/C_02__ControlVolumes/TimeScales.eps
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plant/system is embedded.

2.1.2 Abstration to a graph

heating

cooling

pump

hot

cold

return

A
B

product

jacket

Figure 2.4: A bath plant with a heating ooling system attahed to the

jaket

To make the �guts� visible, the proess is seen as a set of ontrol volumes.

The deisions taken when subdividing into sub-volumes are ritial, beause

the hosen struture is determining the �ontents� of the model, meaning

what and how well the model desribes the proess. Any error in the hoie

of the model struture is expensive as the struture is the foundation of the

model and has to be done at the very beginning of the whole modelling

proess. The hoie determines what the person reognises as the essential

parts of the model. Anything that is not onsidered at this level, will simply

not be inluded in the model.

What is to be modelled is the �rst deision that must be taken. This objet

is embedded in an environment with whih it interats. Those parts of the

world that are onsidered to not interat with the plant are left out. This

deision de�nes the systems boundary, the overall sope of the model. It

onsists of the plant and a proess-model-relevant universe in whih the

plant is embedded. Next, both the plant and the environment are split

into sub-systems. As mentioned, as an argument for the splitting one uses

ommonly phase boundaries, that is step-like hanges of an intensive prop-

erty. This is done in three dimensions with the sub-systems being volumes.

figures/C_02__ControlVolumes/PilotPlant.eps
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Figure 2.5: The proess ut into bits and piees

These volumes are often also referred to as ontrol-volumes, reason of whih

will beome evident later when we desribe the behaviour with equations.

Figure 2.5 shows our imaginary plant and its environment disseted. the

plant is in 3D, whilst the piture is in 2D.

So far we have not indiated anything about what is in the system and what

parts we onsider to ommuniate with eah other through their ommon

boundaries. Figure 2.6 shows some of these details. The olours indiated

domains or phases, where domains are onneted spatial domains. The

arrows rossing the boundaries indiate the ommuniation of the two parts

onneted by the tail and the head of the arrow. As an example we show

also di�erent quantities being exhanged by olour-oding this information.

We ould think of blak indiating mass �ow, whilst red would be used for

energy �ow other than onvetive �ow.

In a next step, the graph is �exploded� showing now more learly the stru-

ture one has deided to use for the representation.

The �nal stage of the primary abstration proess is to make assumptions

about the nature of eah individual part: disrete-event dynami, lumped,

1D, 2D, 3D distributed.

figures/C_02__ControlVolumes/UniversePilotPlant_disected.eps


2.2. CAPTURING SYSTEM STRUCTURE IN A GRAPH 19

H

C

T

M P

J

W

F

G

L

R

O

D

A

B

K

I

E

F

Figure 2.6: The proess ut into bits and piees exploded. Finally a graph

with an abstrat representation of the plant
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Figure 2.7: The exploded plant

2.2 Capturing system struture in a graph

The underlying struture of the model is a graph, a direted graph to more

preise. Whilst this �being a graph� is apparent from the visual representa-

tion, it o�ers a onvenient abstration, whih enables a proper representa-

tion of the behaviour in terms of a direted graph with nodes that represent

primitive or simple apaitive ontainers, that interating with eah other

figures/C_02__ControlVolumes/UniversePilotPlant_disected_coloured.eps
figures/C_02__ControlVolumes/UniversePilotPlant_explode.eps


20 CHAPTER 2. CONTROL VOLUMES

F

E

A

O

O

H

R

L

T

M

P

J

W

B

G

C

R

D

plant

environment

Figure 2.8: Finally a graph with an abstrat representation of the plant

where we used partially the graphial symbols as listed in Table 2.1, and

Table 2.2

and the environment aross the ommon boundaries. The graph is an ab-

stration designed to re�et the omponents of the proess as viewed by the

person modelling the proess.

Choosing the onserved quantities as the �ontents�, whih later we will

refer to as tokens, the link to a mathematial desription of the system

beomes apparent: the onservation equations for eah sub-system supple-

mented with the desription of the exhange between sub-systems and the

internal hanges provide us with the basi desription of the overall system's

behaviour. How to establish these equations will be the main subjets of

following hapters, whih will show that establishing the mathematial de-

sription is a rather mehanial operation that an be done systematially.

The key is really the hoie of the proess struture. It de�nes how well

the proess is being modelled. Examples will illustrate that it is not quite

so easy to suggest a struture that aptures the proess harateristis that

are relevant for the model appliation. Having a visual method to represent

the model makes it muh easier to disuss and omprehend the models'

struture ompared with having to extrat this information from a set of

mathematial equations.

The graphial representation we introdue has really only a few ompo-

nents, whih may be adjusted to the partiular need if required (Table 2.1).

For onnetions (Table 2.2) we use di�erent styles of lines and olours to

distinguish between di�erent extensive quantities and signals and di�erent

figures/C_02__ControlVolumes/UniversePilotPlant_network.eps
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Table 2.1: Graphial elements for systems

Reservoir : an in�nitely large soure of extensive

quanity with onstant insensitive properties

Lumped system : a apaity of �nite volume with

the intensive properties being uniform over the whole

volume the system oupies

Distributed system : a �nite-sized volume with the

intensive properties being a funtion of the position.

A little o-ordinate system is shown to indiate the

distribution in 1D, 2D or 3D with one, two and three

arrows. The distribution e�et on the surfae is not

shown here. It an be made visible in the onnetions.

b
Event-dynami system : a very fast system, so fast

that one assumes it to be in pseudo-steady state all

the time.

Event-dynami system : a surfae with no apaity,

thus exhibiting event dynamis.

Information proessing systems : ontrollers are

information proessing systems that obtain informa-

tion either from other information proessing systems

or from sensors linking them to the plant on the input

side. On the output side they may onnet to other in-

formation proessing systems or stream manipulators

suh as valves and swithes.
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Table 2.2: Graphial elements assoiated with onnetions � they represent

interations between systems. They are used to signify transfer of extensive

property suh as mass, energy, work, heat et, for eah of whih one hooses

a di�erent form in terms of line type and olour. Below a set of possible

hoies.

Connetion mass : mass transfer, both for total

mass or speies. Mass transfer indues transfer of in-

ternal energy and volumetri work.

Connetion heat : heat transfer.

Connetion work : work transfer, often volume work

or mehanial work.

Connetion signal : signal.

Continuous manipulator : �ows may be manipu-

lated ontinuously, for whih we use a valve symbol.

b b Disrete manipulator : �ows may be swithed on

or o� for whih we use a swith symbol.

Observer : a sensor devie that extrats information

about the state of the system.
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morphologies of the extensive quantities. It should be mentioned here that

the onnetions transferring any kind of extensive quantity are the result of

making a fast-transport assumption on a physial transfer system, usually a

distributed system, whih we will disuss in more detail later in more detail

(see 4.2).

2.3 How muh detail

The plant struture is often omplex in terms of �many�, whih motivates

a hierarhial approah by whih the plant is reursively sub-divided into

smaller and smaller piees. But then, how �far� should one subdivide? How

small should the smallest piees of the spae be that one onsiders? Well, as

so many other things, the hoie depends on what one wants, namely what

one wants the model to desribe, beause it is the �purpose� in the ontext of

the appliation that de�nes the required detail. There is no point of being

too aurate � the model must just be good enough for the appliation.

Fine � but then what is aurate? Auray is only de�ned in the ontext

of the appliation. The onsequene of all of this is that the model has to

be hosen �rst, then applied and only in terms of the performane of the

appliation, a judgement of the model auray an be given. This leads to

an overall iterative approah in whih the model may either be re�ned in

parts where there were too few details or one may drop some details as they

are not relevant for the appliation. This implies that one will generate not

only one model, but typially there will be a set of models, whih desribe

the plant on di�erent levels of detail. Sine the �level of detail� often refers

to the degree with whih the spatial domain is subdivided, one talks about

�granularity�. Thus a �ne-granular model desribes the proess in more

detail than the more rude one.

The separation into ontrol volume and onnetion is probably the most

ritial step in the whole modelling proess. Why? Beause it determines

the level of detail that is inluded in the model. If we take our frog as an

example and open the frog, we �nd the primary organs, like heart, lungs,

stomah, intestines, brain, eyes, musles. If we want to know how any of

these organs is working we have to open it up again and look into its internal

struture. This proess an be repeated through layers and layers of smaller

and smaller strutural omponents down to the moleular, atomi level. For

example, the musle will show several levels of detail as shown in 2.9.

This proess of looking into and adding more details to the model is alled

�re�ning�. It always requires adding struture to the model. This an only

be done on this initial level of the modelling proess. The �ner the detail, the
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Figure 2.9: Struture of a musle (soure: Wikipedia)

�ner the �granularity� of the model. The term �granularity� niely aptures

the nature of the model in terms of the strutural appearane of the proess,

and thus model one had in mind when deiding on the level of details to

be desribed. One a struture has been hosen, on the mathematial side,

models an be simpli�ed, not just one but reursively. Thus the hoie of

the initial struture is ruial to de�ning the level of detail being inluded.

The detailing is done on the length sales: on eah level, smaller details are

being brought to the light. In most ases this diretly relates to the time

sale as well, smaller also implies faster, though the dynamis depend on the

apaity and not the size. However as the detailing is usually involving the

same type of materials and thus spei� apaity, the inreasing detailing

almost always implies a simultaneously zooming into the time sale.

Asking the question on how many details should be inluded, so the generi

answer is: just as muh as required by the appliation of the model. In pra-

tial terms this requires to �balane� the granularity suh that where fast

appliation-relevant proesses our, the granularity is �ne, whilst where

not muh happens it is large.

figures/C_02__ControlVolumes/SkeletalMuscle.eps
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2.4 Mapping the behaviour

The model desribes the behaviour of the modelled system interpreting all

spatial parts as apaities. The onservation priniples are applied to these

apaities thus desribing the hange of the onserved quantities in the

system as a funtion of the exhange of the extensive quantities with the

system's environment and in some ases transposition of extensive quantities

from one type into another one. The latter aptures the hanges due to

hemial or biologial reations (8.2), when one type of mass is hanged

into another one. Also phase hanges belong to this lass and the hange

of mass into energy and bak.

For a distributed system (4.2) the aumulation is the integral over the

hanges in the onserved quantity in eah point. Thus it is a volume integral

over a density measure, whilst the exhange with the environment is an

integral over the surfae. More preisely, the �ow is the integral of �ux in

normal diretion as a funtion of the loation on the boundary over the whole

boundary. Emphasis is plaed on the fat that the whole boundary must

be inluded. This may sound somewhat trivial, but then in appliations it

is easy to overlook this fat and it is good pratie to hek very arefully

if indeed all the streams rossing all the boundary elements are inluded.

2.4.1 Mapping a ontainer � as simple as it goes

For the moment, let us step bak from the distributed systems as this pri-

marily seems to lead into the issue of how to desribe the �ow aross the

boundary. So let us be generous in the sense of ignoring some of the details

and take a good look at a really simple system: a glass of water or any other

ontainer, for example a tank, if one prefers a tehnial appliation. In any

ase a ontainer that is being �lled with water from a pipe for further use.

2.10 shows the graph of the simple system. As we deided to ignore details,

we leave out any thermal or mehanial e�ets, so that the proess of �lling

in water is well desribed by a dynami mass balane: The hange of the

mass is equal to the amount of water poured into the ontainer per unit

time. De�ning the symbol mW for the mass in the ontainer W , and the

�ow by the symbol m̂R|W the di�erential hange in the mass over time dt
is:

dmW = m̂R|W dt

whih an be rewritten as a di�erential equation, making it look more fa-
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W
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Figure 2.10: Simplest version, no fringes, only the water in the glass is

modelled and the in�ow of water from a reservoir

miliar:

dmW

d t
= m̂R|W

This equation de�nes the mass mW as the state of the ontainer and the

�ow m̂R|W ats here as the input.

We will always write the balanes in the same form, namely the aumu-

lation on the left-hand side is equal to the transfer aross the boundaries

and the internal hanges. The aumulation term is the di�erential hange

of the state with time whilst the �ow aross the boundary is the same to-

ken as the state �owing, with the �ow indiated by the deorator � ˆ� and
the boundary identi�er � soure | sink �, whilst the internal hanges will be

indiated using the deorator � ˜�.

So what is the �system� here? Well the ontainer - and the environment is

the pipe with the tap from whih water is �owing with a given rate. But

then looking at this balane equation, the ontainer itself has absolutely no

e�et; it does not seem to appear in any form. Nothing in the model re�ets

even the existene of the ontainer. Agreed, there is mass aumulated IN

the ontainer. So the model has the property of being able to hold and

aumulate mass inside.

Some more of the ontainer properties appear if we ask for the level in

the ontainer. To introdue this bit of information, we have to add two

more relations, namely one that links the mass to the volume (V ) and one

that relates the volume with the level (h). The �rst one introdues a mass
density ρ:

V W := ρ−1mW

The seond one desribes the geometry of the �uid body ontained in the

figures/C_02__ControlVolumes/GlassSimple.eps
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ontainer. Sine in general the ross-setional area of the ontainer (AW )

hanges with the height hW , the omputation of the volume of �uid in the

ontainer is the integral:

V W :=

∫ hW

0
AW (τ) dτ

The three equations form a di�erential algebrai equation (DAE) system,

whih an be solved diretly using a orresponding integrator, but whih

in most textbooks would be onverted into a simple di�erential equation in

the level. This an be done by hanging the state spae from mass to level.

Mathematially this is ahieved through di�erentiation and substitution.

Assuming the density is onstant, di�erential hange in the volume-mass

relations is:

dV W := d
(
ρ−1 mW

)
= ρ−1 dmW

:=
∂ V W (hW )

∂ hW
dhW := AW (hW ) dhW

Substitution then yields :

dhW

d t
= A−1

W (hW )
dV W (hW )

d t

= A−1
W (hW ) ρ−1 dmW

d t

= A−1
W (hW ) ρ−1 m̂W

whih is an ordinary di�erential equation in the level as a funtion of the

in�ow of mass. Sine we needed to di�erentiate only one, the above DAE

system is alled a DAE of (di�erential) index 1 (Brenan et al., 1989). The

ordinary di�erential equation an be solved if the area is given as a funtion

of the height.

2.4.2 And it may over�ow: events

So again, now what is this model desribing? It gives an aumulator of

mass, but then if we ompare it with our original physial system, there

will be a point where the ontainer, however big, is full as no water is taken

out. The above model though knows nothing about the ontainer being

full. The mass and thus volume and level will just simply keep on growing

as water keeps on �owing in.

In order to resolve this problem, an additional �ow must be introdued,

whih omes into ation as the maximum level has been reahed (2.11). We
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switch @ level = max

m̂R|W

m̂W |D

Figure 2.11: In order to take are of the possible over�ow, the model is

extended with an disrete-event-dynami omponent, namely an out�ow,

whih is swithed on as the level reahes the maximum.

may express this using a swith-type of representation, that may look like:

m̂W |D :=

{

m̂R|W if h >= hmax

0 otherwise

The balane equation is extended by this additional �ow:

dmW

d t
= m̂R|W − m̂W |D

This swithing behaviour being the result of having reahed a state ondition

is alled a disrete-event dynami behaviour. �Disrete-event" beause it is

an event that triggers the disrete hange.

At this point it is onvenient to swith to another measure of mass, namely

number of moles n:
dnW

d t
= n̂R|W − n̂W |D ,

reason being that the physial properties usually are given in the molar

representation. The link between mass in kg and in moles is simply the

moleular mass.

2.4.3 Extending to warm �uid ontent

Now let us raise the level of omplexity by assuming the water to be warmer

than the room in whih the ontainer is loated. We remain �generous� by

assuming that the physial properties of the involved materials are not a

funtion of the temperature. In order to inlude the thermal e�et of losing

figures/C_02__ControlVolumes/GlassSimple_1.eps
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heat to the environment, we have to inlude at least one heat loss, but

possibly several when we look loser (2.12). Why several? Well, beause

W

R

D

switch @ level = max

m̂R|W

I

S

q̂W |T |I

q̂W |S|I q̂W |B|S
m̂W |D

Figure 2.12: Having warm water in the ontainer and being interested in

the temperature adds the need for an energy balane and the desription of

the main heat losses.

the ontainer interats di�erently with the environment through di�erent

parts of its boundary. If the ontainer is open, the heat loss through this

part will be di�erent than through the side walls, whih in turn also will

be di�erent through the bottom, depending on what the bottom interats

with. So the problem now proliferates quite quikly. The energy balane

(9.1), whih we an argue redues to an enthalpy balane that inludes the

hange of the enthalpy of the water being equal to the enthalpy entering

and leaving the body of water due to in�ow and potentially also out�ow

and the various streams extrating energy in the form of heat. The model

is now augmented with the enthalpy balane:

dHW

d t
:= ĤR|W − ĤW |D − q̂W |T |I − q̂W |S|I − q̂W |B|S (2.1)

where the three heat �ows q̂W |T |I, q̂W |S|I , q̂W |B|S for the side, the top and

the bottom.

Having introdued enthalpy H and ondutive heat �ow q̂ we must relate

these quantities to the state, namely enthalpy and mass. Sine enthalpy is

an Euler homogeneous funtion of degree 1 (Callen, 1985), the enthalpy an

be written:

H :=
∂ H

∂ n
n := hn

figures/C_02__ControlVolumes/GlassSimple_2.eps
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with h being the partial molar enthalpy.

Heat is �owing downhill the temperature gradient. So a simple representa-

tion is known as Newton's law of ooling :

q̂k := −kqk (TE − T ) ,

where k is the stream index and the subsript E stands for the environment

assuming that the �ow is modelled as going from the system to its environment

in all ases. The c is a ondutivity parameter haraterising the property

of the boundary times the size of the boundary, thus the area.

Two new variables have been introdued, namely the partial molar enthalpy

h and the temperature T . The two are linked over the relation:

h :=

∫ T

T ref

cp(τ) dτ

with h(T ) being the heat apaity, whih in this ontext is a funtion of the

temperature. The referene temperature appears beause one measures en-

thalpies relative to a standard as the absolute value is not known. From this

equation we need the temperature, beause it appears in the heat transfer

equation. The problem of extrating T is obviously in general not trivial.

But again let us be generous and assume that the spei� heat apaity h
is onstant. This makes the task of omputing the temperature from the

enthalpy and the h easy. So if we now look at the proess, then it is driven

by the mass �ows but also by the room temperature.
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2.4.3.1 Warm �uid in a high-apaity ontainer

Think of replaing the ontainer with a up and the above water with

o�ee � assume a espresso size, it is quite obvious that the o�ee stays

warmer if the up is warmed up before the o�ee is added as ompared to

pouring it into a old up. Industrial espresso mahines have therefore a

heating surfae for keeping the ups hot. So learly what we have so far not

onsidered is the e�et of the ontainer beyond it representing a resistane

to the heat �ow. Adding the ontainer as a apaity and assuming that it is

open, whih a up usually is, the heat transfers on the sides and the bottom

must be re�ned by adding a apaity e�et and again, we raise the level of

omplexity of our model. The mathematial representation of suh systems

will be done later. For now we shall resort to the model in the form of a

topology.

W

R

D

switch @ level = max

m̂R|W

I

q̂W |B

S

q̂W |G

G

C

B

q̂G|I

q̂C|I

q̂B|S

q̂W |C
m̂W |D

Figure 2.13: Having warm water in the ontainer and being interested in the

temperature adds the need for an energy balane and the desription of the

main heat losses. Adding a signi�ant apaity of the ontainer inreases

the omplexity a level more.

figures/C_02__ControlVolumes/GlassSimple_3.eps
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2.4.3.2 Warm �uid in a high-apaity ontainer with lid

Things get even more interesting if we introdue a heater in the �uid body

and over the ontainer with a lid. Now we have the situation that the �uid

will eventually boil and the main heat loss will probably our through the

lid. The mehanism is that the �uid will evaporate, travel through the gas

phase and then ondense on the lid. If it ondenses in drops, things will

look di�erent than if it ondenses as a �lm. The ondensed material will

then �ow bak to the liquid phase.

W

I

m̂ΩG|K |K

CS

CB

CGG

K L

S

m̂K|W

q̂K|L

q̂L|I

q̂CB |S

E
q̂ΩE|W |W

ŵE|ΩE|W

ΩG|K

ΩW |G

ΩE|W

contents container environment

q̂ΩG|K |K

m̂G|ΩG|K
q̂G|ΩG|K

m̂ΩW |G|G q̂ΩW |G|W

m̂W |ΩW |G
q̂W |ΩW |G

q̂CS|I

q̂W |CB

q̂W |CS

q̂G|CG
q̂CG|I

Figure 2.14: A tank with water being heated up. As one gets over a ertain

temperature, the heat losses are mainly due to the ondensation on the lid.

figures/C_02__ControlVolumes/GlassWithLid.eps
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Network ommuniating tokens

Synopsis At one point, one needs to deide on what balanes must be writ-

ten. A simple model of a sedimentation proess is used to illustrate how

one deides on what omponent mass balanes must be written. Adding a

thermostat to a part of the system extends this disussion to where energy

balanes must be established.

3.1 What to inlude

Models are established for a ertain appliation, whih intrinsially de�ne

the time sale in whih one will work. This in turn will provide the argu-

ments for de�ning the universe in whih the appliation and thus the model

lives. It provides the main argument to make the split between the a-

tive plant and its environment, both of whih make up the model universe.

Also the next step in the modelling proess, namely the breaking up of the

model universe into piees is also based on the same arguments though aug-

mented by strutural onsiderations, suh as phases, equipments or the like.

These are the �rst and most important deisions being taken in the overall

modelling proess, simply beause they de�ne the appliation domain. The

proess of subdividing the plant is reursive and an be extended in depth

to any desired level, at least in priniple, whilst extending the appliation

domain brings one bak right to the beginning.

One one has made the deision on the granularity of the model, the basi

graph suh as shown in Figure 2.7 is established. This graph shows the

distribution of the apaities for the physial part of the plant, thus the

aumulation of onserved quantities, and the transfer of these same quan-

tities between the various parts. It is a direted graph with the diretion

indiating the referene o-ordinate system for eah transfer. Besides, there

is an attahed graph, whih represents the information-driven part: the

ontrol system.

On the next level, we introdue the dynami assumptions being made about

all systems. As we will disuss in more detail later, the transfers of extensive

33
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quantities are seen as physial systems that transfer very fast and exhibit

no apaity e�ets (3.5). For the apaities one has �rst to judge if it is

to be seen as having a negligible apaity, thus if it is to be seen as an

event-dynami system, or if it so large and thus slow that it an be viewed

as a reservoir. All others are seen as dynami systems. Seondly for the

two dynami systems, one has to onsider if they are to be modelled as

distributed system or if one an assume uniform onditions aross the spatial

domain the system oupies. The latter is essentially a judgement on the

internal transport dynamis. For a lumped system the internal transport

dynami is in the event-dynami time sale, whilst for a distributed system

the internal transport dynami is not negligible, both in the light of the

appliation (see 3.5). The result of these onsiderations gives the modi�ed

graph of the type as shown in Figure 2.8. This graph represents all the

omponents that are physially present, for whih reason we refer to it as

the physial topology.

By de�ning the dynamis and the distribution e�ets, one de�nes the na-

ture of the involved mathematis, namely if the ore onservation equations

are algebrai for event-dynami and onstant systems, ordinary di�erential

equations for the lumped systems and partial di�erential equations for the

distributed systems. Question then remains what onserved quantities must

be onsidered in eah part of the direted graph; and what does eah part

onserve and exhange with its neighbours and what is being undergoing

any transposition of any kind inluding reations. The �what� is the subjet

of this hapter together with the onise mathematial representation of the

balanes for networks as they are represented by these direted graphs.

3.2 Network representation

In order to desribe more omplex systems we suggested to model the pro-

ess by �rst splitting it up into ontrol volumes (see 2.1). So the �guts� of

the proess are being exposed and split into di�erent ontrol volume eah

of whih an be onsidered to be of one or the other type (see 2.2). When

writing the equations representing the plant, whih starts with the balane

equations for eah apaity, one ollets all the streams rossing the bound-

ary of the system. The latter is really the reason one alls it a �ontrol

volume� using the term �ontrol� in an aounting ontext. The �ows are

always oming from somewhere, a system of one or the other kind, and are

always going somewhere, again a system of one or the other kind.

The ontrol volumes, together with the transfers of extensive quantities

form a network represented as a direted graph and we an use the graph



3.2. NETWORK REPRESENTATION 35

theory to �nd a ompat desription. For the disussion it is su�ient to

look at a simple network as it is shown in �gure 3.1. The extensive quantity

a b

Φ̂a|b

Φ̂c|b

Φ̂b|d

c

d

Figure 3.1: A sample network

we want to balane is Φ and we look at the system a. Then it has one arrow
out, whih is labelled with Φ̂a|b. The label has as its index the de�nition of

the referene o-ordinate introdued by de�ning the arrow, namely it omes

from a and it goes to b.

Φ̇a = −Φ̂a|b

Φ̇b = +Φ̂a|b + Φ̂c|b − Φ̂b|d

Φ̇c = −Φ̂c|b

Φ̇d = +Φ̂b|d

To take a physial example to help us interpreting, take the extensive quan-

tity Φ being the internal energy and the e�ort π being the temperature, then

indeed the energy ontents inreases in system a if the temperature in b is
larger than in a, thus T b > T a, with the energy oming from system b.

This handling of signs we an formalise, whih turns out to be a healthy

thing to do, beause sign errors are very ommon in these equations and

making things a �rule�, makes the writing of the equation proedural essen-

tially removing the problem.

For this purpose we introdue a quantity, whih we all the diretion indi-

ator α, whih for a tail of an arrow is −1 and for a head +1. The diretion
indiator is to be indexed with the onnetion and the system it is on-

neted to. So for the onnetion Φ̂a|b the tail is αa,a|b := −1 and for the
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head αb,a|b := +1. The formalised balane equations then are:

Φ̇a = αa,a|b Φ̂a|b

Φ̇b = αb,a|b Φ̂a|b + αb,c|b Φ̂c|b + αb,d|b Φ̂d|b

Φ̇c = αc,c|b Φ̂c|b

Φ̇d = αd,b|d Φ̂b|d

So de�ning the stream list

F := [a|b, c|b, b|d]

then we an write the balane for system b very ompatly:

Φ̇b =
∑

m
αb,m Φ̂m, m ∈ F (3.1)

De�ning the vetors:

Φ :=
[
Φa,Φb,Φc,Φd

]T
Φ̂ :=

[

Φ̂a|b, Φ̂c|b, Φ̂b|d
]T

we an write the whole system of equation into a matrix equation:

Φ̇ = F Φ̂

with F being the inidene matrix of the direted graph 3.1:

F :=







−1 0 0
+1 +1 −1
0 −1 0
0 0 +1







The inidene matrix is easily onstruted from the inidene list, whih is

a list of tuples one for eah onnetion (ar) in the graph. The �rst value

in the tuple is the soure node and the seond the sink node, thus in our

notation the �rst index and the seond index separated by the |. The graph
is not quite ompletely spei�ed by the inidene list, as nodes that are not

onneted are then not inluded and one needs to add a list of unonneted

nodes as a minimal information.

This then also lets us interpret the abstration of the physial topology:

De�nition � Physial topology: The physial ontainment as

a direted graph, in whih the nodes are the apaities and the ars

are the onnetions transferring intensive quantity.
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Adding the ontrol units, adds a sub-graph whih uses signals as onnetions

and has signal proessing units as nodes. The physial topology and the

ontrol topology are onneted with uni-diretional ars whih from the

physial topology to the ontrol topology require an observer unit for the

state of the observed apaity and on the other side it is a signal that

onnets from the ontrol topology to the physial topology at a steady-

state unit representing a stream-manipulating element, suh as a valve.

3.3 Flowsheets vs abstrat topologies

Flowsheets are used to shematially represent plants for various purposes.

They are used in plant design to re�et the struture of the plant with

various levels of detail mathing the design purpose. Eah of the design

levels will usually generate a new �ow sheet whih will inrease in detail

and will be more spei� as one progresses in the design proess. The �ow

sheet is then used to be extended into tehnial drawings, whih are used for

the engineering of the plant. Thereafter the same drawings will be used for

maintenane. Another version is used by the operators. Today the latter is

an eletroni version, whih is being displayed on the operators monitors.

Figure 3.2 shows a P&ID diagram of a distillation olumn. The grey-�lled

irular omponents are represent ontrollers with P for pressure, L for level

and T for temperature. The C stands in all ases for ontroller. The Figure

3.3 shows a possible representation of the same distillation, assuming six

stages for the whole olumn. The feed is on stage 3, from the top. The boiler

is ontrolled over the temperature in the lower part of the olumn. The

re�ux is ontrolled over a �ow ontroller and the two produts are ontrolled

over the levels in the distillate drum and the bottom of the olumn. The

topology has the same information as the P&ID diagram, but in addition

shows the assumptions made about the dynamis of the individual parts

and the nature of the interations. The models of the two heat exhangers

is extremely simple: a lumped system for eah of the two sides interating

through the wall by the means of heat exhange.

3.4 Tokens

The basi graph is established on the bakground knowledge of what eah

node and eah ar thus also represents what the individual parts of the

plant ontain and exhange. The model is to mimi the model universe in

the form of a network. On the high level, we refer to what is moving and

hanging in the network as tokens. So we use the piture of the network to
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Figure 3.2: A P&ID diagram of a distillation olumn

figures/C_03__NetworkCommunicatingTokens/DistillationScheme_1.eps
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Figure 3.3: A simple topology of a distillation olumn
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aumulate, transfer and modify tokens. Together with the dynamis, these

tokens must re�et the behaviour of the ontents. So for tokens we hoose

the base quantities that represent the behaviour of the physial system,

namely the onserved quantities for the physial proessing part: mass,

energy and (linear) momentum to list the main ones. For the information

proessing part we simply use a token information.

3.4.1 Colouring graphs

Tokens an be introdued in di�erent ways. One an injet them into nodes,

whih most logially will be reservoirs in the environment, after all things

have to ome from somewhere also at the very beginning. Having it injeted

in a soure node one an ask the question on if there exists a transfer system

for this token that is attahed to the urrent node. If the answer is yes and

one marks this transfer system for its ability to transfer the said token and

transfers the token, it is added to the node that is attahed through the same

transfer system. This proess is ontinued thereby �lling the onneted

network with the tokens. In graph terms, this de�nes a sub-graph for the

said token. We all this proedure �olouring algorithm�.

De�nition � Token domain: is a onneted graph within whih

the token is being transferred.

The dual approah is to start with a transfer system and de�ne its abil-

ity to transfer a token. The two onneted nodes must then also ontain

that token. De�ning the ability to transfer whih token for all systems also

yields the desired information. The �rst approah of injeting the token into

a soure node has the advantage of automatially resulting into the token

sub-graphs or token sub-networks, whilst from the user's point of view it

seems somewhat arti�ial and tedious. The seond approah does not auto-

matially yield the sub-network information, whilst seemingly being more

attrative for the user. By de�ning whih of the onnetions, represented

as ars, transfers a partiular token we also de�ne that this token must be

present in the two nodes the ar onnets. In this way we an ��ll� the

physial topology with the tokens. Whilst this onept is very simple, na-

ture adds a little spie, in that ertain tokens indue others. Thus whilst

eah onnetion only transfers one partiular token, it will also transfer the

indued token. The most ommon example is mass, that indues energy

�ow, beause mass �arries� energy by its mere existene.
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b
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Figure 3.4: A simple sedimentation plant that uses an additive to improve

sedimentation

3.5 Network representation of a model universe

We build the network representation of proess models from the very begin-

ning up to the level on where we an write the basi onservation equations.

We use a simple sedimentation plant for our �guinea pig�: Dirty water, that

is, water and some suspended material is entering a mixed tank, where a

sedimentation additive is added. The mixture is then passed on to a settler,

where the sediments settle and the lean water is taken from the top. It is

assumed that the additive is �xing itself ompletely to the sediments and

that the separation is omplete, thus onsequently the produed water is

pure. (3.4). We further assume that the additive is working best at a parti-

ular temperature. Sine the temperature of the feed hanges and the tank

looses heat to the environment, we add a heater to the tank and ontrol it

by measuring the temperature.

The �rst step in the analysis is to de�ne an abstration of the proess. In

this ase, the de�nition of the universe is rather straightforward and so is

the de�nition of what is the environment and the plant. Sine the quality

of the desription is here not of relevane, we generate a very low-granular

model by assuming only simple lumped systems. We will ome bak to

more omplex behaviours later in . The �rst graph, (Figure 3.5), shows

all onsidered plant omponents as nodes and the ommuniation paths as

ars. We have deided to have one lump for the liquid in the tank (L), three

nodes for the settler, (I) representing the part where the �uid is entering

the settler, (T) the lear top water phase and (B) the bottom sludge phase.

For the ontrol system we introdued the stirrer (M), the sensor (O), the
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Figure 3.5: The basi underlying graph

ontroller (C) and the swith (K).

Seond we haraterise the dynamis of eah node, whih leads to Figure 3.6.

Here we have assumed that all �ow systems are lumped and that all elements

assoiated with ontrolling the plant exhibit event-dynami behaviour. The

assumptions for the �uid systems is that all are lumped systems, whilst for

the ontrol-related omponents all are assumed to exhibit event-dynami

behaviour. The environment onsists exlusively of reservoirs both for re-

soures as well as produts.

3.5.1 Token - mass

Having the physial topology in plae, we start to injet the tokens. We do

that by de�ning for eah onnetion what token it transfers. Eah transfer

system an only transfer one type of token. In our example we have on-

netion for mass, the onvetive streams: F |L, A|L, L|I, I|T , I|B, T |W ,

B|S where we used the notation of soure|sink for eah onnetion. The

list of tuples, is the inidene list of the ars that transfer mass. For energy

the inidene list is H|L, L|O, L|R, E|M , M |L, E|K, K|H. This then

de�nes that mass is present in the nodes F,L,A, I, T,B,W,S and energy in

H,L,O,R,M ,K,E, F , R and information in O,K,C,U . Figure 3.7 shows the
graphs for the three token domains, namely mass, energy and information.

Having de�ned the mass transfer network, the mass balanes are readily

established by onsidering all the streams that ross the surfae of eah
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Figure 3.6: The graph with the added dynami assumptions

ontrol volume. For an arbitrary non-reative system s we an write:

ṁs :=
∑

∀m
αs,m m̂m

where the ṁs is the time derivative of the mass of system s with respet to

time, thus the aumulation of mass in the ontrol volume V s. The αs,m
represents the referene o-ordinate system for the �ow m seen from system

s. So for an arrow pointing inwards αs,m := +1 whilst for the opposite,

namely the ar pointing outwards, it will be αs,m := −1 . If we take the

whole network into onsideration, and assume no reations in the system,

we get a matrix equation:

ṁ := Fm m̂

here the m̂ is the vetor of masses in the ontrol volumes and Fm
is the

inidene matrix of the direted graph, whilst m̂ is the vetor of mass �ows

leaving and entering the ontrol volumes that make up the plant. So if

we use the same notation for identifying the �ows, the mass �ow vetor is

de�ned as:

m̂ := [m̂F |L, m̂A|L, m̂L|I , m̂I|B, m̂T |W , m̂B|S ]
T

The inidene matrix has as row identi�er the systems and for the olumn
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top to bottom
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identi�ers again the duple de�ning the soure and sink of a �ow.

F |L A|L L|I I|T I|B T |W B|S
L +1 +1 −1
I +1 −1 −1
T +1 −1
B +1 −1

Again the top heading is the inidene list for the mass transfer graph, a

subgraph of the physial topology. In more omplex plants we will have

several of suh mass transfer systems.

3.5.2 Speies

In the next stage, we want to identify what speies are present where in

the network. This provides us with the information on what speies mass

balanes we must establish. For this we re�ne the de�nition of mass by

onsidering individual speies or reation-invariant ombinations of speies.

We again use the olouring algorithm (3.4.1) and start with speifying what

speies are present in the plant and then seek reservoirs that represent

soures for the speies. One these speies are added to the respetive

reservoirs, we de�ne where these speies will be present in the network.

Unidiretional �ows: In general all transfer may go either way - the

diretionality of the ars is merely introduing a referene diretion. It is

though often desirable to limit the �ow of mass in one diretion by assuming

the pressure gradient to point always in this one diretion. Introduing suh

a onstraint redues the number of speies balanes to be written, but also

imposes a ertain physial onstraint, whih not always may be satis�ed in

reality. So whilst onvenient, it must be kept in mind as a simpli�ation,

partiularly when one deals with safety and hazard problems.

Speies water : Let us have a loser look at the speies water. It has its

natural soure in the dirty water supply. In a large network one would �nd

the way bakwards along the unidiretional �ows from an arbitrary node.

Changing the initial node all possible soures an be identi�ed. As said

in this ase the soure is quite obvious. The water is then ��owing� from

the soure to the mixer, into the settler and out into the two onneted

reservoirs. The sequene, we all olouring is shown for water in Figure 3.8

Speies additive and dirt : So we repeat the proedure for all speies

in the system. In this ase it is dirt and additive. We assume that the
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Figure 3.8: Injeting the speies water in the dirty water supply reservoir
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additive is ompletely attahing to the solid in the sludge so it does not

appear in the produt stream, so the produt is pure water.

Speies topologies : The result is a set of speies topologies whih are

oloured versions of the physial topology. This makes eah speies topology

a layer on top of the physial topology. If there is reation, then there

also exist a link between the layers in the apaities where reations are

taking plae, with the reations representing the link between the layers.

Whilst when injeting the generi mass token into the physial topology

the property of unidiretional mass transfer is not applied, observing the

speies distribution is essential for the limited diretionality of the �ow.

For eah speies we an draw up a speies topology and a orresponding set

of onservation equations. For the additive, speies A, this then is:

ṅA := Fm
A
nA

If we de�ne the �ow vetors to have the dimension of the speies present in

the plant, then the matrix Fm
A
is the same as we de�ned above, Fm

.

If we write all speies balanes and wrap them into a model for the speies

then we will write the balane:

ṅ := Fm n

where we now have the stak of vetors:

n :=
[
nT
L nT

I nT
T nT

B

]T

F |L A|L L|I I|T I|B T |W B|S
L +I

3,2
+I

3,2
−I

3,3

I +I
3,3

−I
3,1

−I
3,3

T +I
1,1

−I
1,1

B +I
3,3

−I
3,3

The omponent mass balanes are thus blok-matrix/vetor equations. Here

we have hosen to de�ne equal length speies vetors for eah �ow. So the

relation between Fn
and Fm

is:

Fn := Fm ⊗ I
3

where ⊗ represents the blok-wise-Kroneker produt, known as Khatri-

Rao produt. It is possible to use a minimal de�nition, namely to have only

those speies in the vetors that are present (Preisig (2010)).
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Figure 3.9: The three speies topologies: water, sediments and additives
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3.5.3 Token - energy

Energy is one of the fundamental tokens that we onsider in our proess

model. Introduing the token, as suggested above, yields the energy transfer

domain as shown in the middle piture of Figure 3.10. The domain was

identi�ed by assigning the token energy to be present on either side of

an ar that transfers energy in the form of heat, radiation or any form of

work, besides the streams that indue energy, namely mass. The topology

de�nes for whih part of the overall network the energy balanes are to be

established.

In Chapter 9 we shall disuss in more detail what knowledge is required

for the energy balane. Besides the di�erent forms of energy, it will also

about the di�erent forms of energy transfer, whih does not only inlude

the heat streams and the work stream, but also the mass streams. Mass

arries internal energy, besides that is moving, whih adds kineti energy

and potential energy, latter indued by the gravitational �eld. Mass has

a �nite density and thus a �nite volume. Moving mass aross a system's

boundary thus implies a �ow of volume work: mass is �injeted� or �ejeted�.

This adds volume work to the balane. All other forms of energy transfer

are to be added too, of whih the main ones are heat and mehanial work.

Also the volume of the system itself may shrink or expand as the result

of the various �ows rossing the boundary, whih implies that the system

does positive volume work if it is expanding or is subjet to volume work if

it is shrinking. Sine mass indues energy, one an have mass balanes in

isolation but not energy balanes in system that exhange mass.

Unidiretional �ows : disussing the speies topologies, we introdued

a onept of �unidiretional� �ows for the reasons of reduing the number

of equations though with the osts of onstraining the appliability of the

model to onditions where indeed the �ows are going in the pre-de�ned

diretion. If we apply this onept also to the energy balane, we �nd that

whilst we have to onsider the mass �ow in�ows, we an ignore the out�ows

in terms of dissipating the token energy. Consequene being that we an

remove the energy balane for the inlet of the settler in our ase. To make

things more visible we also marked the two mass streams relevant for the

energy balane of the liquid in the tank (L) with a yellow shadow.

So energy must aount for several �ows, namely mass, heat and radiation

and any type of work that is exerted on the system. To make these fats

visible, we detail the energy �ows by speifying their spei� nature, i.e.

heat, work and even more detail if desirable. Examples for the latter an

be the type of work like frition, volume work. So this results in a detailed
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Figure 3.10: Energy topology: where to write the energy balane

topology for re�eting the energy household for the plant Figure 3.10. The

detailed olouring of the graph is instrumental for the formulation of the

energy balanes. Denoting total energy with E for an arbitrary system s,
we get the balane

dEs
d t

:= Fm
s Ê+ Fq

s q̂+ Fw
s ŵ

The mass �ow matrix Fm
s is the appropriate submatrix of the above de�ned

mass �ow matrix Fm
, thus:

F |L A|L L|I I|T I|B T |W B|S
L +1 +1 −1
M

K

H

O

The heat �ow network matrix Fq
is for our ase:

H|L L|O L|R
L +1 −1 −1
M

K

H −1
O +1
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and the work �ow matrix is:

E|M M |L E|K K|H
L +1
M +1 −1
K +1 −1
H +1
O
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4

Capaities � Balanes are the ore

Synopsis The behaviour of the individual ommuniating apaities form

the ore of the model. In general the apaities are of distributed nature

where the volume-normed onserved quantity is, besides time, also a funtion

of the position, the spatial oordinates. In ontrast, lumped systems are only

a funtion of time.

4.1 A global system's view

The exhange of extensive quantity between the plant and its embedding en-

vironment indues hanges both in the plant and in the environment. Sine

the environment is onstant, the hange is measured in terms of extensive

quantities of the plant by aounting for all onserved extensive quantities

in eah subsystem of the plant. The basi aounting rule is simple:

aumulation:: hange of extensive quantity per unit time

=

�ow of extensive quantity (in - out) per unit time

So for eah subsystem the rule states that: what is oming in on extensive

quantity must either go out or it is aumulated inside.

This basi system behaviour an be niely derived by analysing a system

before and after an applied hange. In 4.1 the green balane surfae inludes

the system and a small volume. On the left the small volume is being added,

whilst on the right a small volume, not neessarily the same, is extrated.

We analyse the system by assuming that the balane equations hold for the

quantity being assoiated with the di�erent volumes. Being interested in

the ontinuous behaviour we attempt to �nd the behaviour of the overall

system as the time hanges. Let Φ be a generi onserved quantity. The

53
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before after

S(t) S(t+∆t)

V (t) V (t+∆t)

Figure 4.1: Deriving a system's behaviour

hange of the system with time we an represent as:

dΦS

d t
:= lim

∆t→0

ΦS(t+∆t)− ΦS(t)

∆t

:= lim
∆t→0

(ΦV (t+∆t) + ΦV out
)− (ΦV (t) + ΦV in

)

∆t

:= lim
∆t→0

(ΦV (t+∆t)− ΦV (t)) + (ΦV out
− ΦV in

)

∆t

:= lim
∆t→0

(
ΦV (t+∆t)− ΦV (t)

∆t
+

ΦV out

∆t
−

ΦV in

∆t

)

:=
dΦV
d t

+ Φ̂out − Φ̂in

:= 0

Whih gives us the di�erential balane law:

dΦV
d t

= Φ̂in − Φ̂out (4.1)

The transfer of extensive quantity may our in di�erent form due to the

di�erent morphologiy the extensive quantity an assume. For example for

energy transfer ours in the form of mass transfer in the form of internal

energy, or we may transfer energy in the form of radiation, ondutive heat

di�usion, mehanial work �ow or the like.

Balaning gets slightly more involved when the balaned extensive quantity

an transpose into another extensive quantity. Common transpositions are

due to interation of hemial or biologial speies hanging into something

else, whih usually is referred to as hemial or biologial reation (see 8.2).

Moreover mehanial work an transpose into heat and or eletrial energy
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into heat, et. Also a speies may hange phase taking up or releasing some

energy in one or the other form. These transpositions link di�erent on-

servation laws but do never a�et the observation that the basi onserved

quantities do satisfy the onservation priniple, thus mass, energy, linear

and rotational momentum is always onserved.

4.2 Zooming into the distributed desription

In the above analysis we kind of assumed that the di�erent parts of the plant

are lumped and thus they are haraterised by uniform intensive quantities.

In nature that is usually not the ase and things are distributed in all spatial

dimensions, whih though does not inhibit us to formulate the onservation

priniple over a ontrol volume: It simply states, in mathematial form, the

fat that the net �ow aross the boundary is ompensated by the aumu-

lation of the balaned extensive quantity inside the system. So de�ning a

vetorial extensive quantity Φ and a net �ow aross the boundary with Φ̂

we an write:

Φ̇ = Φ̂ (4.2)

The extensive quantity hanging with time and spatial o-ordinate r :=
[
rx ry rz

]T
. is a point property, whih in ontrast to the extensive quan-

tity we signify as ϕ. the aumulation term is the integral of the point

property over the volume:

Φ(t) :=

∫ V (t)

0
ϕ(V ; t) dV =

∫∫∫

r
ϕ(r; t) dr

whih gives us an expression for the extensive quantity and not yet its time

derivative. The result an be obtained by applying the generalised Leibniz

rule (see B.1), whih essentially is �uid mehanis' Reynolds theorem:

Φ̇ :=
d

dt

∫ V (r;t)

0
ϕ(V ; t) dV :=

(

ϕ(r; t) V̇ (r; t)
)

S
− 0 +

∫

V

∂ϕ(V ; t)

∂ t
dV

The �rst non-zero term on the left is the hange of size of the system, whih

is the integral over the boundary S of the density and the volume hange.

The volume hange on its own would be:

V̇ (r; t)S :=

∫

S
vT n dS

and the assoiated hange of the aumulation term:

(

ϕ(r; t) V̇ (r; t)
)

S
:= −

∫

S
ϕ(S; t)vT n dS
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tangent plane

surfae

ϕ̂
n

ϕ̂

ϕ̂
t

Figure 4.2: The �ow vetor aross the red surfae ϕ̂ is projeted onto the

outwards-pointing normal diretion ϕ̂
n
whih is the part making a ontri-

bution to the �ow aross the boundary, as the remaining part is projeted

onto the tangential plane ϕ̂
t
, whih makes no ontribution to the �ow aross

the boundary

Dropping the variable lists for readability, substitution yields:

d

dt

∫ V (t)

0
ϕ(V ; t) dV := −

∫

S
ϕvT n dS +

∫

V

∂ϕ

∂ t
dV

Now let us fous on the right-hand side of the balane, namely n̂: The �ow

aross the boundary is the integral of the loal �ow over the surfae of the

volume. Sine the surfae is of arbitrary geometry and not just a ube this

integration requires a little bit more e�ort. Let us have a look at a piee of

the surfae.

The projetion of the �ow onto the normal diretion is the dot produt

of the vetor with the normal vetor n or, whih is idential: the salar

produt:

ϕ̂
n
:= ϕ̂ · n := ϕ̂T n

So if the surfae is not moving, the net �ow of the extensive quantity aross

the surfae S is the integral:

Φ̂ := −
∫

S
ϕ̂T n dS

whereby speial attention is to be paid to the diretion: the normal vetor

points outwards, whih is the opposite of the system's egoentri view re-

quiring a hange of sign of the resulting �ow. If the boundary is moving

with a veloity v, then a seond term must be added whih aounts for the
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inrease in volume, again it is the normal diretion that makes the ontri-

bution and the sign must be negative to adhere to the system-egoisti point

of view:

Φ̂ := −
∫

S
ϕ̂T n dS −

∫

S
ϕvT n dS

So the balane would then read:

−
∫

S
ϕvT n dS +

∫

V

∂ ϕ

∂ t
dV = −

∫

S
ϕ̂T n dS −

∫

S
ϕvT n dS

whih simpli�es to:

∫

V

∂ϕ

∂ t
dV = −

∫

S
ϕ̂T n dS

Applying Gauss' divergene theorem transmogri�es the surfae integral into

a volume integral:

∫

V

∂ ϕ

∂ t
dV = −

∫

V

∂

∂ r
ϕ̂ dV (4.3)

whih implies that:

∂ϕ

∂ t
= − ∂

∂ r
ϕ̂ (4.4)

Substitution of the linear-in-ondutivity, isotropi linear-in-gradient-driven

transport law gives:

∂ϕ

∂ t
=

∂

∂ r
C

∂ π

∂ r

= C
∂

∂ r

∂ π

∂ r
(4.5)

whih is a seond-order partial di�erential equation desribing the transport

of extensive quantity as a funtion of the seond-order derivative of the e�ort

variable, whih for mass is the hemial potential. This model is thus the

seond law of Fik but with the e�ort variable being the hemial potential

instead of the traditionally used onentration.

4.3 An alternative quiky one

The same result an also be found by ontinuing the reasoning on 4.1: we

take another limit, but now to a zero volume:

lim
r→0

dΦV
d t

= lim
r→0

(

Φ̂in − Φ̂out

)

∂ ΦV
∂ t

= − ∂

∂ r
Φ̂
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Figure 4.3: A 1D and a 3D unit zell example

This is kind of quik and dirty beause no onsideration has been given to

the fat that the proess ould hange shape.

4.4 Yet another approah

The derivation of the same equation using a shell balane an be nearly seen

as the hemial engineering standard. The idea is to balane over a small

but �nite dimensional unit ell of the system being desribed. The �unit

ell� is thereby taken as being representative for the whole of the proess

in terms of geometri distribution (4.3). Taking the most simple ase as a

demonstration, the onservation of an extensive quantity is drawn up over

the volume enlosed between rx and rx+∆rx assuming the dimensions in ry
and rz are given as a and b respetively. Then volume piee being balaned

is ∆V = ∆rx a b and the surfaes are a b through whih the �ow is passing.

De�ning the onserved extensive quantity Φ and the �ux ϕ̂ then the balane

reads:

dΦ

d t
= a b

(
ϕ̂rx − ϕ̂rx+∆rx

)

The �ux at the seond position an be approximated by a �rst variation

whih is the Taylor series trunated after the linear term:

ϕ̂rx+∆rx ≈ ϕ̂rx +

(
∂ ϕ̂rx
∂ rx

)

rx
∆rx

Substitution gives:

dΦ

d t
= a b

(

ϕ̂rx −
(

ϕ̂rx +

(
∂ ϕ̂rx
∂ rx

)

rx
∆rx

))
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simplifying to:

dΦ

d t
= −∆V

(
∂ ϕ̂rx
∂ rx

)

rx

with ∆V being the volume of the unit ell. Taking the limit of ∆V → 0
again gives for the di�erential volume the partial di�erential equation in

the density:

lim
∆V →0

dΦ/∆V

d t
:=

∂ ϕ

∂ t
= −∂ ϕ̂

∂ r

whereby ϕ is a density of the Φ.

4.5 �Lumpy� Boundaries

When frationing the overall volume into smaller volumes, one generates

surfae elements that separate adjaent systems. In most ases, one is not

interested in the �ux, but rather in the total �ow aross suh a surfae el-

ement, whih is one reason for whih one �lumps� the boundary. Seondly,

one may have more than one type of interation between two adjaent sys-

tems, for example there may be a heat �ow through a non-porous physial

wall and �ow through an opening in the same physial wall, whih allows

the two systems to interat via heat transfer through the wall and mass

transfer through the hole. The lumping thus primarily splits the boundary

into loal boundary elements that may be lassi�ed with regard to the type

of extensive quantity being transferred, a onept that is diretly oupled

to the typed thermodynami walls (open, losed, adiabati, et.).

S1

S5

S4

S3

S2

system

Figure 4.4: System with �lumpy boundary�

The umulative �ow through a piee of boundary is simply the integral over

the respetive boundary element Si :

Φ̂Si
:=

∫

Si

φ̂
T
n dS ,
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This integral measures the �ow in the diretion relative to the normal vetor

of the boundary, where by onvention the normal vetor points away from

the boundary. In the abstration proess, the systems are pitorially pulled

apart and represented as irles, or other graphial objets depending on

the type of system (Figure 2.8).

The �ow through the ommon piee of boundary between two systems is

mapped into a onnetion, whih introdues a unique oordinate system

against whih the atual �ow between the onneted systems is measured

5.2. This information is aptured in a notation < a > |Si| < b >. < a > is

the plae holder for the system where the origin of the referene o-ordinate

system is loated, whilst the plae holder < b > is denoting system at the

other end, the sink is loated. The name of the ommon boundary piee

Si is plaed between two vertial bars on either side guarded by the two

systems. The referene o-ordinate, being introdued for eah onnetion, is

denoted by α ∈ {−1, 0,+1} where the �+1� indiates a head of a onnetion
arrow, a �−1� a respetive tail and a �0� no onnetion. Obviously, a �ow

must always be de�ned between two systems, that is, �ow may not just

disappear or appear into or from the void. The sum of the ontrol volumes

is thus always losed representing the proess-relevant.

The integral balane equation for a system with stationary boundaries, that

is vS := 0 reads more ompatly when lumping the �ows for the boundary

elements:

Φ̇s :=
∑

∀c
αs,c Φ̂c

We an ast this into a vetor equation by using the network representation

( 9.1):

Φ̇s := Fs Φ̂s , (4.6)

with

Fs :=
[[
αs,c I

]

∀c

]

∀s
,

a blok diagonal matrix with identity bloks weighted with the respetive

referene oordinate and

Φ̂s :=
[

Φ̂s,c

]

∀c
,

a stak of all �ow vetors. The row and the olumn sums of the onnetion

matrix are zero.

4.6 Lumped systems

Lumped systems are assuming fast internal transfer, whih we will derive

in details in 14. For now we assume without showing the details that this
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results in the intensive properties to be uniform in the spae the systems

oupies. The representation for non-reative system is thus again:

Φ̇s := Fs Φ̂s . (4.7)



62 CHAPTER 4. SYSTEM MORPHOLOGY



5

What makes it move

Synopsis What drives the exhange, why are things �dynami�. We intro-

due the main driving fores in spae, being the di�erenes of temperature,

pressure and hemial potentials. A sense of diretionality is given to eah

onnetion.

If we ouple two systems together by establishing a onnetion that enables

the transfer of extensive quantity, say for example mass or heat, the two

systems will likely not be in equilibrium and will experiene an exhange of

extensive quantity until an equilibrium is ahieved. For example opening

a valve bloking a tube onnetion between two tanks ontaining a liquid,

will result in the exhange of this �uid until the two levels are the same and

thus a balane is ahieved between the two pressures on both sides of the

pipe.

5.1 E�ort & driving fore

Nature tends to level and minimise energy and to maximise entropy. The

abstrat graph representing the overall struture of the proess models intro-

dues apaities and transfer as the two main omponents for the physial

part of the plant. The graph serves as the basis for assembling the mathe-

matial model of the proess providing mathematial models for the various

apaities and the transfers. Whilst the fundamental funtions are used to

desribe the state of apaities, spei�ally the internal energy and entropy,

the onnetions are desribed by the transfer equations for the fundamen-

tal onserved quantities. Choosing the energy representation, the internal

energy is a funtion of its anonial variables namely entropy, volume and

speies mass. The hange of internal energy is thus

dU =

(
∂ U

∂ S

)

V ,n
dS +

(
∂ U

∂ V

)

S,n
dV +

(
∂ U

∂ nT

)

S,V
dn

63
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The hange in the extensive quantities is driven by the intensive quantities:

(
∂ U

∂ S

)

V ,n
=: T

(
∂ U

∂ V

)

S,n
=: −p

(
∂ U

∂ nT

)

S,V
:= µ

whih is a proposition going far bak in the history of siene. Gibbs

introdued vetor analysis based on the theories of the two mathemati-

ians William Rowan Hamilton and Hermann Grassmann. He de�ned

the thermodynami equilibrium by maximising a Hamiltonian. Today,

the Hamiltonian based approahes lead the way towards a more advaned

desription of open thermodynami systems (Grmela and Öttinger (1997);

Öttinger and Grmela (1997); Jongshaap and Öttinger (2004); Mrugala (2000);

Favahe (2009); Favahe et al. (2010); Rajeev (2008)). The approah as-

sumes a ontinuous behaviour in a ontinuous spatial domain. Thus lassi-

al �eld theory onepts apply making the transport of entropy S, Volume
V and speies mass n a funtion of the gradient of the above onjugate

variables, namely temperature T , pressure p and hemial potential µ. The
intensive variables temperature, pressure and hemial potential thus take

a very speial role in the model framework in that the gradient, or in a

disrete environment the di�erene is the driving fore for the transport

of extensive quantity. Bond graph theory introdues the term e�ort vari-

ables for them Breedveld (1984) and �ow for the respetive onjugates. It

is thus the di�erene in the e�ort variables, or in the ontinuous domain,

the gradient that drives the exhange of the onjugate extensive quantity.

5.2 Transport laws

5.2.1 A oneptual derivation

Transfer laws are most ommonly introdued as onstitutive equations based

on empirial onsiderations. Kineti theory, though provides a more ana-

lytial entrane to the fat that it is the gradient of the e�ort variables that

drives the �ow of extensive quantities Chen (2005). The simple analysis

applies to anything that an be viewed as a type of gas, partiles that move

freely in a spae. The oneptional thought of the derivation is that the par-

tiles arry energy and only exhange energy when they interat with eah

other or another objet like the wall of the ontainment. It also assumes
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that the main part of the energy is translational energy and that rotation,

osillations et are not signi�ant as this is the ase for mono-atomi gases.

In suh a �gas�, the partiles move more or less randomly and the average

veloity over all partiles is zero. On the miro sale, the arriers move

the free path length before they interat. So for the analysis, we look at a

imaginary surfae and aount for the arriers that pass through the surfae

within the time-span it takes to over the free path length (Figure 5.1). We
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x− vx τ x+ vx τ

x

Figure 5.1: A pipe �lled with gas, old on one side and hot on the other.

Gas moleules pass through the surfae arrying energy.

shall have a look at the derivation of the transfer law based on the above-

desribed piture. To make things more onrete, we shall use a �gas� a

mono-atomi gas, whih largely satis�es all the set onditions.

Let e be the spei� energy of a single partile, and n the number of partile

rossing in one diretion then the heat is the net balane of the energy going

bak and fourth:

q̂ := 1/2 (ne vx)x−vx τ − 1/2 (n e vx)x+vx τ

for whih we used the equal partition priniple, so an equal number of

arriers passes through the surfae in positive, 1/2 of them, and negative

x-diretion, another half.

Expanding the seond term into a Taylor expansion around the imaginary

interfae, and trunating after the linear term yields:

(n e vx)x+vx τ ≈ x (ne vx)x +

(
∂ n e vx
∂ x

)

x
vx τ

(n e vx)x−vx τ ≈ x (ne vx)x +

(
∂ n e vx
∂ x

)

x
(−vx τ)
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whih then gives for the heat �ow:

q̂ := −
(
∂ n e vx
∂ x

)

x
vx τ

Sine ne =: u the net spei� internal energy of all partiles rossing the

surfae, we an write:

q̂ := −
(
∂ u vx
∂ x

)

x
vx τ

:= −τ v2x

(
∂ u

∂ x

)

x

:= −τ v2x

(
∂ u

∂ T

)

x

dT

dx

The derivation neglets the dependeny of the veloity on the temperature,

whih simpli�es the derivation signi�antly by negleting the oupling of

heat and mass transfer. The derivative

∂u
∂T is the spei� heat apaity per

volume cp of the arriers passing net through the surfae. The mean path

length v τ and the x-veloity omponent of the arriers an be obtained from
Maxwell's gas theory. Latter an be readily related to the mean veloity

of the arriers in that again the equal partition priniple applies splitting

the kineti energy in equal parts in the three diretions. Thus vx = v/3
and from the gas theory one gets for a mono-atomi gas the average kineti

energy the relation:

〈e〉 := mv2

2
:=

3

2
kB T

whih for room temperature of 300 K gives a mean veloity of about 1000

m/s for Helium and around 500 m/s for a pseudo mono-atomi gas �Air�.

The mean free path length for is

λ :=
kB T

π d2 p

whih for 300 K and atmospheri pressures gives around 0.14µm. Yielding

for the average time between ollision in the order of 10−10 s.

So for the heat transfer we an then write:

q̂ := −τ cp v

3

dT

dx
:= −kq

dT

dx

with k the heat ondutivity. This gives us the insight that it is the gradient
in the temperature that drives the transfer.
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The property �heat ondutivity� is a marosopi property and does not

apply to the nano sale.

We have stated that this piture an be used for di�erent types of �gases�.

So the same piture applies to metals in whih it is the eletrons that are

the major arriers. The eletrons form an �eletron gas�. For non-metalli

materials, one talks about the transport of Phonons. Phonons are multiples

of the produt of harateristi frequeny and the Plank onstant not to

be mixed up with Photons. Though they are pitorially similar.

5.2.2 Generi gradient laws

The mathematial models for the transport of extensive quantity is thus

a funtion of the gradient of the e�ort variables. For any transport of

extensive quantity ϕ̂ driven by the e�ort variable π mapped into a o-

ordinate system r the transfer laws take usually the form:

ϕ̂ = f

(
∂ π

∂ r
,C(r)

)

(5.1)

whereby the expression

∂π
∂ r is the gradient of the e�ort and C is the on-

dutivity tensor. If the ondutivity is a funtion of the spatial o-ordinate,

then the transport proess is alled an-isotropi. Otherwise, the transfer

system is alled isotropi.

The �transfer laws� (5.1) an take di�erent forms. Sine it is the gradient

of the e�ort variables that drive the transport, at equilibrium no gradient

exists, thus the e�ort variables level out over the two system and beome

the same. For the transfer desription this implies that its value must be

zero as the two e�ort variables beome the same. Thus for any transport of

extensive quantity ϕ̂ driven by the e�ort variable π it must be true that:

ϕ̂ = f

(
∂ π

∂ r
= 0,C(r)

)

= 0

Typially the laws are linear in the gradient with the onstant ondutivity

being the most ommon ase.

5.2.2.1 Isotropi behaviour

For a salar extensive quantity in an isotropi medium the typial transfer

law is:

ϕ̂ := −c
∂ π

∂ r
, (5.2)



68 CHAPTER 5. DRIVING FORCES

and in the ase of a vetor of e�ort variables π:

ϕ̂ := −C
∂ π

∂ r
, (5.3)

with C being a diagonal matrix with the diagonal being the onstant on-

dutivities assoiated with eah individual e�ort variable.

5.2.2.2 An-isotropi behaviour

For a salar e�ort variable and an anisotropi medium with onstant on-

dutivity:

ϕ̂ := −cT (r)
∂ π

∂ r
. (5.4)

with c a onstant ondutivity for eah o-ordinate. Obviously the most

omplex ase would be desription where the ondutivity not is di�erent

in eah diretion, but is also varying with the position. Suh problems are

surprisingly ommon in mass di�usion.

5.3 Common simple transfer laws

The transport system is driven by the hanges of the e�ort variables at its

boundaries. These transfer systems are usually distributed systems, suh

as walls, �lters, membranes, pipes et. Making assumptions about their

dynami behaviour, namely that they are fast ompared to the hanges on

their boundary, yields simple transfer laws. This analysis we will do later

10.1.

a b

extensive flow

Figure 5.2: Two lumped apaities linked with a transfer of extensive quan-

tity

For the moment, we shall just provide some simple, but very ommonly

used results from making these behaviour assumptions, thereby following

the historial development of the past. The transfer model make the �ow

of the extensive quantity a funtion of the di�erene of the intensive state

of the two oupled systems and some ondutivity parameter. The most
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simple versions are linear or simple non-linear funtions of the di�erene in

the e�ort variables, thus the driving fore:

ondutive heat transfer q̂a|b := −kqa|b (T b − T a)

di�usional mass transfer n̂ := −kna|b (µb − µa)

volume �ow V̂ := −kV a|b sign (pb − pa)
√

|pb − pa|

The volume transfer is the most ompliated of the three. Why this is the

ase shall see later (10.3). Note that the transfer laws are diretional, that

is, the sign indiates the �ow relative to the arrow in the graphial repre-

sentation and indiated in the indies, whih read �from a to b�. All three

are written in a �negative gradient� form. The volume �ow is introduing

the sign through the sign funtion, beause the square root funtion is the

positive root in all ases.

Keeping the �ow de�nition diretional is essential for the formulation of the

balanes, whih is the reason that 5.2 shows the transfer with an arrow.

The arrows really introdue a referene o-ordinate system for eah �ow. If

the e�etive �ow goes in the diretion of the arrow, the �ow is positive and

otherwise it is negative.

Systems are seen from an egoentri point of view, thus extensive quan-

tity leaving a system are aounted for negatively and extensive quantity

entering add to the ontents of the extensive quantity aumulated in the

system. Also, what is going out of one system is exatly oming in in the

onnet system. Systems exhanging extensive quantity are thus immediate

onneted neighbours.

5.4 Linear transfer laws in networks

Earlier we introdued the representation of the model in the form of a

network, whih results in a onise desription as a direted graph (see 3.2

). The simple transfer laws for di�usion of heat and mass are linear in the

e�ort variables, whih stimulates the thought of a similar onise desription

of a network with suh transfers.

These transfers of extensive quantity are driven by the negative di�erene in

the e�ort variables π that is the driving fore. So for two oupled systems

a and b the driving fore is the negative of the di�erene between the value

of the e�ort variable in b and minus the value of the e�ort variable in a. So
the �ow takes the form Φ̂a|b := −ka|b (πb − πa). This �ow does appear in

both balanes, namely in the balane of the system a and in the balane of
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the system b. So in 3.2 we wrote for the sample system:

Φ̇a = −Φ̂a|b

Φ̇b = +Φ̂a|b + Φ̂c|b − Φ̂b|d

Φ̇c = −Φ̂c|b

Φ̇d = +Φ̂b|d

whih when substituted beomes:

Φ̇a = +ka|b (πb − πa)

Φ̇b = −ka|b (πb − πa)− kc|b (πb − πc) + kb|d (πd − πb)

Φ̇c = +kc|b (πb − πc)

Φ̇d = −kb|d (πd − πb)

In the onise form the balanes are:

Φ̇ = FΦ̂

and we remind: with F being the inidene matrix of the direted graph

3.1:

F :=







−1 0 0
+1 +1 −1
0 −1 0
0 0 +1







If we now take a loser look at the list of transfers, we reognise that we an

write them equally onise beause the transpose of the F-matrix multiplied

with the e�ort variables assoiated with the systems, provide us with the

vetor of disrete gradients: the di�erenes in the e�ort variables and thus

the driving fores:

Φ̂ := −Kq FT π , (5.5)

where the Kq
is a diagonal matrix with the heat ondutivity parameters

times interfae areas in the diagonal.



6

State, input and output

Synopsis �The state is the minimal information required to predit the fu-

ture, given the urrent input.� A statement made by R E Kalman. The

state is the ore of the desription whilst the input desribes what drives the

system, whih always involves the environment. The output is the observa-

tion, namely what we �see�, whih in all ases is information about the state

in one or the other form.

6.1 The state

6.1.1 The Conept State

The state is a entral objet in the disussion of dynami systems. In the

ontext of mathematial system theory, the term state is the essene of state

spae theory. Though the term state is for most intuitively interpretable,

it is quite di�ult to provide a preise de�nition and di�erent people and

di�erent disiplines found quite di�erent wordings :

System theory evolved from ontrol-related subjets in the 50ties driven by

the quest to get a generi view of systems. The systems view, as it was

established by people like Norbert Wiener, was further developed with the

state forming the ore.

� Kalman (1963), one of the leading people in mathematial system

theory, wrote in 1963: "The state is to be regarded always as an ab-

strat quantity. Intuitively speaking, the state is the minimal amount

of information about the past history of the system whih su�es to

predit the e�et of the past upon the future."

� Kailath (1980): The state provides a "su�ient statisti" so to say,

that enables us to alulate the future response to a new input with-

out worrying about previous inputs. Note also that more than one

past input an lead to the same state. Therefore, the state is really

a minimal su�ient statisti. It ontains just enough information, no

71
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less and no more, to enable us to alulate the future responses with-

out further referene to the old history of inputs and responses as in

more olloquial usage, the knowledge of the state vetor at any time

spei�es the state or ondition of the system at that time.

� Kailath also disusses a mathematial derivation whih is due to Nerode

(1958) speifying the meaning of the term state more preisely.

As a hemial engineer talking about states, it is interesting to ompare our

ommon understanding of the term state, as it is used in thermodynamis,

with the usage in mathematial system theory :

� Denbigh (1971) uses it as a primitive without really explaining its

meaning.

� Falk and Jung (1959) state, whih translated reads : "In an axiomati

desription the state plays the r�le of a not preisely de�ned basi

objet of the theory. The only ondition is that the states are distin-

guishable objets."

The latter de�nition is extremely abstrat and re�ets a little bit of the

di�ulty that people have to de�ne terms preisely apturing all aspets of

their ommon usage. But, what are the onlusions? There are in priniple

three aspets of the term state that one should keep in mind :

1. states are distinguishable objets - no two states are the same

2. states are independent of the history - exat di�erentials

3. states ontain all the information about the ondition (state) of the

system at a given time.

Given dynami equations, it is most easy to identify the states, as they

are the ones that are di�erentiated with time, beause it is the state that

hanges with respet to time in a dynami system. It arries the information

required to ompute the future state given the inputs at the urrent time.

The main part of these statements is that the state ontains all information

about the system. Suh systems are also alled �Markov systems�. If this is

not the ase and history of the proess is required, then one refers to a it

as a �non-Markov system�.
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6.1.2 Basi state - fundamental state

The taken approah to modelling physial-hemial-biologial systems al-

ways requires us to formulate omponent mass balanes, energy balanes

and momentum balanes, whih provide the information about the dynami

behaviour of the proess. This immediately de�nes the state of the system,

namely the omponent mass, the energy and the momentum. For maro-

sopi systems for whih rotation is usually negligible only the linear mo-

mentum onservation is required, the dimension is (number of speies + 1

energy + 3 momentum). Very often we also have a very fast momentum

transfer as pressure travels with the speed of sound and hemial-biologial

proesses are usually slower, giving rise to make pseudo steady-state as-

sumptions for the momentum balanes. Consequene being, that the most

ommon systems are of the dimension (number of speies + 1 energy) with

the pressure being omputed from the stationary momentum balanes or

the mehanial energy balanes. 10.3

The mathematial objet �state� is though not unique. In fat one an

de�ne an in�nite number of states by de�ning transformations, so-alled

similarity transformations (see C.1.1), without hanging the input - output

behaviour. The Figure 6.1 shows the transmution from one state spae

represention into another one.

The dimensionality of the spae does not hange, only its nature hanges.

Also it ontains exatly the same information. It is only the �form� in

whih the information is given that hanges. Figure 6.1 shows on top (A)

the original nonlinear system in blok diagram. In the middle, a linear

transformation of the state has been done, by multiplying the original state

x with the invertible matrix T. The two other funtions have not hanged.

On the bottom (C) the linear transformation has been inluded into the

two funtions.

6.2 Input

Having taken the physial-mehanisti approah, the input to a system is the

exhange of the extensive quantity of the system with its diret environment,

if we ignore some speial ases like magneti �elds. In the �rst plae the

inputs are thus the extensive quantities rossing the system's surfae. On

the next level, it is the e�ort variables, or better the di�erene in the e�ort

variables on both side of the ommon interfae of the oupled systems that

onstitute the input. Sine these e�ort variables are again a funtion of the

state, the irle loses, whih we will disuss later in more detail later in

15.2.
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A

∫

f(x,u)

g(x,u)b

ẋ

x

u

y

bb x(0)

b

B

∫

f(x,u)

g(x,u)b

ẋ

x

u

y

bb z(0)

b

T T−1

ż z

C

∫

f̄(z,u)

ḡ(z,u)b

ż

z

u

y

b

bb z(0)

Figure 6.1: State is not unique, all three have the same input/output be-

haviour

figures/C_06__StateInputOutput/SimilarityTransLinear.eps
figures/C_06__StateInputOutput/SimilarityTransLinearXZ.eps
figures/C_06__StateInputOutput/SimilarityTransLinearZ.eps
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Whilst what has been said is quite logial, inputs are often de�ned in quite a

di�erent way, apparently also motivated by other onsiderations. It is often

some pratialities that motivate the de�nition of �input�. For the newomer

this an be quite puzzling. An example is quite easily onstruted: Take

a stirred tank reator where we fous on the e�et of the stirrer and its

ontrol. The stirrer is onneted to a motor providing the energy to drive

the blades through the �uid. The motor passes the energy on to the spindle,

whih in turn looses some to the bearings and the main e�et, namely the

energy transfer to the blades being pushed through the �uid and transferring

momentum and energy to the �uid. The �uid may be reative ausing the

visosity to inrease, whih leads to an inreased resistane for the blades,

requiring more energy from the shaft and the motor. Depending on the

system boundaries, one ould hoose the energy input to the motor, the

stress measurement on the shaft providing an indiret measure for the torque

ating on the shaft or the speed of rotation, or the energy being passed by

the blades. Whih one is hosen is dependent on the available measurement

and very muh the proess boundary one onsiders, but also on the models

one has of the di�erent sub-proesses.

The term �input� is most ommonly used in the operation domain. From a

physial and ontrol point of view it is best seen as the quantity that drives

the system. So if we do inlude ontrol into our onsiderations, then a typ-

ial input to the ontrolled system is a set-point to a ontroller. The on-

troller, in turn generates a signal that manipulates the proess behaviour.

In physial terms this is always assoiated with a�eting the �ow of the ex-

tensive quantities between systems. The manipulating element has thereby

the nature of a �valve�, whih in a volumetri onvetive �ow usually is a

valve and the ontroller hanges the position between the one and the seat

of the valve thereby hanging the ross setion available for the �ow and thus

also the resistane. The �ow of heat annot be ontrolled diretly, but in

this ase the temperature of the environment must be hanged, whih again

annot be done diretly. The temperature is a state-dependent quantity of

a system and an thus only be a�eted indiretly by hanging the energy

�ow aross the boundary of the orresponding system. This an be mass

�ow of di�erent temperature or energy in the form of heat from a heater,

to mention two examples. In this latter ase, the input is the temperature,

thus the state of the oupled system. So in physial systems we have two

types of basi inputs, one being the hange of the transfer property, the

�valve�, the other being the driving fore by indiretly hanging the state of

the environment, whih in turn again an only be done by hanging a �ow

aross the boundary of the environment system.
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6.3 Output

The output is what an be observed in the proess. Using the term �ob-

served� instead of �measured� is done in onsideration of the fat that one

has rarely diret aess to the onserved quantities and also for the intensive

quantities. Also almost all measurement methods do not measure the de-

sirable quantity diretly, but measure it indiretly by measuring a property

that is dependent on the quantity being observed. For example a temper-

ature measurement is not measuring the temperature, but some seondary

e�et like a resistane, whih in turn an also not be measured diretly but

for onstant potential it is the urrent that is measured.

Quantities of interest are the states in terms of the onserved quantities,

but also derived states, mainly the densities, namely the extensive states

normed by the volume, but also the e�ort variables (5.1). Usually we will

refer to the derived states as �seondary� states. Quite frequently we are

also interested in �ows. Sine it is onnetions that often represent �ows, it

is the state of the �ow that we attempt to assess. Flows that are represented

as onnetions are implementing the assumption of a very fast underlying

transfer system, thus eliminating its apaity e�et as disussed in detail in

10.

6.4 View on the system

A plant ommuniates with its environment in two priniple ways: one in

whih the �ow of extensive quantity an be manipulated and one in whih

it is given in the sense one has no means of ontrolling the �ow ( 6.2 ). The

element that is manipulated by the ontroller is shown with a valve symbol.

In general two sets of observations / measurements will be available, one

from the plant, indiating the state of the plant and whih is usually also

the objet of ontrol, whilst the other provides state information of the

environment, usually the part that is lose to the onnetion a�eting the

plant.

The �ows that are not manipulated are often disturbanes or simple loads,

namely �ows that ome from upstream with the downstream having no

ontrol. The �ows that one an manipulate serve often the purpose to

apply orretive ations so as to keep the proess on the de�ned trajetory.

The piture is generi and an be applied to any proess.
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controller

environment
plant

signal

source

state information state information

set-point

manipulatable flow

given flow

Figure 6.2: Plant under ontrol
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7

The two extremes: stationary and

event-dynamis

Synopsis If it is stable, the system will, after reeiving a disturbane, on-

verge to it's natural steady state.

The onservation priniples are linear di�erential equations, and for lumped

system this redues to linear ordinary di�erential equations. Sine natural

systems are onservative, they are also stable and will reah a natural steady

state after having been pushed away from their stationary position. The

onversion is exponential (see C.1.5). In many proesses, the steady state is

of speial interest mainly beause it provides information about the energy

and mass household when running the proess at the desired stationary

operating point.

7.1 The analysis

With the onservation priniples for a non-reative system s being:

Φ̇s = F
s
Φ̂

For a network of systems this is staked up and we obtain a blok-matrix

equation. Let the systems in the network be labelled with 1, 2, 3, . . . and

the streams for simpliity with a, b, c, . . . :






Φ̇1

Φ̇2
.

.

.




 =







F
1,a

F
1,b

F
1,c

. . .

F
2,a

F
2,b

F
2,c

. . .
.

.

.

.

.

.

.

.

. . . .












Φ̂a

Φ̂b
.

.

.






The bloks are not neessarily square, whih is apparent if one keeps in mind

that in a topology with di�erent speies, not all speies are everywhere in

the network. Let us have a look at an example in the form of a mixing plant
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b b
m r

a

b

c

p
A

B

C

A,B A,B,CA

B

C

A,B,C

Figure 7.1: A simple mixing plant at steady state

similar to I.4. The topology for the stationary behaviour is as in Figure 7.1

The plant has two dynami omponents, m, r, and four reservoirs a, b, c, p
and 5 streams a|m, b|m, c|r,m|r, r|p. The streams have di�erent omponents
in them. Adopting the notation ṅ

speies,system for the systems and for the

�ows n̂
speies,stream the aumulation terms are staked as well as the �ve

streams are staked up:

ṅ :=

[
ṅm

ṅr

]

:=









[
ṅA,m

ṅB,m

]





ṅA,r

ṅB,r

ṅC,













n̂ :=










n̂a|m
n̂b|m
n̂c|r
n̂m|r
n̂r|p










:=















[
n̂A,a|m

]

[
n̂B,b|m

]

[
n̂C,c|r

]

[
n̂A,m|r
n̂B,m|r

]





n̂A,r|p
n̂B,r|p
n̂C,r|p



















The F is a orresponding blok matrix as shown below.
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�ows → a|m b|m c|r m|r r|p
↓ system ↓ A B C A B A B C

m A 1 -1

m B 1 -1

r A 1 -1

r B 1 -1

r C 1 -1

The model has 5 equations and 8 variables. Thus 3 variables must be de-

�ned. Sine the balanes equations do not interat, it is one of eah of the

speies in any of the streams. Let us hoose the variable n̂A,a|m, n̂B,b|m, n̂C,r|p.

In the next step the linear set of equations is transmogri�ed into the normal

form Ax = b to prepare it for a standard solver. This is ahieved by using

seletion matries ( see A.1.1) to split the variables into the known and the

unknown variables:

S
n
:=






1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1






Correspondingly for the unknown variables:

S
u
:=











0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0











The two seletion matries staked together are a permuted identity matrix.

The staked set of balane equations is modi�ed:

0 = F n̂

:= FST
u
S
u
n̂+ FST

n
S
n
n̂

De�ning:

A := FST
u

x := S
u
n̂

b := FST
n
S
n
n̂

We get the equations in standard form:

0 = Ax+ b
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8

Proesses onvert material to new

produts

Synopsis Most plants that are not of pure mehanial nature produe a

produt through a onversion or transposition of material. These material

hanges inlude �rst of all reations, but also energetially weaker intera-

tions like agglomeration or absorption. Also phase hanges an be put into

this ategory. Reative systems though are of speial interest for whih the

speies mass balanes are extended with a reation term.

8.1 Internal dynamis � onversion of extensive quan-

tity

Reations are about hanging the nature of the material in a spatial domain,

in a ontrol volume, the system. Reations are an interation of extensive

quantities thereby hanging nature of the system. This requires an extension

of our onservation priniples 4.2 adding an additional term that desribes

the interation of extensive quantities, namely a prodution term. Again

to lift out the di�erent nature of the interation, we speially deorate the

term using a .̃

ṅ = n̂+ ñ (8.1)

Having stated that the extensive quantities are being onserved, does this

additional term now break the onservation laws? Obviously not. The pro-

dution term is used to desribe the internal hange in a system, though

stritly maintaining the onservation of the sum of �involved� extensive

quantities. Whilst the total mass is onserved, reations are ongoing in the

system thereby hanging the nature of the mass inside the system bound-

aries. The vetor of extensive quantities de�ned here, must inlude all

�involved� extensive quantity, suh that if we sum all the mass up, the

prodution term disappears. We get the mass from the molar vetor as a

weighted sum, where the weights are the moleular masses of the speies.
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De�ning a vetor of moleular masses λ, it must be true, that

λT ṅ = λT n̂+ λT ñ

= λT n̂

ṁ = m̂

Whih says that the aumulation of total mass is the net �ow of the total

mass aross the system boundary.

8.2 Atoms, speies and reations

Nature has a building box from whih it an onstrut new items using

existing ones. The Greeks and also India's early philosophers delared that

all starts with atoms, nature is built from atoms. Muh was being said,

investigated and found giving more insight into the world of atoms sine

then.

Figure 8.1: A sample reation

But, whilst we know some more

about the nature of matter,

this onept of smallest build-

ing element still serves the very

useful purpose as atoms are

the priniple building bloks

from whih we assemble hem-

ial speies. We use the nota-

tion H2O for water thereby in-

diating that a water moleule

onsists of two hydrogen atoms

and an oxygen atom, whilst

methane is CH4 as it onsists

of one arbon atom and four

hydrogen atoms. The formal representation of a reation is usually given

in the form reatants → produts or if the reation is onsidered to go both

ways reatants ⇋ produts. 8.1 depits suh a reation in the form of 3D

models showing the eletron louds of the involved moleules, the formal

representation and the involved atoms.

In order to write mathematial equations, we use a di�erent notation, repre-

senting a speies as the sum of number of moles of speies. Let Ai represent

the ith kind of atom taken from the list of atoms and let S be a speies

whih onsists of a atoms of A1 and b atoms of A2 then we write for the

speies S, then S = aA1 + bA2. So in general we write for speies j:

Sj = ci,j Ai (8.2)

figures/P1_C_08__TokenConvertingProcesses/ChemicalRreactionPicture.eps
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The weighting fators ci,j are integers orresponding to the number of atoms
of the kind i to be present in the speies j. The equation thus represents

a �sum formula� for hemial speies. So this representation maps between

moleular speies and the onstituent atoms. Examples are water: H2O =
2H + 1O or ethanol C2H6O = 2C + 6H + 1O. The representation thus

does not inlude any strutural information of the moleules in disussion.

So for our speies C2H6O ould also be dimethyl ether.

Proesses produe hemials by either extrating them from a mixture or by

ombining or re-ombining the onstituents of moleules. The onstituents

may be the basi building bloks, namely atoms or they may be groups

of atoms. Apparently the �rst is more general than the seond beause

the groups onsist of atoms. Building a moleule an thus be seen as a

reursive building-blok system in whih one onstruts groups from atoms

and moleules from groups.

hydraulic

reaction

Figure 8.2: Separation of hydrauli and reation

The physial environment in whih moleules are �built� is in a physial

spae, thus a volume in whih the onstituents to the reation are entering

or being present when the proess starts. Thus there is some kind of geo-

metrial arrangement of the moleules to be onsidered besides the atual

transposition that is taking plae when the onstituents ome in physial

ontat with eah other. So there is a mehanism that makes it possible for

the speies to meet and there is a mehanism whih onstitutes the rea-

tion itself. This view an be abstrated by separating the getting-together-

proess from the reation proess, whih in a �ow system is a hydrauli

subsystem suh as a mixing tank, to give an expliit example. The rea-

tion subsystem then takes from this hydrauli subsystem exatly what it

requires to perform the reation. It is in the reation subsystem that the

onstituents meet and undergo the reations in stoihiometri ratios. So

any ontrol volume in whih a reation takes plae ould be split into a

hydrauli subsystem and a reation subsystem as shown in 8.2.
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stoichiometric
ratio

reaction

reactant 1

reactant 2

sinkmix

product only

stream splits

Figure 8.3: Abstration of separating hydrauli and reation into two sep-

arate systems

If we analyse it in more detail using the graphial representation we in-

trodued earlier, things look rather omplex as we need �rst to separate

the reatants required by the reation box in exat amounts from the feed

streams. This is ahieved by ontrolling the two streams to the �moleule

fatory� labelled with �reation� using a ratio ontroller. The two resulting

streams are fed to the reation, where the moleule fatory does its job

produing the produt. The thus generated produt stream is fed into the

mixing (hydrauli) system where it is mixed with the remaining streams

from the feeds. The exit stream is then a mix of the produts and the

un-reated reatants ( 8.3 ). This Gedankenexperiment an be applied to

any system. Chemial speies ome into the reation zone through one or

the other transport mehanisms, where they beome stok for the moleule

fatory. The fatory operates like a shop �oor: the building bloks are geo-

metrially arranged to expose the onnetion points so they an undergo the

desired transposition. Problem though being that we lak Maxwell demons

(ref) as workers. So we really have no absolute ontrol over this ritial

proess. Instead moleules move in a potential �eld that they generate

through their existene and interations. This leaves the option of di�erent

arrangements, whih nearly invariably also result in di�erent produts, sine

these potential �elds have di�erent valleys, saddles and hills, and thus dif-

ferent loal minima. So one atually almost always has to onsider families

of reations yielding not only the desired produts but also side produts
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de�ning the need for down-stream separation proesses.

Coming bak to the moleule fatory, as long as we exlude nulear rea-

tions, the basi building bloks are always onserved. If we formulate a

generi lumped system with a reation for the speies Ai ∈ A with a set of

in�ows and an out�ow, the model takes the form:

ṅ =
∑

∀m
n̂m − n̂out + ñ

So the aumulation of the speies aptured in the vetor ṅ, using the

dot deorator ˙ for the time derivative, is the sum over all the m input

streams n̂m, where the stream is indiated by the hat deorator ,̂ minus

the out�ow and adding the prodution of all the speies in the proess

denoted by ñ using the ˜ as a deorator. Note that summing the above

vetor equation over the speies gives on the left-hand-side the total molar

mass being aumulated, whih implies that the sum over the prodution

terms must be zero as mass is being onserved.

If we now use the above-indiated mapping from the speies to the atoms,

we an get a representation of the reator's behaviour in terms of atoms.

For this purpose we have to distinguish between the molar vetor of atoms

and the molar vetor of speies. Let the deorator a be used for the atoms

and the deorator s for the speies present in the proess. So na
is the

vetor of moles of atoms and ns
is the vetor of moles of proess speies.

The transformation is then:

na := Cns
(8.3)

in whih theC is the oe�ient matrix [ci,j] with i being the atom index and

j being the speies index. Transforming the reator's behaviour equation

we get:

Cṅs =
∑

∀m
Cn̂s

m −Cn̂s
out +Cñs

(8.4)

ṅa =
∑

∀m
n̂a
m − n̂a

out +Cñs
(8.5)

Sine atoms are not being generated and do not disappear in a reation

sheme, the last term must result in a vetor of zeros:

Cñs = 0 (8.6)

Moleules are always a ombination of atoms. Thus the matrix C is not

a square matrix. It will always have more olumns than rows, whih im-

plies that there are some additional relations, here being the sought sum-

reations. Question then is on how many reations are forming the de�ned
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speies. The answer omes from linear algebra. The 8.6 is a linear ho-

mogeneous system with the variables being the reation rates. There are

more reation rates than atomi speies. The rank of the matrix provides

the information on how many independent reations there are and the ve-

tors spanning the null spae give the ratios between the reation rates,

thus the stoihiometri ratios. The literature on this subjet is surpris-

ingly rih, whih gives an indiation that the subjet is not quite so well

understood than what is being ommonly assumed. The referenes Aris

(1963, 1965) is seen as seminal for the subjet though earlier ontributions

Truesdell and Toupin (1960) many of whih one �nds ited in Bjornbom

(1977) indiating that the subjet goes bak to Gibbs. A very reent on-

tribution Higgins and Whitaker (2011) re-iterates on the basi ideas and

tries to bring the subjet loser to the reader.

8.2.1 Finding a minimal set of reations

The proedure to �nd the rank and a set of olumn vetors spanning the

null spae is well doumented in the literature (Strang (2009)). A brief

summary is loated in the dediated appendix ( A.1.3).

It is best illustrated using an example. The set of moleules is

S := [H2O,CH4, CO,CO2,H2]

are onstruted from the atoms

A := [H,O,C] .

The objetive is to �nd a matrix with a basis for the null spae omputing

the redued row-eholon form of the homogeneous equation set. First we

onstrut a table with the rows being the number of atoms in the moleules

in the olumns.

H2O CH4 CO CO2 H2

H 2 4 0 0 2

O 1 0 1 2 0

C 0 1 1 1 0

The oe�ient matrix C is then the values in the table, thus:

C :=






2 4 0 0 2

1 0 1 2 0

0 1 1 1 0
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In a �rst step the �rst row is divided by 2, whih is ahieved by multiplying

with a orresponding matrix:

C
1
:=






0.5 0 0

0 1 0

0 0 1











2 4 0 0 2

1 0 1 2 0

0 1 1 1 0




 =






1 2 0 0 1

1 0 1 2 0

0 1 1 1 0






Next we eliminate the �rst 1 in the seond row by replaing the seond row

by the di�erene of the seond row minus the �rst row:

C
2
:=






1 0 0

−1 1 0

0 0 1











1 2 0 0 1

1 0 1 2 0

0 1 1 1 0




 =






1 2 0 0 1

0 −2 1 2 −1

0 1 1 1 0






The seond row is divided by −2 yielding a 1 in the �rst non-zero position:

C
3
:=






1 0 0

0 −1/2 0

0 0 1











1 2 0 0 1

0 −2 1 2 −1

0 1 1 1 0




 =






1 2 0 0 1

0 1 −1/2 −1 1/2

0 1 1 1 0






The 1 in the third row is the next target to eliminate:

C
4
:=






1 0 0

0 1 0

0 −1 1











1 2 0 0 1

0 1 −1/2 −1 1/2

0 1 1 1 0




 =






1 2 0 0 1

0 1 −1/2 −1 1/2

0 0 1.5 2 −0.5






Now we sale the third equation:

C
5
:=






1 0 0

0 1 0

0 0 2/3











1 2 0 0 1

0 1 −1/2 −1 1/2

0 0 1.5 2 −0.5




 =






1 2 0 0 1

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3






The result is the upper triagonal matrix. In the next steps the non-zero

elements above the pivot 1 are eliminated.

C
6
:=






1 −2 0

0 1 0

0 0 1











1 2 0 0 1

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3




 =






1 0 1 2 0

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3






and:

C
7
:=






1 0 −1

0 1 0

0 0 1











1 0 1 2 0

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3




 =






1 0 0 2/3 1/3

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3
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and:

C
8
:=






1 0 0

0 1 0.5

0 0 1











1 0 0 2/3 1/3

0 1 −1/2 −1 1/2

0 0 1 4/3 −1/3




 =






1 0 0 2/3 1/3

0 1 0 −1/3 1/3

0 0 1 4/3 −1/3






Writing the result as a blok matrix with the index of the identity matrix

indiating its dimension. The matrix is in the desired redued row eholon

form:

R := C
8
:=
[

I
3

F

]

The null spae is found quite easily by notiing that

[

I
3

F

]
[

−F

I
2

]

= −F+ F = 0

The set of vetors spanning the null-spae, aptured in a matrix, is thus:

Null

(
C
)
:=

[

−F

I
2

]

=











−2/3 −1/3

1/3 −1/3

−4/3 1/3

1 0

0 1











The 2 identity matrix is the standard hoie for the free variables providing

the speial solution. The basis for the null spae is thus not orthonormal.

The reation rates are the variables in 8.6. Thus the vetors spanning the

omputed null spae provide a solution, namely the ratios of the reation

rates and thus the stoihiometri oe�ients. The number of free variables

in this ase is 2 whilst the rank is 3. So two relations, being two reations,

exist and the vetors spanning the null spae is thus diretly the stoihio-

metri matrix for the two independent reations. Saling with 3 gives:

NT :=











−2 −1

1 −1

−4 1

3 0

0 3











The two independent reations are thus:

2H2O + 4CO ⇆ CH4 + 3CO2

H2O + CH4 ⇆ CO + 3H2
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In the above example, the row-eholon form has no zero subspae. In gen-

eral, allowing also for olumn swapping, the redued row eholon matrix

takes the form:

R :=

[

I
r,n

F

0
s,n

0
s,f

]

where r is the rank of the oe�ient matrix, s the number of zero rows and
f the number of free variables, latter de�ning the number of independent

reations. The matrix spanning the null spae is as before:

Null

(
C
)
:=

[

−F

I
f

]

The reations obtained from the atom-speies matrix, provides no infor-

mation about the mehanism that makes the hange happening. It only

provides a summary reation, an overall piture on what is happening from

a proess-global viewpoint. Even on that level, the set of reations being

de�ned by the null spae of the oe�ient matrix is not unique. In many

ases di�erent sets of reations are possible. If we de�ne our initial table

with the inverse set of speies, so:

H2 CO2 CO CH4 H2O

H 2 0 0 4 2

O 0 2 1 0 1

C 0 1 1 1 0

The matrix spanning the null spae now is:

NT :=











−2 −1

1 −1

−2 1

1 0

0 1











In this ase the two independent reations are :

2H2 + 2CO ⇆ CO2 + CH4

H2 + CO2 ⇆ CO +H2O

So hoosing a di�erent set of free variables by permuting the speies set

gives di�erent spanning vetors for the same null spae.
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8.2.2 Relation between di�erent sum reations for the same

system

How are the two reation sets related. Both of them represent sum reations,

but are onstruted on a di�erent arrangement of the speies. Sine they

both are sum reations, there must exist a linear transformation between

the two stoihiometri matries. We notie that the atom-speies oe�ient

matrix of the seond ase is generated by permuting the olumns, in this

ase we reverse the order. So let C
a
be the oe�ient matrix of the �rst

ase, thus the using the speies set:

{H2O,CH4, CO,CO2,H2}

and C
b
the one using the inverted set:

{H2, CO2, CO,CH4,H2O}.

The seond matrix is obtained by permuting the olumns C
b
:= C

a
P. The

redued row-eholon form of the matrix C
i
is R

i
this for i ∈ {a, b}. The

transformation between the two is then done with a matrix L remembering

also that the olumns are permuted:

LR
a
P = R

b

Sine the R
i
are not square, the solution is a little bit more ompliated.

We multiply the equation with

(

R
a
P
)T

produing on the left-hand side a

square matrix of the de�ned produt:

L
(

R
a
P
) (

R
a
P
)T

= R
b

(

R
a
P
)T

L
(

R
a
PPT RT

a

)T
= R

b

(

R
a
P
)T

L
(

R
a
RT

a

)T
= R

b

(

R
a
P
)T

Note that the produt PPT
is identity. So:

L = R
b

(

R
a
P
)T (

R
a
RT

a

)−1

In our ase the transformation matrix beomes:

L :=






1 2 0

1 −1 0

−1 2 1








8.2. ATOMS, SPECIES AND REACTIONS 93

Yet another approah: Partitioning the matrix R
b
:= [I,F

b
] the left-hand-

side expression an also be partitioned aordingly:

LR
a
P = R

b
:= [I,F

b
]

[

LR
a
P

1
,LR

a
P

2

]

= R
b
:= [I,F

b
]

making the transformation for the F-part:

LR
a
P

2
= F

b

There is an alternative approah to the above, by utilising more the stru-

ture of the matrix equation:

L
[

I,Fa

]
[

P
11

P
12

P
21

P
22

]

=
[

I,Fb

]

L
[

P
11

+ FaP21
,P

12
+ FaP22

]

=
[

I,Fb

]

So this makes

L
(

P
11

+ FaP21

)

= I

and

L =
(

P
11

+FaP21

)−1

The seond equation gives essentially the transformation between the two

null spaes:

L
(

P
12

+FaP22

)

= F
b

Here P
22

is of speial interest. If the permutation moves the rows out of

the free variable spae into the basis spae, the matrix is zero, with whih

expression simpli�es to:

LP
12

= F
b

8.2.3 Formal stoihiometry

Finaly we introdue a notation for the reations by de�ning a formal equation-

like objet for the reation:

∑

i

νi Si = 0 (8.7)

whereby the index i runs over the speies set. The stoihiometri oe�ients
are denoted by νi, whih are negative for the reatants, positive for the
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produts and zero for those speies that do not partiipate in the reation.

The speies are appearing as symbols Si, thus the above is not a �real�

equation, but a formal representation of a reation. The stoihiometri

matrix is formed by spanning a table with the reations as the row indiators

and the speies as the olumn headings.

8.2.4 Diretion

In hemistry it is ustomary to indiate in whih diretion the reation is

going using a arrow as an indiator. In the above reation representation

the arrow is replaed by the left-right arrows thus avoiding the indiation of

the diretion. Reason being that the proedure of �nding a stoihiometri

matrix does not provide an indiation of the diretion. If one looks at

the two reation sets, then what hanged was the order of the speies and

onsequently whih of the variables are hosen to be free and later taken as

the basis for the null-spae representation. The diretion is determined by

the di�erene in the hemial potential of the reatants and the produts

at the onditions the reation is taking plae.

The hemial potential is the partial derivative of the internal energy with

respet to the omponent molar masses, thus

µi =

(
∂ U

∂ ni

)

S,V ,nj 6=i

. Base values an be obtained from tables usually listing them at some

normal onditions for example 298.15 K and 101.325 Pa. For the speies in

the two reations we �nd:

H2O CH4 CO CO2 H2 units

µ -228,59 -50,75 -137,15 -394,36 0 kJ/mol

The reation goes into the diretion of negative Gibbs energy. Thus for the

�rst set we get:

2H2O + 4CO ⇒ CH4 + 3CO2 −228.05 kJ/mol

H2O + CO ⇐ CH4 + 3H2 −315 kJ/mol

and for the seond:

2H2 + 2CO ⇒ CO2 + CH4 −170.81 kJ/mol

H2 +CO2 ⇐ CO +H2O −28.62 kJ/mol
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8.3 Reation rates

The subjet is hemial kinetis. In order for a reation to take plae the

reatants, being the speies that partiipate in the reation, need to phys-

ially meet. But this is usually not enough, they must be in the right

geometrial position to eah other and they may require a ertain energy

level in order to be able to interat su�iently intensively so as to undergo

the reation. It seems logial that the rate with whih the reation is taking

plae is a funtion of the number of ollisions of the di�erent �reation in-

gredients� per unit time. The ollision frequeny rises as the onentration

of the ingredients rises and it also rises as the veloity of the individual

partiles inreases. The probability of a ollision of the required ingredi-

ents dereases with the number of ingredients required. The latter relation

suggests a power funtion of the ingredients saled by the volume, whih

is what one usually takes as the �rst suggestion for the reation law. This

sounds quite OK, if one knows the mehanism of the reation, meaning that

one atually knows what ingredients do reat. A reation mehanism is of-

ten muh more omplex than it appears from a summary reation equation

as it omes from the previous setion's disussion. Very often an overall

reation splits into several steps eah of whih has its own dynamis. For

example, literature suggest a great number of di�erent mehanism for the

water gas shift reation. The simple overall reation:

CO +H2O ⇆ CO2 +H2

may be split into di�erent steps

1

:

H2O + S ⇆ O · S +H2

O · S + CO ⇆ CO2 + S

1

Temkin, M. I. The kinetis of some industrial heterogeneous atalyti reations. In

Advanes in Catalysis; Eley, D. D., Pines, H., Weisz, P. B., Eds.; Aademi Press: New

York, 1979; Vol. 28; pp 173.
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with the S being an ative site on a given atalyst. Or another suggested

mehanis is muh more omplex

2

CO + S ⇆ CO · S
H2O + S ⇆ H2O · S

H2O · S + S ⇆ OH · S +H · S
CO · S +OH · S ⇆ HCOO · S + S

HCOO · S ⇆ CO2 +H · S
2H · S ⇆ H2 + 2 · S

Knowing the steps, the reation rates are often formulated as a power fun-

tion of the reatants' omposition, whereby the exponent is the absolute

value of the stoihiometri oe�ient of the respetive speies. So if we

only onsider the overall reation we would be tempted to write the for-

ward reation as a seond order reation in the speies on the left-hand-side

and the bakward reation as a seond order in the speies on the right-

hand-side. This power funtion is saled with a �reation onstant�, whih

is not onstant, but in ontrary a very strong funtion of the temperature.

All of whih is given per unit volume, for homogeneous reations that take

plae in a volume. For non-homogeneous systems where the reation takes

plae on a surfae of a atalyst, one may norm with the surfae and provide

the additional information on how muh surfae is available in a volume

given a ertain geometry or granularity of the atalyst.

The latter suggests that norming with volume or surfae is a good idea,

but also, from the null spae omputation we notie that there is only one

variable per reation neessary to de�ne the rate at whih it progresses. The

rate for eah speies is then obtained by multiplying with the stoihiometri

oe�ient of the respetive speies denoted by νi,r, where the i is the speies
index and the r the reation index.

So the typial reation law takes the form:

ξ̃r := krr(T ) gr(c) (8.8)

gr(c) :=
∏

i∈{reatants}
c
|νi,r |
i (8.9)

where ξ̃ is the rate of hange of the extent of reation. The extent of

reation itself ξ takes values between 0 and 1. The deorator indiates that

2

Campbell, C. T.; Daube, K. A. "A surfae siene investigation of the water-gas shift

reation on opper(111)", J. Catal. 1987, 104, 109.
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it is a prodution rate

3

. Sine one extent of reation is being de�ned for

eah reation, the assoiation with the reation is typially shown as an

index. So we would write ξ̃r for the r-th reation. The k(T ) is the �reation
onstant�, whih really is anything else than onstant, but a strong funtion

of the temperature, for whih typially the Arrhenius relation applies:

krr(T ) := k0r e
−EAr/RT

(8.10)

where k0 is the pre-exponential fator, EA is the ativation energy, R is the

gas onstant and T is the absolute temperature.

Whilst there is a lot of logi in the formulation of the kineti laws, there

exists no basi theory for their derivation. The kineti gas theory provides

insight into the basi mehanisms in gases and the basi struture but not

more, besides that one very often really does not know muh about the re-

ation steps or on a su�ient level of detail to get an appropriate expression

for the reation rates. The kineti gas theory provides insight into the form

of the Arrhenius equation, for example, on�rming the need for an expo-

nential dependeny on the temperature. But then in some ases Arrhenius

is not su�iently preisely re�eting the behaviour and more onsequently

omplex relations have been formulated. The probably best known one is

Rie-Ramsperger-Kassel-Marus relation. The onsequene of all of this

being that the reation rate expressions or laws, as they are also alled, are

to be onsidered as empirial relations, so-alled blak-box models, though

here with some whiteness added, making them a little grey.

8.4 Reations in an isolated ontainment

If we take the above disussed view of separating the reation from the

physial ontainment viewing it to our separately in an imaginary vol-

ume, then we an disuss the nature of the reation system in separation.

To get there a little easier, we assume the reation takes plae in an ide-

ally stirred tank reator, that is, in a ompletely mixed volume, where the

mixing dynamis is in�nitely fast. No feed and no produt stream shall be

onneted, thus the system's model is:

ṅ = ñ (8.11)

The vetor of prodution rate is in the volume V and the stoihiometry N:

ñ := VNT ξ̃ (8.12)

3

We have hosen to make a di�erene between aumulation, transport and prodution

rate, by de�ning separate deorators. Apparently the idea is to keep them separate even

though they all are measured in unit mass per unit time.
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So what we ahieve is that the aumulation term in the separate ontain-

ment is idential with the prodution rate enabling us to study the nature

of the reation in isolation.

8.4.1 Case: Highly reative intermediates

When studying reation mehanisms it often ours that the overall trans-

position of one set of speies into another one is oneived as a sequene of

reation steps that form a reation network. In this reation network, some

intermediate speies appear. In many ases these intermediates are very

reative and have a short live time. This leads to the assumption that suh

speies are only present in a (very) low onentration and quite onstant

during the reation proess. Based on this a simpli�ation is ommonly ap-

plied, whih in its mathematial nature is similar to what is being disussed

for fast heat transfer in 10.2.1. Here the assumption is that the amount of

intermediate speies is more or less onstant. Thus rate equation is split into

two parts, a part of onstant intermediates and the other speies. Mathe-

matially this an be done by multiplying the reation rate equation with

a permutation matrix that hanges the order of the speies in the vetors.

Making this permutation matrix be a blok of two matries, the split an be

made visible at the same time. Let the permutation/splitting matrix (see

A.1.1 ) be:

P :=
[

P
d

P
i

]

(8.13)

then applying to the rate de�nition equation we get:

[

ṅd

ṅi

]

:= V

[

NT
d

NT
i

]

ξ̃(c) (8.14)

With the intermediates assumed to not hange with time, this simpli�es to:

[

ṅd

0

]

:= V

[

NT
d

NT
i

]

ξ̃(c) (8.15)

Literature often refers to this assumption as a �pseudo-steady state assump-

tion�. These are two sets of equations in whih the top set are di�erential

equations and the bottom ones are algebrai equations. The seond equation

set an be used to solve for some of the ompositions, usually the ompo-

sition of the intermediate and substitute the result into the �rst equation

thereby reduing the number of variables. Formally this ould be written

as:

ci(cd) := root

(

NT
i
ξ̃(cd, ci)

)

(8.16)
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whih then is used to simplify the di�erential equations:

ṅd = V NT
d
ξ̃(cd, ci(cd)) = V NT

d
ξ̃
′
(cd) (8.17)

Let us illustrate the idea on a simple but ommon example:

A

ξ̃1−→ B

ξ̃2−→ C

ξ̃3−→ D

The three reations are of �rst order:

ξ̃1 := kr1 cA

ξ̃2 := kr2 cB

ξ̃3 := kr3 cC

whih in more ompatly reads in vetor form:

ξ̃ := K g(c)

whereby the vetor of funtions g (c) is simply

g(c) :=






1 0 0 0

0 1 0 0

0 0 1 0




 c := Sc

with c

cT :=
[

cA cB cC cD

]

The stoihiometri matrix is easily onstruted:

Rea A B C D

1 −1 1 0 0

2 0 −1 1 0

3 0 0 −1 1

It is assumed that both intermediate are very reative, motivating a pseudo-

steady-state assumption for these two speies. We permute and split the

vetor of prodution rates so that the prodution rate for speies A and D

are the �rst two forming the dynami blok and the intermediates are in the

seond blok for whih the pseudo-steady state assumption is being made.

The permutation/splitting matrix is then:

P :=









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0
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Thus the expression for the reation rates is �rst permuted and split:

Pṅ := V PNT ξ̃

:= V PNT KSc

Making the assumption and substituting Sc:









ṅA

ṅD

0

0









:= V









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

















−1 0 0

1 −1 0

0 1 −1

0 0 1














kr1 0 0

0 kr2 0

0 0 kr3











cA

cB

cC






:= V









−1 0 0

0 0 1

1 −1 0

0 1 −1














kr1 0 0

0 kr2 0

0 0 kr3











cA

cB

cC






:= V









−kr1 cA

kr3 cC

kr1 cA − kr2 cB

kr2 cB − kr3 cC









The two bottom equations, the algebrai equations, we extrat the ompo-

sition of the two intermediates, for whih we �nd:

cB :=
kr1
kr2

cA cC :=
kr2
kr3

cB :=
kr1
kr3

cA

whih when substituted simplify the di�erential equations:

ṅA = ñA := −kr1 cA

ṅD = ñD := +kr1 cA

whih is what we expeted.

8.4.2 Case: equilibrium reations

Reations are by de�nition reversible, beause matter has internal energy,

whih in parts is in the form of internal osillations, strething and on-

trating of distanes between atoms, rotations et. Also moleules move

around, have kineti energy and if they ollide the energy is dissipated in

one or the other form. This may lead to a reversion of the reation, or
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another reation. If we formulate a reation as irreversible, we assume that

the bak reation is negligibly small. This is saying that in the stohasti

framework of the partiles, the likelihood of a reation to reverse, that go

over the potential hump in the energetially unfavourable diretion is very,

very small. If however the barrier is not very large and the two loal equi-

libria of reatants and produts are lose, the reation may go both ways

forming a mixture of all speies.

For the purpose of the derivation we assume that we have only one suh

reversible reation, then the stoihiometri matrix takes a speial form in

that the respetive vetors of stoihiometri oe�ients for the forward and

the bakward reation are the same exept they have inverse signs. So let

the forward reation, shown as the reation labelled with f be given by:

∑

i,f

νi,f Si = 0

and for the bakward reation, shown as the reation labelled with b:
∑

i,b

νi,b Si = 0

Then the respetive vetors are:

νr :=
[

νi,r

]

∀i
r ∈ {f, b}

and

νf = −νb

So the stoihiometri matrix is:

N :=

[

νT
f

νT
b

]

:=

[

+νT
f

−νT
f

]

The expression for the prodution rates then takes the form:

ñ := VNT ξ̃

:= V NT K g(c)

:= V NT

[

kr1 0

0 kr2

]

g(c)

Both the reation onstants are large. We sale with one of them, say kr1:

1

kr1
ñ := V

[

νf −νf

]
[

1 0

0 kr2
kr1

]

g(c)
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With kr1 being large, the left-hand-side is lose to zero and we get:

0 ≈ V
[

νf −νf

]
[

1 0

0 kr2
kr1

]

g(c)

For eah speies we thus get an equation. For example for speies i we get:

0 = νi,f

[

1 −1
]
[

1 0

0 kr2
kr1

]

g(c)

and for the speies that appear in the reation, the stoihiometri oe�ient

is non-zero. Thus for eah of those we get the same equation, namely:

0 =
[

1 −1
]
[

1 0

0 kr2
kr1

]

g(c)

= g1(c)−
kr2
kr1

g2(c)

whih reshapes into:

kr2
kr1

=
g1(c)

g2(c)

being the equilibrium relation.

8.5 Behaviour of reative systems

The reation is going on inside the system, thus if we now inlude this

into our desription as done in Integral Balane (4.2) expanding 4.2 with a

reation system we get:

Φ̇ = Φ̂+ Φ̃

The derivation of 4.3 is idential as it only a�ets the behaviour in terms

of the boundary. The prodution term just �hangs on� as the integral of

the loal turn over of the speies measured by the extent of reation for

eah of the ongoing reation mapped onto the speies spae by the stoihio-

metri matrix. The derived integral balane then is, when inluding the

transposition term:

∫

V

∂ ϕ

∂ t
dV = −

∫

V

∂

∂ r
ϕ̂ dV +

∫

V
ϕ̃ dV

whih implies that:

∂ ϕ

∂ t
= − ∂

∂ r
ϕ̂+ ϕ̃
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Again substituting a simple transfer law 5.2

ϕ̂ := −c
∂ π

∂ r
,

that yields

∫

V

∂ ϕ

∂ t
dV =

∫

V
c
∂

∂ r

∂ π

∂ r
dV +

∫

V
ϕ̃ dV

and:

∂ϕ

∂ t
= c

∂2 π

∂ r2
+ ϕ̃

This now desribes a �nite spaial domain in whih di�usion and reation

takes plae.

8.5.1 Lumped systems

The speies mass balane equation for the reative lumped system expands

the 4.6 by a homogeneous reation term, thereby implementing the uni-

formity ondition for the intensive properties. Thus for the integral of the

reation term we simplify to:

∫

V
ϕ̃ dV := NsT Φ̃s

Thus the balane for the reative lumped systems beomes:

Φ̇s := Fs Φ̂s +NsT Φ̃s (8.18)
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9

Energy and mass

Synopsis The energy balane provides the dynami information about the

energy household of a plant. Notieably, mass arries energy, and thus mass

indues energy besides that energy is being transferred aross the system's

boundary in di�erent forms, giving rise to de�ne morphologies for energy

as it is being transported.

Energy is a urious quantity as Feynman (Feynman et al. (1966)) notes. Its

nature we really do not know, but we have observed that it is onserved, that

is if we ompute a numerial value for the energy before a proess starts

and then aount for all bits and piees of energy again after the proess has

�nished, we end up with the same numerial value, that is if we have really

inluded everything.

Mass arries energy merely by its pure existene and its internal mirosopi

mehanial energies and the marosopi mehanial energies. Mehanial

energy omes in di�erent forms, and inludes kineti energy and potential

energy. On the mirosopi sale this an be in the form of rotation, vi-

bration, translation but also potential due to strutural hanges. On the

marosopi sale mass translates in spae and gravitational or other �elds

that e�et mass. Energy re�ets into mass, as a ompressed spring is slightly

heavier than a relaxed spring. Equipped with this fat, it is though then

no surprise that the balaning of energy involves mass. If we assume no

onversion of mass into energy and vie versa, then the mass balane an

be drawn up independent of the energy balane, whilst the opposite is not

the ase.

9.1 Energy balane - somewhat simpli�ed

Sine energy omes in di�erent forms, one �rst has to ask the question of

what form of energies need to be onsidered when modelling a partiular

system. For example one requires answers to the questions if the proess

itself is moving like a roket, a ar, a biyle or the like. If so, then one needs

105
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to deide if one inludes the movement viewed from a stationary o-ordinate

system or if one deides to just simply �sit� on it and implement a moving

o-ordinate system that does not bother about the movement of the system

itself, whih, by the way, is what we do all the time, as the earth moves

relative to any observer outside. Or does one have to onsider heat stream,

radiation, elastiity, or any other �elds than the earth's gravitational �eld.

And, how about other, very ommon �elds suh as magneti �elds, pressure

�elds (sound) and eletrial �elds. Chemial and biologial systems mostly

get away without the latter.

For the time being we shall limit ourself to gravitational �elds and kineti

energy, besides the obvious need for the internal energy. With this limitation

in mind, we de�ne the total energy as the sum of the internal energy U , the
kineti energy and the potential energy:

E := U +K + P (9.1)

So a system's energy is a�eted by mass �ows and di�erent forms of energy

�ows all of whih on a loser look are driven by potential �elds of one or the

other kind. The onsequene is that when drawing up the energy balane of

the system, one has to onsider a variety of possible interations between the

system and its environment. In a hemial engineering ontext this is often,

but not always, limited to mass transfer, having internal energy, kineti

energy, potential energy and also has volume work to perform when rossing

a systems boundary, simply beause it is of �nite volume. Besides mass the

most frequent form of energy being transferred that is not bound to mass is

heat, whih is the e�et of momentum transfer of mehanially interating

speies partiles, but also radiation and mehanial work that is done on

the system. The latter ould for example be the energy input through

the mixing devie, suh as a stirrer. Eletrial energy is also frequently

enountered. So for hemial-biologial systems the energy balane for an

arbitrary system takes usually the form ():

Ės =
∑

∀m
αs,m Êm +

∑

∀q
αs,q q̂q +

∑

∀w
αs,w ŵw

or putting it into a more ompat form:

Ės = Fm
s Ê+ Fq

s q̂+ Fw
s ŵ

whereby the F is again the inidene matrix (see ). The index s indiates

the system and the supersripts m, q,w indiate the nature of the network,

being mass, heat and work.

This formulation is to be seen in the light of history. It inludes three main

terms eah being a sum. The �rst sum runs over all mass streams using
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the index m. The seond term is the sum over all heat streams, whih

would typially also inlude radiation. The index used is q. Note that we
use here the same symbol for the index as for the quantity itself with the

idea to enhane readability. The last term inludes more or less all other

energy transfer forms, foremost the volume work term assoiated with the

mass transfer, but also the volume work assoiated with the system itself

expanding or ontrating. Yet another term assoiated with mass �ow is

due to frition, with surfae frition being the most ommon relevant part.

Internal frition in a stream onverts mehanial energy into internal energy

by �heating up� the �uid. It also inludes the mentioned mehanial and

eletrial work term. If we lift out the volume work assoiated with the mass

streams by deorating the work �ow symbol with a �v�, and the frition work
with the deorator �if � and �sf �, for the internal frition and the surfae

frition respetively, we may ollet all the mass-�ow related terms into one

summation:

Ės =
∑

∀m
αs,m (Êm + ŵv

m + ŵif
m + ŵsf

m ) +
∑

∀q
αs,q q̂q +

∑

∀r
αs,r ŵr

= Fm
s

(

Ê+ ŵv + ŵif + ŵsf )
)

+ Fq q̂+ Fw r

ŵr

Consequently we also need to hange the summation of the remaining work

streams.

Having made a ouple of initial assumption, we ontinue by branhing into

di�erent lasses of proesses haraterised by di�erent order-of-magnitude

assumptions:

9.2 Assumption of non-moving

Adding the assumption that the proess is not moving, the aumulation

term is simpli�ed, as the kineti and the potential energy remain onstant

and thus what remains is the internal energy:

U̇s =
∑

∀m
αs,m (Êm + ŵv

m + ŵif
m + ŵsf

m ) +
∑

∀q
αs,q q̂q +

∑

∀r
αs,r ŵr

= Fm
s

(

Ê + ŵv + ŵif + ŵsf )
)

+ Fq q̂+ Fw r

ŵr
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9.3 Assumption: Stationary and dominating me-

hanial proesses

Quite frequently one models �ow systems that show little side e�ets in

terms of thermal e�ets, that exhibit no reations, and are in addition

operating in a stationary mode. In these ases all those terms that have

to do with the �ow are dominating and the heat �ow terms are negligible.

Sine the proess is stationary, the aumulation term is also negligible:

0 =
∑

∀m
αs,m (K̂m + P̂m + ŵv

m + ŵif
m + ŵsf

m ) +
∑

∀r
αs,r ŵr

= Fm
s

(

K̂+ P̂+ ŵv + ŵif + ŵsf )
)

+ Fw r

ŵr

The remaining work term is often redued to a mehanial work �ow only.

So what are examples of suh systems? Good examples are pipe networks

with bends, all type of valves, measurement failities, ontrations and ex-

pansions and not at least any type of pumping devie, fans, ompressors

or the like. All of whih are so ommon that this will need a bit more

disussion, whih we will do in .

9.4 Common reative systems

Many proessing units operate at nearly onstant pressure. This inludes

most biologial proesses, but also many industrial proesses. A standard

example is a bath reator that is open to the outside, in whih we feed a

ouple of reatants, possibly in a solvent, whih then reat in the reator to

produe the produt. The reator is usually equipped with a type of heat

exhanger, either a jaket or a set of internal oils, as many reations are

exothermi and thus energy in the form of heat must be removed in order

to keep the temperature under ontrol.

In fat most hemial reations are haraterised by a quite large di�erene

of energy ontent between reatants and produts, for whih reason the

temperature rises in the reation mixture quite quikly, whilst this is to

signi�antly lesser degree the ase for biologial systems. In the latter ase

one usually is below 10 W/liter, whih is in the same order of magnitude

as the mehanial energy input through stirring devies. Even smaller is

usually the e�et of the kineti energy assoiated with the in�ows and the

out�ows of material and the energy due to the gravitation and the same

applies to the frition terms.

Fousing on the most ommon ase, thus negligible potential, kineti energy
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and frition, the energy balane redues to:

U̇s = Fm
s (Û+ ŵv) + Fq

s q̂+ Fw
sŵ

whih for the system shown in 9.1 gives the matries Fm|Fq|Fw
:

Fm Fq Fw

A|T B|T T |P C|J J |H T |J T |R
A −1

B −1

T 1 1 −1 −1 −1

P 1

R 1

J 1 −1 1

C −1

H 1

The system may hange volume, but the other remaining work terms are

assumed negligible, in partiular we neglet the energy arried in by mixing

units. The only term then remaining is the volume-work term assoiated

with the hange of the size of the system, whih is ŵs|e := −p V̇ . The

volume work terms of the �ows are ŵv
m := pm V̂ m and we only have one

single heat �ow that is relevant, thereby assuming that evapouration and

ondensation on the lid or heat losses to the environment are not essential

in this appliation, a subjet we have disussed in . The abstration of this

system is shown in 9.1

Thus for this simpli�ed system we get:

U̇T =
∑

∀m
αT ,m (Ûm + pm V̂ m) + (−1) q̂T |J + (−p) V̇ T

= Fm
T

([

Ûm + pm V̂ m

])

+ Fq
T
q̂+ (−p) V̇ T

Above the heat �ow has not been substituted with a heat �ow model, whilst

the volume work term assoiated with the hange of the system's volume

has been substituted. Reason being that we are after a reformulation of

the energy balane: For eah mass �ow we now have two terms namely an

internal energy and a volume work �ow. De�ning a new energy funtion,

alled enthalpy H := U + pV we simplify the term in the sum over the

mass streams. We an also look at the aumulation term. The di�erential

enthalpy we get dH = dU+dp V +p dV or as hange of time Ḣ = U̇+ ṗ V +
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H

C

J

A B

T R

P

Figure 9.1: An abstration of a jaketed tank reator with two feeds. As-

suming no heat losses, no stirrer energy input, jaket as a uniform apaity

exhanging �uid with a old and a hot reservoir and a produt stream leav-

ing the tank.

p V̇ . Whih simpli�es onsidering that the pressure is assumed onstant. If

we take the volume work term of the system to the left-hand-side we get:

U̇T + p V̇ T = Fm
T
Ĥ+ Fq

T
q̂

So for onstant pressure systems the left-hand-side is the hange of enthalpy

of the system beause:

dH := d(U + p V ) = dU + dp V + p dV = dU + p dV

and we get:

ḢT = Fm
T
Ĥ+ Fq

T
q̂ (9.2)

This equation evolved from the initial assumption of a lumped system and

the assumption of negligible kineti, potential energy e�ets and no frition

assoiated with the mass �ows. In addition we now also introdued the

assumption of onstant pressure.

So far the system is represented in the spae de�ned by the omponent

mass and the energy latter either total energy, internal energy or enthalpy.

Thus the hange of view is the hange of the �type of energy� in whih we

represent and thus also view the system. When disussing systems from the

thermodynami view, one often talks about �measurable� quantities suh as

figures/C_09__MassHasEnergy/JacketStirredTankReactorAbstract.eps
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temperature, pressure and omposition. Textbook derivations aim at rep-

resenting the model in a set of these variables, mostly in those that an

be measured or diretly observed or are aessible. From a mathemati-

al/system's point of view this implies that one transforms the behaviour

desription into another state spae, whereby the information ontent is not

hanging, but the viewpoint is.

The objetive is thus to hange the state spae from now being n and H
into n and T . So we are asked to do a variable transformation:

dH =
(
∂H(T ,p,n)

∂T

)

p,n
dT +

(
∂H(T ,p,n)

∂ p

)

T ,n
dp

+
(
∂H(T ,p,n)

∂nT

)

T ,p
dn

With the pressure being onstant, the seond term drops out and we get:

(
∂HT (T T ,pT ,nT )

∂T T

)

pT ,nT

dT T

d t
+
(
∂HT (T T ,pT ,nT )

∂nT
T

)

T T ,pT

dnT

d t

= Fm
T
Ĥ+Fq

T
q̂ (9.3)

To keep things under ontrol, we now arry along all the variables for whih

the enthalpy is a funtion of. Whilst this makes writing and reading some-

what umbersome, it is neessary to keep trak of the representation spae.

At this point it is handy to remember that the enthalpy is a thermodynami

state funtion whih with the given assumptions is being onserved and thus

is an Euler-one-type of funtion with respet to mass. So the superposition

applies and we an write:

H(T , p,n) =
(
∂H(T ,p,n)

∂nT

)

T ,p
n

The partial derivatives are alled the partial molar enthalpies for whih we

introdue a short notation:

h(T , p,n) =
(
∂H(T ,p,n)

∂nT

)

T ,p

The other partial derivative an also be normed by the mass:

(
∂H(T ,p,n)

∂T

)

p,n
= mcp(T , p,n)

whereby the suh normed partial derivative of the enthalpy with respet to

the temperature is alled the spei� heat apaity at onstant pressure for

whih we use the symbol cp. The total mass is to be omputed from the

vetor of molar masses and the mole-masses λm :

m := λT
m n
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It should be noted that the spei� heat apaity is a funtion of the same

variables as the enthalpy, thus this is the spei� heat apaity of the mix-

ture.

Looking at this , we have now two terms on the left-hand side. But in-

spetion shows immediately that we have an equation for the hange of

mass,

dn

d t
= Fm

T
n+NT V T ξ̃

T
(9.4)

for whih we also used the de�nition of the prodution term implied in .

This above equation we an substitute:

mT cp(T T , pT ,nT )
dT T

d t
+ hT

T (T T , pT ,nT )
(

Fm
T
n+NT V ξ̃

)

= Fm
T
Ĥ+ Fq

T
q̂

Next step is quite obvious: one ombines the sums on the left with the one

on the right:

mT cp(T T , pT ,nT )
dT T

d t
=Fm

T

[
(
hT
m(Tm, pm,nm)− hT

T (T T , pT ,nT )
)
n̂m

]

∀m
− hT

T (T T , pT ,nT )N
T V T ξ̃

T
+ Fq

T
q̂

The produt hT (T , p,n)NT =
(
Nh(T , p,n)

)T
is a linear ombination of

the partial molar enthalpies, whereby the weights are the stoihiometri

oe�ients of the individual reations. These are vetors appearing as rows

in the stoihiometri matrix. De�ning vetors as olumn vetors, the vetor

of stoihiometri oe�ients for reation r is denoted by νT
r , and multiplying

it with the vetor of partial molar enthalpies gives the reation enthalpy:

∆hr := νT
r h(T , p,n)

thus for the produt Nh(T , p,n):

∆h := Nh(T , p,n)

Substitution gives us the text-book equation:

mT cp(T T , pT ,nT )
dT T

d t
=Fm

T

[
(
hT
m(Tm, pm,nm)− hT

T (T T , pT ,nT )
)
n̂m

]

∀m
−∆hTT V T ξ̃

T
+ Fq

T
q̂

The reation-related term is often alled an �energy prodution� term, whih

ought to ause some exitation in the reader's mind, as energy is onserved

and annot be generated! So what is �shy here? Well we simply have
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moved terms from the aumulation to the other side. So this is not really

any more an enthalpy balane, but it desribes the proess in a state spae

of a seondary, but intensive variable �temperature�, whih is thought to be

often measurable instead of in the enthalpy state spae. Along these lines

it should be noted that the mass �ow now is weighted with the di�erene of

the enthalpy in the respetive stream minus the enthalpy of the ontainer's

ontent. Thus for the out-�owing �ow, this di�erene is zero, whih makes

sense, as a mass out�ow does not a�et the �uid body it omes from as long

as it an be seen as uniform in the intensive properties. Having more of a

look into the logis of the equation, it says:

� As there is more ontent, things go slower

� As the ontent has a higher spei� heat apaity, things go slower

� As the molar partial enthalpies of the inoming streams are bigger,

the e�et of the stream on the temperature inreases orrespondingly

� As the in�ow inreases, the e�et on the temperature inreases

� If the reation is exothermi, thus ∆h < 0 the temperature inreases

� Heat loss dereases the temperature

all of whih sounds rather OK if we ompare it with our ommon experiene.

At this point text books go often a step further by giving an expression for

the partial molar enthalpy:

h(T , p,n) :=

∫ T

T ref

cp(T , p,n) dT

The used cp is a funtion of the omposition, whih is the omposition

of the mixture. Often one assumes that the mixing e�ets are negligible

and one estimates the spei� heat apaity as a linear ombination of the

omponent molar mass and the spei� heat apaities of the pure speies.

Indiating pure speies properties with a blak bullet deorator:

h(T , p,n) := h(T , p)•

So if we now further assume that the heat apaity is not a funtion of the

temperature, or that the temperature dependeny in the given interval an

be negleted:

cp(T , p,n) := cp
•(p) ,

then we get
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h(T , p,n) := cp
•(p) (T − T ref ) and:

cp
•(p)T T

nT

dT T

d t
=Fm

[
(
cp
•(pm) (Tm − T ref )− cp

•(pT ) (T T − T ref )
)
n̂m

]

∀m
−∆hTT V T ξ̃

T
+ Fq

T
q̂

whih for the pressure in the �ows being equal to the pressure in the tank

simpli�es to:

cp
•(p)T T

nT

dT T

d t
=Fm

[
(
cp
•(pT ) (Tm − T T )

)
n̂m

]

∀m
−∆hT

T V T ξ̃
T
+ Fq

T
q̂

whih spans together the new state spae with the omponent mass balane

, as desired.

9.5 More on spaes

So far we have used omponent mass and energy as the state spae in whih

we onstruted the mathematial model. We also have talked about spaial

o-ordinates and impliitly time. At one point we promised to arry all the

variables along, but then if we are heking very arefully we often did not

inlude either the spaial o-ordinates or the time; so for example equation

. Sine we model a lumped system it is by de�nition not a funtion of the

position, but it is ertainly a funtion of time:

ḢT (T , p,n; t) =
∑

∀m
αs,m Ĥm(Tm, pm,nm; t)− q̂T |J(T T , T J ; t) .

Classial �thermodynamis� is not dynami, but stati. Thus the introdu-

tion of time should make us enter the domain of non-equilibrium thermo-

dynamis.

The subjet enters also in the material desription, thus in the modelling of

the involved materials. These elements inlude most of the material prop-

erties, suh as ondutivities of heat, di�usivity of mass, density, hemial

potential, heat apaity et. et. Most of the modelling we have done is on

the marosopi sale, whilst the material properties re�et the small-sale

behaviour. If one dives into the smaller sale, one will again meet similar

representation that often are based on ontrol volumes and their respe-

tive ontent. If we zoom in time sale �tting the smaller length sale, also

these systems are desribed by the dynami onservation priniples. As

one zooms in sale by sale, one eventually leaves the domain of ontinuous
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mass and one enters the domain of partiles, whih may be moleules and

further atoms. The ab initio omputation methods allow us to ompute

models on the nano-sale and below. Shrödinger equations an be solved

at least approximately for atoms and their omponents, ombine them to

moleules and density funtion theory enables us to ompute for example

the ternary struture of moleules and mixtures. Based on these models it

is now possible to estimate the energy surfae and the main properties of

mixtures.

The models for the sales form layers, or like an onion a layer of shells. Eah

layer di�er in around 2-3 orders of magnitude both in the time sale and

the length sale. On eah level, one assumes the smaller system to reah

an equilibrium very fast, so that it an be onsidered event-dynami. The

behaviour of the underlying system is then approximated by a surrogate

model, replaing the small-sale model with a simpler integral behaviour.

This forms thus a hierarhial modelling system.

The surrogate models have often a mehanisti bakground that is based

on an ideal behaviour of the modelled system, suh as the Van der Waals

model for the pressure-temperature-volume relation.

One of the main keys of omputational thermodynamis is the inreasing

omputer power. As the number of partiles that we an ompute inreases,

and the number of onsidered interations inreases, the auray of the

predition will also inrease. So it appears to be only a funtion of time

that laboratory experiments are substituted by omputational experiments.

This has a huge advantage of not being limited by physial limitations and

it is also signi�antly heaper and saver to perform.

The spae of the event-dynami systems �sits� orthogonal on the trajetory

of the slower system, so-to-speak: in every point in time and spae, the faster

system is assumed to be in equilibrium. Thus equilibrium thermodynamis

applies.

Trying to depit this, we de�ne a state-spae using the notation x : x :=
[

nT ,H
]T

whereby the enthaply is spanned in the �thermodynami� state

spae, namely temperature, pressure and omposition. So if we ompute

the enthalpy at any point in time from the heat apaity, for example, we

integrate in the thermodynami state spae over temperature, what we have

referred to as the �orthogonal state spae� above. If we try to piture this,

we have the obvious problem of extending into more than just 3 dimensions,

whih makes it impossible to draw. Thus simplifying the piture showing

just two thermodynami state variables, say x1, x2 the trajetory may look

like shown in 9.2 The underlying assumption is that the proess is loally

in equilibrium, this we always move on a equilibrium surfae formed by the
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x1

x2

t

Figure 9.2: A trajetory in the dynami thermodynami state spae

bundle of loal equilibria. So if we ompute the enthalpy by integrating

the heat apaity over the temperature, for example then we integrate in

one of the x-diretions in a subspae forming a plane perpendiular to the

respetive time.
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From distributed systems to transfer

laws

Synopsis The splitting into ontrol volumes is not only motivated by dis-

ontinuities of some intensive properties, thus phase boundaries, but also by

the relative dynamis of the sub-proesses. This really introdues the notion

of �time sales� and relative dynamis. Sine equipment is build to transfer

heat, or mass, for example it is no surprise that these transfer systems are

usually very fast, they really are designed to have this property. This moti-

vates the idea to use the di�erene of the dynamis in the di�erent parts to

make dynami order-of-magnitude assumptions. Besides of a lot of other re-

sults, this yield, when applied to distributed models of suh transfer systems,

to quite simple transfer laws, whih are in many of the engineers bakpak.

10.1 Nature of transfer systems

Transfer systems are sandwihed between two subsystems, providing the

physial arrier for the extensive quantity being transferred between the

two onneted subsystems. In order to transfer extensive quantity, it must

be ondutive for the extensive quantity. Nature is suh that it is often

not just the one quantity that is being transferred, but often it is more

than just one extensive quantities that is transferred. For example, a pipe

transferring �uid due to a pressure di�erene from one end to the other, will

invariably also ondut heat, if there is a temperature di�erene. Thought

this ondutive heat transfer is often not important, it nevertheless is there.

Transfer systems are distributed systems thus the state is a funtion of the

position and time. The transfer is driven by a di�erene in the e�ort vari-

ables at the two opposite boundaries, whih it shares with its environment.

Apparently this may apply to any system. So we use the term �transfer

systems� for system that are in the said �sandwih� position where they are

relative to the environment very fast. In this ase we model an idealised

transport, whih just �happens�.

117
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Suh sandwihed systems may also be exhibit quite the opposite behaviour,

namely that they blok a transfer of an extensive quantity thereby isolating

one part from the other. Mathematially this deouples systems in terms of

the bloked extensive quantity transfer. In the ase of fast transfer things

look di�erent, in that the apaity e�et of the transfer relative to the

transfer rate is disappearing. This leads to a mathematial desription in

whih the state of the fast transfer system is a funtion of the boundaries

only.

10.2 Heat transfer

Our daily experiene is the main soure of our understanding of temper-

ature. But then do we really have an understanding of temperature? A

simple example makes us quikly a little more autious: Our hand is one of

our body parts that we onsider very sensitive to temperature. Touhing

an objet gives us a sensation, whih we usually interpret as temperature,

but is it temperature? If we touh the metal leg of our hair or table or

what ever else of a metal objet in our room and then hange over to touh

a wooden objet in the same room, suh as the top of the table or the seat

of the hair, does it feel like having the same temperature? Well no, the

metal will �feel� older in omparison to the wooden objet, but then are

they of di�erent temperature? If something is warmer than the other and

they are diretly in touh with eah other, ommon experiene indiates

that they will exhange �energy� until they are of the same temperature.

With the two objets standing in the same room for an extended period of

time, one would expet that a loal equilibrium has been reahed, at least

lose enough, so that the two objets are of the same temperature. So if

we really would feel temperature, the two objets should feel the same, but

they do not. Sine both objets are typially older than our body temper-

ature, what we seem to feel is the heat �ux and not the temperature per

say, from whih we onlude that what we feel is energy �ow, thus �heat�

and not temperature

1

.

In the early days of siene after the invention of the steam engine, heat

was seen as a massless material, whih omes with the matter. It took quite

some time for the sientists to ome to terms with heat (Truesdell (1980))

and identify it as a measure losely related to entropy and internal energy.

Today heat is de�ned as an energy in transition. Consequently heat annot

1

New researh indiates that this piture needs to be further detailed as heat-deteting

ion-hannels in the skin are temperature dependent and seem to show signi�ant di�erent

behaviours in di�erent temperature ranges.This an then give indiret information about

the temperature range ?
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be stored as heat, but as internal energy. Temperature re�ets the di�er-

ent mehanial energies assoiated with matter, suh as internal vibration,

rotation and the moleules moving about. Heat is �owing spontaneously be-

tween two bodies of di�erent temperature. The disussion on this subjet

has not subdued. In fat it is ongoing, though with a di�erent �avour. It

is argued that one should better introdue entropy in plae of temperature,

as entropy �ts the every-days oneption better (Hermann (2004)).

wall

0 d∆x
x

Figure 10.1: A one-dimensional heat

di�usion problem

A mathematial desription on how

energy in the form of heat is be-

ing dissipated in a material an

be derived from a the energy bal-

ane drawn up around a small,

representative volume element in a

problem-�tting o-ordinate system.

In the most simple ase this is a

one-dimensional system suh as a

wall, where the temperature only

hanges aross the wall. So the

physial piture is shown in 10.1.

The unit ell of the desription is

the small slie of the wall (see 4.4). With no material �owing in and out,

the energy balane only inludes the energy �ows: one into the slie and

one out, the di�erene of whih is the aumulation in the slie:

Ḣ = q̂|x − q̂|x+∆x

The heat �ow is given proportional to the area (A), the thermal ondu-

tivity (kq) and with the temperature being the e�ort variable, the negative

temperature gradient

∂T
∂x :

q̂|x := −Akq
∂ T

∂ x

The �ow at the position x+∆x is given by the �rst variation:

q̂|x+∆x := q̂|x +

(
∂

∂ x
q̂

)

x
∆x

:= q̂|x − ∆V kq
∂

∂ x

∂ T

∂ x

So the enthalpy balane then simpli�es to:

Ḣ = ∆V kq
∂2 T

∂ x2
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and with the enthalpy being H := ρ∆V cpT the cp, the spei� heat a-

paity at onstant pressure being

∂H
∂T we an easily take the limit to a

di�erential hange in the x-o-ordinate. The result is the familiar heat dif-

fusion equation of Fourier:

∂ T

∂ t
= α

∂2 T

∂ x2
, α :=

kq

ρ cp

In ontrast to what had been shown before, namely the integral method

(see 4.2) this derivation is known as shell balane method and is widely

elebrated in hemial engineering (see 4.4).

10.2.1 A fast heat transfer system

Insulation is the uninteresting ase: nothing is �owing, at least ideally. Fast

internal heat transfer it more interesting. In fat it is a very ommon model

omponent beause plants are usually designed to enable fast heat transfer

suh as in heat exhange equipment. The assumption is that when hang-

ing the temperature at one of the boundaries, the internal equilibrium is

reahed very quikly, muh quiker than the hanges our at the bound-

aries. 10.2 shows the fast behaviour of a uniform wall after the temperature

has hanged on the right boundary from 0 to 1 in an instane. The pro�le,

starting with a step, adjust to a line onneting the two boundary temper-

atures.

The result an be derived formally using the singular perturbation argument

(D) using

1
α as the singular perturbation parameter, whih shows that the

system reahes the equilibrium quikly in a large time sale. Thus this then

gives:

lim
α→∞

1

α

∂ T

∂ t
= 0

= d2 T
dx2

Whih of ourse is a straight line onneting the onditions at the bound-

aries. The two parameters, namely the slope a and the intereption b is

found readily by means of substitution:

for x = 0 : T (0) := a 0 + b

for x = d : T (d) := a d+ b
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Figure 10.2: Keeping the temperatures onstant on eah end after hanging

the left boundary from 0 to 1 at time zero, the temperature approah the

equilibrium, whih is a straight line between the two boundary temperatures

whih gives for:

b := T (0)

a :=
T (d)− T (0)

d

This is a straight line, but more so, that the state of the transfer system is

solely given by the onditions at the two boundaries! So the state of the

transfer system beomes obsolete, in the sense that it an be ompletely

onstruted from the boundary onditions.

10.3 Fluid �ow

Besides the mass balane the ore of modelling �uid �ow is the momentum

balane, whih in di�erential form is known as the Navier-Stokes equation

(Bird et al. (2001)). In ontrast to the energy onservation and the mass

figures/C_10__DistributeToTransfer/WallSimulatedHeatDiffusion.eps
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onservation, the momentum onservation has four independent variables,

namely the three spatial o-ordinates and time. This makes this equation

one of the most di�ult ones to handle. For inompressible �uids, though,

the situation is not really so terribly di�ult. Let us have a look:

ρ

(
∂ v

∂ t
+ v▽v

)

= −▽p+▽T + f

is the generi Navier-Stokes equation with ρ the density, v the veloity, ▽
the gradient operator, p the pressure, T the stress tensor, f the external

body fores per unit volume. One often �nds that the left-hand-side is

written as ρ
Dv
D t whih is alled the material derivative.

The assumption of inompressible �uid leads to a signi�ant simpli�ation:

inertia per volume

︷ ︸︸ ︷

ρ









∂ v

∂ t
︸︷︷︸
mass

aelleration

+ v▽v
︸ ︷︷ ︸

onvetive

aelleration









=

divergene of stress

︷ ︸︸ ︷

− ▽p
︸︷︷︸

pressure

gradient

+ µ▽2 v
︸ ︷︷ ︸

e�et of

visosity

+ f
︸︷︷︸

other body

fores

(10.1)

whereby the visosity term is a di�usion of momentum. The other body

fore term may inlude mehanial ation on the �uid as well as the e�et

of the gravitation �eld.

Let us step aside for a moment and think what happens in a straight piee

of pipe: We feed the �uid in there at an elevated pressure ompared to the

outlet. In between, energy is dissipated through frition on the wall and

internal between the moleules, as they move past eah other at di�erent

relative veloity. These losses are entropy losses and make the wall and

the �uid to hange temperature. In many ases this is not very signi�ant

and thus it is usually quite simply ignored. If we do so, then the equations

beome even more simple. Formulating the onservation of mass (4.4), for

example, the balane redues to:

∂ ρ

∂ t
+▽ · (ρv) = 0 simpli�es to ▽v = 0

10.3.1 The steady-state

So let us do the same analysis as we did for the heat transfer: At steady

state, the mass is not aelerated, thus the veloity is not hanging with

time, whih makes the �rst term in 10.1 zero. For simpliity, we take a
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straight horizontal piee of pipe, whih makes the onvetive aeleration

term zero. The visosity di�usion term is usually quite small, at least in

a thin liquid, so let us assume it is negligible. We also assume not muh

is happening inside the pipe with respet to turbulenes, veloity pro�les

or the like. For the straight pipe we have to onsider only one o-ordinate.

We hoose to all it the x-o-ordinate and frition ours also only in the

x-diretion and is a loss so the sign is negative. The position we measure

from the high pressure end. Then:

0 = −▽p− f simpli�es to 0 = −∂ p

∂ x
− fx

This equation is to be integrated over the length of the pipe:

∫ x

0

∂ p

∂ x
dx = −

∫ x

0
fx dx

With the frition not being a funtion of the position, the result is a linear

relation: the pressure drops linearly with length:

p(x) = p(0)− fx x

Literature also o�ers another approah for the analysis: the energy balane.

We draw up an overall energy balane enlosing the starting end to any

position along the pipe. The green envelope signi�es the domain on whih

the balane is drawn up in 10.3. On the left-hand-side, the �ow is oming

0 x L x

Figure 10.3: A one-dimensional �ow in a straight pipe

into the ontrol volume and on the right it is leaving at the position x.
If we assume an inompressible �uid, then the two �ows will be idential.

Further, mass arries energy and it does volume work on the system as it

omes in and on the environment when it leaves. In form of an equation

this is:

dE

d t
= Ê(0) − Ê(x) + ŵV (0) − ŵV (x)− ŵf

The energy onsists of three parts, the internal energy, the kineti energy

and the potential energy. The �rst ontribution is assoiated with the ma-

terial, whilst the seond is the e�et of the mass moving. The third is the

e�et of the gravitational �eld. If other �eld e�ets are present then those

have to be onsidered as well, but for the purpose of this exposition we leave
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it at the gravitational �eld. The last term is an integral frition loss term.

Algebraially the energies are:

E := U +K + P ; K :=
mv2

2
; P (x) := mg h(x)

Sine internal energy is a fundamental extensive quantity, thus is of Euler

degree one, we an represent the internal energy as a produt of the internal

energy per unit mass

∂U
∂m and the mass. To omplete the piture, we need

to provide an equation for the volume work, whih is the pressure times the

volumetri �ow:

ŵV (x) := p(x) V̂

The volumetri �ow is onstant as the �uid is inompressible and the density

is assumed to be onstant.

First we expand:

U̇ + K̇ + Ṗ = Û(0) + K̂(0) + P̂ (0)

−
(

Û(x) + K̂(x) + P̂ (x)
)

+p(0) V̂ − p(x) V̂ − ŵf

and then substitute the respetive de�nitions:

U̇ +
d mv2

2

d t
+

dm

d t
g h(x) = Û(0) +

m̂ v2(0)

2
+ m̂ g h(0)

−Û(x)− m̂ v2(x)

2
− m̂(x) g h(x)

+p(0) V̂ − p(x) V̂ − ŵf

At steady state we have no dynamis and the left-hand-side is zero.

0 =Û(0) − Û(x) +
m̂ v2(0)

2
− m̂ v2(x)

2
+ m̂ g h(0)− m̂ g h(x)

+p(0) V̂ − p(x) V̂ − ŵf

Assuming that the temperature e�et is negligible, the internal energy does

not hange. If we divide by the volumetri �ow, whih by assumption is

onstant over the system (inompressible, no thermal e�ets and no hange

in omposition), we get :

0 =
ρ

2

(
v2(0)− v2(x)

)
+ ρ g (h(0)− h(x)) + (p(0)− p(x))− fx x
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If in addition we assumed that the diameter of the pipe does not hange,

whih eliminates the kineti energy term, and sine the pipe is horizontal,

the two potential terms are the same. So what is left is the volume work

terms and the frition term:

0 = p(0) V̂ − p(x) V̂ − ŵf

= (p(0)− p(x))− fx x

whih again gives us the same linear relation. This approah is largely due

to Bernoulli, though no frition was inluded at the time. The isothermal

energy balane is also alled a mehanial energy balane.

10.3.2 Controlling and measuring �ow

The fats re�eted in Bernoulli's equation an be used in for measuring

�ows. We all are supposed to know that if we take two sheets of paper,

preferably slightly urved and blow in between that the two piees will

move towards eah other and not apart as one would �rst assume.The �ow

between the two papers generates a lower pressure between the papers, so

the air pressure outside pushes the two papers together.

Putting onstraint into in the form of a nozzle into a pipe, a plate with a

hole or a smooth onstrition generates the same e�et, where the pressure

being measured in the onstrition or shortly after gives the information

about the �ow.

10.5 shows the situation for a simple nozzle, a smooth nozzle and below a

smooth onstrition. The ontration itself does not ause muh frition.

In the ase of the nozzles, the loss is mainly due to the eddies that form at

the outlet of the stream, whih also ause the minimal �ow ross-setion to

be somewhat down-stream of the nozzle. This stream ontration is alled

the vena ontrata.

no flow

Figure 10.4: A Bernoulli experiment: two slightly bent papers hanged up

on a pivot. Blowing in between makes them move together
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pressure drop

i



vi << vc

very small very large

frition fores ŵf

largvery small

o

veloities v̂

Figure 10.5: A nozzle in a pipe

The frition otherwise is omparable with the normal pipe frition. Sine the

pressure measurement is usually done in the domain of the vena ontrata,

but the diameter of the nozzle being used in the equation, the equations

are not quite re�eting the physial situation. This issue is signi�antly

lessened when onstruting a smooth ontration, whih in most ases is

simply more expensive. Drawing up the energy balane around the green

area again, we �nd

0 =
m̂ v2i
2

− m̂ v2c
2

+ m̂ g hi − m̂ g hc + pi V̂ − pc V̂ − ŵf

with the frition ausing very little of the pressure drop from i to , and the

pipe being horizontal the �ow rate is:

0 =
m̂ v2i
2

− m̂ v2c
2

+ pi V̂ − pc V̂

Experiments show that the pressure drop on the expansion is very small

and that the pressure in the vena ontrata is lose to the output pressure.

Also the veloity at the in�ow is muh smaller than the one in the vena

ontrata. Thus:

0 = −m̂ v2c
2

+ pi V̂ − po V̂

= −ρ v2c
2

+ (pi − po)

So if we know the diameter of the nozzle, we an ompute the �ow as the

produt of the veloity, omputed from the pressure drop, and the ross

setional area even though in many appliations the ontration is not done
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smoothly. At this point a orretion fator is introdued that ompensates

for some of the made assumptions:

1/c v2c = pi − po and the volume �ow is V̂ := cV
√

pi − po

where cV is a harateristi for the devie generating the stream ontration

and it also inludes the density of the material. These �onstants� are

usually obtained through alibration. Whilst one of the appliations is a

heap �ow-rate measurement, the same equation applies to a valve. The

cV is then alled the valve onstant though it is ertainly not onstant as

the valve hanges the ross setion when manipulating the �ow. The cV
is then often given for the ompletely open valve and another funtion is

introdued whih provides the information on how the �ow hanges with

the valve position relative to the rest of the equation, meaning the valve

onstant and the square root of the pressure drop.

10.4 More on pipes

Pipes are a ommon means of transferring material from one part of a

plant to another. It is quite ommon pratie that pipes are essentially not

modelled, implying that they simply appear in models as ideal �ow units

that have no e�et what-so-ever on the plant other than moving material

from one end to the other in zero time. Assuming an ideal behaviour thus

also inludes: no thermal e�ets, no time delay, and no mixing. Thus if

one thinks of a modelling as a hierarhy in the sense of having more rude

models on the top and �ner models as one moves down in the hierarhy,

then these models are towards the top. If one though requires pressure drop

information, then one has to move a little down and onsider the steady-

state behaviour of �ow in pipes a bit more arefully. Apparently this is a

ommon engineering problem and orrespondingly a lot of work has been

done on this subjet. The fat that this work was done over a very long

period indiates that it is di�ult whilst also important for the appliation.

The subjet is not losed as reent literature learly indiates. Thus we

annot over it omprehensively but just srath the surfae.

Flow in pipes is a omplex. In the ase of low veloities, the �uid behaves

like moving in layers. The stream lines follow the pipe and behave niely,

to whih we refer to as laminar �ow. With frition ating on the interfae

between the wall and the �uid and between the �uid layers, the �ow in the

entre is fastest and dereases as one approahes the wall. The shape of

the pro�le depends on the nature of the �uid. Ideally it will be paraboli,

but with non-ideal �uid the shape hanges mostly to �atter pro�les. As
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one inreases the �ow rate, things beome unstable and the �ow beomes

turbulent: the stream lines do not any more follow the shape of the pipe but

form eddies of various sizes. The nature of the swithing from laminar to

turbulent �ow is not ompletely understood, but ommonly assoiated with

small loal disturbanes. It is though speulated that the Navier-Stokes

equation is overing the sales from above the partile level, i.e. every sale

that an be desribed by marosopi �eld theory. Suh has been suggested

as early as 1926 by L F Rihardson and 1941 by A Kolmogorov, latter being

onsidered a very in�uential piee of work.

On the simplisti level, a saling law is being suggested, whih also is in the

spirit of Reynold and others that sought sale-independent representations.

Saling of the Navier-Stokes equation an be ahieved by multiplying it with

a fator D/ρ v̄2. D is a harateristi dimension. In pipes this is usually

the hydrauli diameter. ρ is the density and v̄ the mean veloity. De�ning

the saled variables:

v′ :=
v

v̄
, p′ :=

p

ρ v̄2
, f ′ := f

D

v̄2
,

∂

∂ t
:=

D

v̄

∂

∂ t
, ▽′ := D▽

Figure 10.6: Moody diagram showing the hange of the Dary-Weisbah

frition fator as a funtion of the Reynolds Number and the pipe roughness

as a family parameter. (soure: Wikipedia)

figures/C_10__DistributeToTransfer/Moody_diagram.eps
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the Navier-Stokes 10.1 then takes the form:

∂ v′

∂ t
+ v′▽v′ = −▽′p′ +

1

Re

▽′2 v′ + f ′

So the saling indiates that the �ows behave similar if they have the same

Reynolds number latter being de�ned as:

Re :=
ρD v̄

µ

In 1856 Henry Dary, a Frenh engineer suggested a model that links the

volumetri �ow to the pressure drop, simply as the volume �ow being driven

by the pressure gradient slowed down by frition in the pipe:

V̂ :=
kM A

µ
(po − pi)

where kM is the �permeability� of momentum, A the ross setional area,

µ the visosity and pi, po the pressure in, and the pressure out of the pipe,

respetively. The Dary-Weisbah equation is a phenomenologial equation

where the pressure drop ∆p is given by:

∆p = f
L

D

ρ v̄2

2

with L the length of the pipe. This provides a pratial mean for estimating

the pressure drop in a pipe. The fator f is the Dary frition fator, whih

is, aording to the similarity statement, a funtion of the Reynolds number.

The Moody diagram shows the relation between Reynolds number and the

Dary-Weisbah frition fator. The Dary-Weisbah frition fator f
is four times larger than the Fanning frition fator, latter being

more ommonly used in Chemial Engineering, whilst the former is more

used in ivil and mehanial engineering.

So for a horizontal pipe of length L the volumetri �ow and the pressure

we hoose to relate by the Dary-Weisbah relation:

pi − po := f
L

D
ρ v2

2

For laminar �ow, one gets the frition fator:

f :=
64

Re

:=
64µ

ρD v
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whih for the pressure drop gives:

pi − po :=
64µ

ρD v

L

D
ρ v2

2

:=
32µL

D2 v

:=
32µL

D2 A
V̂

:=
µ

kM A
V̂

whih is Dary's equation.

For high Reynold numbers, where the frition fator beomes onstant, one

�nds that the volumetri �ow rate is a proportional to the square root of

the pressure drop, thus

V̂ := −kM A
√

pi − po

:=

√

2D

f Lρ
A
√
pi − po

whereby f is onstant with respet to the Reynolds number but gets bigger

as the ratio surfae roughness / hydrauli diameter inreases.

10.4.0.1 Correlations

Apparently, the ritial piee of information is the frition fator. The

published Moody diagrams are the result of the olletion of data from

experiments over a long period, and have found wide aeptane and on-

sequent appliations. Sine diagrams are not usable for omputing, many

empirial models are used for �tting the di�erent behaviours, namely lami-

nar, transition and turbulent �ows. A quite large number of suh empirial

models exist and are readily found in the literature. The laminar one an

be derived analytially and is mentioned above. For smooth turbulent �ow,

often the Blasius relation is used:

f := (100Re)−1/4

For rough pipes one may use relations listed in appendix E.

10.4.1 A turbulent exursion

Turbulene is a fasinating subjet. The publi wiki has a nie exposure of

the subjet:
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�In a turbulent �ow, there is a range of sales of the time-varying �uid

motion. The size of the largest sales of �uid motion (sometimes alled

eddies) are set by the overall geometry of the �ow. For instane, in an

industrial smoke stak, the largest sales of �uid motion are as big as the

diameter of the stak itself. The size of the smallest sales is set by the

Reynolds number. As the Reynolds number inreases, smaller and smaller

sales of the �ow are visible. In a smoke stak, the smoke may appear to

have many very small veloity perturbations or eddies, in addition to large

bulky eddies. In this sense, the Reynolds number is an indiator of the range

of sales in the �ow. The higher the Reynolds number, the greater the range

of sales. The largest eddies will always be the same size; the smallest eddies

are determined by the Reynolds number.

What is the explanation for this phenomenon? A large Reynolds number

indiates that visous fores are not important at large sales of the �ow.

With a strong predominane of inertial fores over visous fores, the largest

sales of �uid motion are undamped � there is not enough visosity to dis-

sipate their motions. The kineti energy must "asade" from these large

sales to progressively smaller sales until a level is reahed for whih the

sale is small enough for visosity to beome important (that is, visous

fores beome of the order of inertial ones). It is at these small sales where

the dissipation of energy by visous ation �nally takes plae. The Reynolds

number indiates at what sale this visous dissipation ours. Therefore,

sine the largest eddies are ditated by the �ow geometry and the smallest

sales are ditated by the visosity, the Reynolds number an be understood

as the ratio of the largest sales of the turbulent motion to the smallest

sales.�

If visualised turbulenes produe beautiful patterns.

10.7

2

is a Landsat 7 image of louds o� the Chilean oast near the Juan

Fernandez Islands (also known as the Robinson Crusoe Islands) on Septem-

ber 15, 1999, shows a unique pattern alled a �von Karman vortex street�.

This pattern has long been studied in the laboratory, where the vorties

are reated by oil �owing past a ylindrial obstale, making a string of

vorties only several tens of entimetres long. Study of this lassi ��ow

past a irular ylinder� has been very important in the understanding of

laminar and turbulent �uid �ow that ontrols a wide variety of phenomena,

from the lift under an airraft wing to Earth's weather.

Here, the ylinder is replaed by Alejandro Selkirk Island (named after

the true �Robinson Crusoe�, who was stranded here for many months in the

early 1700s). The island is about 1.5 km in diameter, and rises 1.6 km into a

2

Image and aption ourtesy Bob Cahalan, NASA GSFC



132 CHAPTER 10. TRANSFER LAWS

Figure 10.7: LandSat 7 image of louds o� the Chilean oast

layer of marine strato-umulus louds. This type of loud is important for its

strong ooling of the Earth's surfae, partially ounterating the Greenhouse

warming. An extended, steady equatorward wind reates vorties with

lokwise �ow o� the eastern edge and ounter lokwise �ow o� the western

edge of the island. The vorties grow as they advet hundreds of kilometres

downwind, making a street 10,000 times longer than those made in the

laboratory. Observing the same phenomenon extended over suh a wide

range of sizes dramatizes the �fratal� nature of atmospheri onvetion and

louds. Fratals are harateristi of �uid �ow and other dynami systems

that exhibit �haoti� motions.

Both lokwise and ounter-lokwise vorties are generated by �ow around

the island. As the �ow separates from the island's leeward (away from the

figures/C_10__DistributeToTransfer/vortex_lg.eps
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soure of the wind) side, the vorties �swallow� some of the lear air over

the island. (Muh of the island air is loudless due to a loal �land breeze�

irulation set up by the larger heat apaity of the waters surrounding the

island.) The �swallowed� gulps of lear island air get arried along within

the vorties, but these are soon mixed into the surrounding louds.

Landsat is unique in its ability to image both the small-sale eddies that

mix lear and loudy air, down to the 30 meter pixel size of Landsat, but

also having a wide enough �eld-of-view, 180 km, to reveal the onnetion

of the turbulene to large-sale �ows suh as the subtropial oeani gyres.

Landsat 7, with its new on-board digital reorder, has extended this apa-

bility away from the few Landsat ground stations to remote areas suh as

Alejandro Island, and thus is gradually providing a global dynami piture

of evolving human-sale phenomena.

10.5 Mass di�usion

Mass di�usion is the e�et of small-sale anisotropi movement of speies

relative to others. In a �xed phase this may be a hemial speies that

moves relative to the material making up the �xed phase. In �uids it is

the movement of one or several speies relative to eah other. Di�usion

movement is thus de�ned relative to a o-ordinate system. Apparently

this an get quite involved as the di�using material is moving and thus

ontributes to the de�nition of the overall movement of the mixture one

desribes. So for a binary mixture, for example one may de�ne a mole-

average veloity:

v :=
c1 v1 + c2 v2

c1 + c2

whih for multiomponent systems extents to:

v :=

∑

i ci vi∑

i ci

The veloity vi for speies i is thereby measured relative to a equipment-

relative stationary o-ordinate system. The molar onentrations ci are the
weights of the averaging proess. The sum of the molar di�usion �uxes

relative to the molar average veloity is zero in any mixture. Thus in a

binary mixture the two di�usion �uxes are equal (Bird et al. (2001)): one

talks about equimolar ounter di�usion, as one speies moves in the opposite

diretion relative to the other. The �ow of the individual speies relative

to the average veloity is then of the form:

j1 := −Di▽1κ1
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where x is here the mole fration. Quite ommonly, instead of using the mole
fration, one uses the molar omposition, thus the number of moles normed

by the volume. From our earlier disussion in 5.1 the hemial potential is a

good andidate, but it is rarely used beause it leads to a omplex struture

of the di�usion equation, whih is easy to reognise when substituting a

model for the hemial potential into the generi di�usion equation: 4.5.

The extensive quantity is then the molar onentration or molar density

and the hemial potential is the e�ort variable:

∂ c1
∂ t

= D1
∂

∂ r

∂ µ1

∂ r

and the model for the hemial potential, whih links the hemial potential

to the omposition, is typially a logarithmi relation of the kind:

µi := µo
i +RT lnκi

with the

o
-deorator indiating the standard potential and the µ the gas

onstant, T the temperature and κi the mole fration, whih is the fration

of the molar onentration and the total molar onentration.

One also talks about di�usion when one has intense mixing, where the me-

hanis of the �uid �ow generates eddies of very small sale as this is the

ase in (highly) turbulent �ow. With these eddies shifting �uid partiles

passed eah other, loal di�usion an take plae, whilst the eddy �ows keep

on hanging the loal environment. Moleular di�usion is often referred to

as pure di�usion. It is largely driven by the speies thermal movement,

whih has a preferred diretion, determined by the gradient of the hemi-

al potential, the temperature (thermo di�usion) or the pressure (Dufour

di�usion). The latter two are in most tehnial appliation of negligible

dimension.

10.5.1 Common di�usion model

As mentioned, the most ommon form being used is to make the omposition

the driving fore, beause it leads to seemingly simple equation, namely

Fik's seond law:

∂ c

∂ t
= D ∂

∂ r

∂ c

∂ r

We have now dropped the index on the omposition, assuming di�usion of

one speies in a seemingly stationary phase, whih simpli�es the question

of relative veloity. This desription thus �ts di�usion in for example mem-

branes but it is also used to desribe phase-transfer behaviours, where it

leads to an interesting problem.
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10.5.1.1 Inside a single phase

If we stay within a phase, that is we do not ross a phase boundary, the

mathematis of mass di�usion is the same as the one of heat di�usion. So

making order-of-magnitude assumptions is handled in the same way and

yields the same results: A fast di�usion system an be approximated by a

linear stationary solution for the transfer system (see 10.2.1).
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11

Going bak and forth the phase

boundary

Synopsis One of the main arguments for splitting a spaial domain is the

disontinuities of some intensive properties at the phase boundaries. Trans-

port aross the phase boundaries is thus a very ommon model omponent.

11.1 A physial piture

On the mirosopi sale moleules move or are moved about by external

fores exerted by the immediate neighbours in the form of impulse transfer

and external �elds. As the ondition hanges in the environment, the move-

ment hanges, so sine the onditions hanges towards the boundary, the

movement of the moleule also hanges. The movement of the moleules

is not quite random but it is skewed towards one or the other side, whih

one observes on the marosopi sale as the onditions hange along the

spatial o-ordinate. Consequently the moleules are either attrated to the

boundary or pushed away. The interfae itself is thereby a non-sharp do-

main within whih the onditions hange more rapidly over the spatial o-

ordinates as ompared to either side of the oupled spatial domains. The

gradient of all properties tend to hange, in partiular the e�ort variables.

On the marosopi sale, then, the gradient hanges disretely, has a jump

at the boundary, whih on this sale has no volume, but redues to a surfae.

The immediate attahed domain serve as the transport system in whih the

onditions hange more gradually. Apparently, the desription of these

hanges depends on the nature of the transport system. One of the main

issues being if the material is a �uid or a solid and if it is a �uid, if it is

stagnant or moving. Whilst the result is in its nature often the same, the

path to the result varies.

The result is either a marosopi model in the form of a �lm in whih

the onditions hange or it is a stohasti model in whih volume elements

interat with eah other aross the interfae. The existene of suh a miro-

137
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volume transport an be derived from �uid models, primarily when one deals

with turbulent �ow. Then the small eddies an be seen as separate volume

elements, that are whilst spinning, also moving and hitting the interfae

with a ertain probability. One they are at the interfae they have a

stohasti time interval during whih they stay attahed to the interfae

and interat with the neighbour aross the boundary. This latter exhange

is usually modelled very muh the same as the ontinuous marosopi

model, namely with loal di�usion.

These onsiderations have lead to the formation of di�erent models desrib-

ing the exhange aross phase boundaries. One of the earliest doumented

one is due to Nernst.

11.2 Boundary layer theory

11.2.1 Nernst di�usion layer

The idea of a di�usion layer in �uids is attributed to Nernst (1888). It is

based on the thought that the �uid is stagnant on the surfae and that the

e�ort variable hanges gradually from the bulk of the �uid as one approahes

the interfae. Geometrially the stagnant �lm is relatively thin ompared to

the bulk dimension. Sine the intensities hange gradually, the de�nition of

the �lm thikness is not readily done. One an think of di�erent approahes,

for example the thikness of the �lm is where the driving fore has dropped

down to 1 % or the like. Nernst suggested to use the gradient at the interfae

for the de�nition of the �lm thikness. Spei�ally, the �lm thikness is

de�ned as the intersetion point of a straight line with the slope of the

the gradient of the e�ort variable and the axis interation being the e�ort

variable π at the interfae.

The thikness of the di�usion �lm is de�ned by the straight line given by:

(
dπ

dx

)

:=
π
bulk

− πi

d

Whilst Nernst used it to de�ne di�usion of ions, the model an be applied

to various problems. One of the ommon elebrated problems are falling

�lm adsorbers in whih a gas is adsorbed in a �uid that runs down a tube

in form of a �uid �lm. In this ase the �ux hanges with time, as the bulk

omposition hanges as one moves down the tube. The onsequene being

that the di�usion �lm gets thiker.
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diffusion film

b

πbulk

d

bulk

πi

Figure 11.1: Nernst di�usion boundary layer

11.2.2 Two-�lm theory

The transfer of mass aross a phase boundary is often desribed by two

oupled di�usion proesses. If the two phases are both solids, this view

is natural. In the ase where one or both phases are liquids, this view

of the proess' behaviour is based on Shlihting's boundary-layer shool

(Shlihting et al. (2004)): The model assumes the formation of two �lms

on either side of the phase. Again in the ase of stationary �uids, this

is a rather natural assumption. Not so muh though for a �owing �uid

the arguments of whih we leave the reader to extrat from the transport-

phenomena literature (Bird et al. (2001)).

For interfaes between �uids, the original idea was developed early by Lewis

(1916) and Whitman (1923). This approah assumes that the turbulene

dies out towards the interfae and that the transfer is determined by two

�titious di�usion �lms one on eah side of the interfae. It is postulated

that at the interfae an equilibrium establishes as soon as the two faes

ome into ontat. This implies that on the marosopi sale, the e�ort

variables are ontinuous. Thus on the small sale we assume the equilibrium

to be established instantaneously, here at the interfae.

The ontinuity ondition for the e�ort variables generally applies to maro-

sopi system with the exeption of shoks. With the interfae itself having

no apaity, its behaviour is of a event-dynami system and the �ux in is

equal to the �ux out for all the onserved quantities. The theory simply

uses Nernst's di�usion layer piture twie, oupling the two �lms through

the ontinuity ondition of the e�ort variables and the �ux ondition on the

interfae assuming the interfae does not have apaity.

figures/C_11__Interfaces/DiffusionNernstApprox.eps
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11.2.2.1 Heat di�usion

The pure heat di�usion is the simplest proess. This assumes that no mass

is being transferred between the two phases, but purely energy in the form of

heat. The driving fore for the ondutive heat transfer is the gradient in the

temperature, the temperature being the e�ort variable. The energy balane

equation for the boundary, being again assumed to be of negligible length

sale and thus of event-dynami nature thus exhibiting no apaity e�ets,

provides the analytial statement. The energy balane for the interfae I is

then simply:

ĖI := q̂−ǫ − q̂+ǫ := 0

With no apaity of the interfae, the left-hand-side beomes zero. And the

�ow of heat in is idential to the �ow out. This is the �ux ondition at the

surfae. The seond ondition is the ontinuity of the e�ort variable, that

is, the temperature on either side of the interfae is the same.

phase α

phase β

bb T
β
+ε

T
β
bulk

Tα
bulk

dα dβ

Tα
−ε

Figure 11.2: Pure heat transfer aross a phase boundary

11.2.2.2 Mass di�usion

The situation is somewhat more hallenging in the ase of mass di�usion.

The main reason is that whilst the e�ort variable is the hemial potential,

historially it is the gradient in the omposition that is responsible for the

mass-di�usion transfer. The relation is know as Fik's �rst law and an be

seen as a linearised version of the transfer law that is based on the gradient

of the hemial potential. Let the relation between hemial potential and

figures/C_11__Interfaces/DiffusionThermoPhaseBoundaryNernstApprox.eps
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the onentration be:

µi := µ0
i +RT log

ci
c0i

and

∂ µi

∂ x
:= RT

∂

∂ x
log

ci
c0i

:= RT
∂

∂ ci

(

log
ci
c0i

)
∂ ci
∂ x

:= RT
1

ci

∂ ci
∂ x

Fik's law is the most ommonly used transport equation. Thus if one uses

Fik's �rst and seond law in their ommon form, it is the onentration

that is seen as the driving fore, even though in reality it is the hemial

potential that drives the transfer. The fat that it is the hemial potential

that is ontinuous aross the boundary, makes the omposition to hange

disretely. There is a jump (see 11.3) and the gradient hanges disretely

at the interfae.

phase α

phase β

b

b cα−ε

c
β
+ε

c
β
bulk

cαbulk

dα dβ

x

Figure 11.3: Conentration jump at the boundary and Nernst approxima-

tions

The jump in the omposition for eah speies an be omputed from the

model for the hemial potential and the equilibrium ondition at the bound-

figures/C_11__Interfaces/DiffusionPhaseBoundaryNernstApprox.eps
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ary:

µα
i = µβ

i

µo,α
i +RT lnκα

i = µo,β
i +RT lnκβ

i

whih leads to:

µo,α
i − µo,β

i = RT
(

lnκβ
i − lnκα

i

)

µo,α
i − µo,β

i

RT
= ln

κ
β
i

κα
i

In the ommon ase where the omposition is dominated by the stationary

speies on eah side, the above expression simpli�es to:

µo,α
i − µo,β

i

RT
= ln

cβi
cαi

:= lnKα,β
i

The expression on the left-hand side is onstant and its exponential is often

alled Nernst's distribution onstant. Giving the equation for the jump:

cβi := cαi K
α,β
i

The di�usion �ow model uses the gradient of the omposition, thus it is

natural to de�ne a di�usion layer thikness based on the gradient. The

thikness is then de�ned by the intersetion of the bulk omposition and

the gradient at the boundary (see 11.3):

−Di▽ci = −Di

dα
(cαi,−ε − cαi,bulk)

and

dα =
cαi,−ε − cαi,bulk

▽ci

whih similarly applies to the β-phase.

11.2.2.3 Momentum di�usion

The same onept an be applied to momentum transport being desribed

by the Navier-Stokes equation. Again a �lm-layer thikness an be de�ned

along the same lines as done for the heat di�usion and the mass di�usion.

One observes, that in general the layer thikness for the heat transfer is the

smallest, whilst the one for the momentum transfer is the largest, thus the

mass transfer is somewhere in between.
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11.3 Penetration theory

The underlying thought is that under turbulent onditions, �uid bodies

as a whole penetrate the boundary layer and attah for some time to the

interfae 11.4. During this ontat time, the �uid body exhanges extensive

quantities aross the boundary to the other side, whih again an be a �uid

body or a �lm model. The idea is attributed to Higbie (1935) in whih

the absorption of gas into a still �uid is being desribed. This model has

the �feel� of small eddies from the bulk to penetrate the �lm layer formed

on the surfae due to frition, whih then �stik� to the interfae for some

time before they return to the bulk again. The ontat time would be

stohastially distributed, thus in general not be onstant.

τ

phase α

phase β

time to enrich the volume element

Figure 11.4: A volume element that travels to the surfae, exhanges ma-

terial over time τ and returns again to the bulk

The standard approahes use di�usion into the half plane to desribe the

transfer during the ontat time.

figures/C_11__Interfaces/PenetrationTheory.eps
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12

Approximating distributed systems

Synopsis Whilst essentially everything is distributed and we an usually

write the equations all right, solving them analytially is only possible in very

simple ases, where the mathematis are very simple and regular. With the

omputing devies to beome available and fast, using approximations and

numerial solutions has beome the norm.

12.1 From Network to Continuum

Distributed systems are mathematially desribed as partial di�erential

equations. Most of them have no analytial solutions. Only in very speial

ases an we solve them, thus we do depend on numerial methods for �nd-

ing solutions. Given numerial solutions are so entral it should not surprise

that the literature body is very extensive and also that the di�erent disi-

plines have spawned many speialised ativities in this �eld. Classi books

in this �eld are Hildebrand (1956); Shwarz (1989); Atkinson (1989), but as

said, there are many more.

If we have a look at our derivation using what we alled a shell balane 4.4,

then we de�ned a unit ell, formulated a model for the �ow and then used

the �rst variation of the �ow to formulate the balane about the unit ell.

Letting the ell dimension going to in�nitesimally small, we obtained the

desired partial di�erential equation. For eah ell, the mathematial model

was an ordinary di�erential equation. Representing the overall spae by a

set of unit ells gives a ommuniating network, representing the system's

behaviour as a set of ordinary di�erential equations. Sine all ells are om-

muniating in series with eah other, the number of ells in eah diretion

gives us a de�nition for an order of the involved di�erential equations. This

gives rise to the use of the term in�nite-order systems for distributed sys-

tems. This proess of transmogrifying a network of lumped system into a

partial di�erential equations an also be reversed, at least in spirits: One

an approximate partial di�erential equations as networks of ordinary dif-

ferential equations. We have used the term �network� of ordinary di�er-

ential equations as an alternative to a set of oupled ordinary di�erential

145
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4

4

5

∞ ∞

∞

from grid to ontinuum

from ontinuum to grid

Figure 12.1: Derivation of PDE: from grid to ontinuum an bak

equations with the objetive to provide this link bak to the mentioned

derivation. Many di�erent approximation methods are known, whih on

the bakground of having to �nd a numerial solution, is not di�ult to

rationalise. Most methods are purely mathematially motivated and have

little to do with our piture of a network of ontrol volumes. In fat many

of the methods deviate very muh from this piture. Nevertheless, this ex-

position should re�et the underlying nature of approximating distributed

systems desriptions.

12.2 Approximating Derivatives

The basi idea is to introdue a grid in the diretion the distribution e�et

is present. This an be done in all independent variables, thus spatial o-

ordinates as well as time. Gridding only in the spatial o-ordinate leads

to the networks of ordinary di�erential equations. If we also grid the time,

then the result is a set of di�erene equations.

12.2.1 Equally spaed grids

Let us do the former, thus only grid in the spatial o-ordinate and for the

time being we also assume only a one-dimensional distributed system. This

is the simplest of the ases whih serves our purpose of introduing the ore

idea and bakground of the method. So, let x be a state and r a salar
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independent spatial variable, thus

dx
dr is a salar �rst derivative of x with

respet to r and

d2 x
dr2 be the orresponding 2

nd
derivative. Let further rk

denote kth point in the one-dimensional equally-spaed grid with a grid

width of h. Having the objetive to approximate 2-nd order derivatives, the

minimal number of approximation points is three. A generi set of points is

de�ned labelling the three points with the subsript -1,0,1 with -1 indiating

the point k-1, 0 the point k, and 1 the point k+1. In eah point the state

funtion an be extended in a Taylor series:

x(rk + h) :=

n∑

i:=0

1

i!

∂i x

∂ ri

∣
∣
∣
∣
rk

hi +
1

(n+ 1)!

∂n+1 x

∂ rn+1

∣
∣
∣
∣
ξ

hn+1 .

Making two approximations for eah point provides six equations enabling

to solve for the �rst and the seond derivatives. The solutions are obtained

easily by taking the di�erene and the sum of the two equations that ontain

the desired approximate derivative. In the ase of taking the sum, the

zero-th and the even derivatives remain, whilst in the ase of taking the

di�erene, the odd derivatives are eliminated. This re�ets into the error

estimates for the approximations.

The six equations are, not showing the error terms:

x−1 := x0 +
∂ x

∂ r

∣
∣
∣
∣
r0

(−h) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r0

(−h)2 + . . . , (12.1)

x−1 := x1 +
∂ x

∂ r

∣
∣
∣
∣
r1

(−2h) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r1

(−2h)2 + . . . , (12.2)

x0 := x−1 +
∂ x

∂ r

∣
∣
∣
∣
r−1

h +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r−1

h2 + . . . , (12.3)

x0 := x1 +
∂ x

∂ r

∣
∣
∣
∣
r1

(−h) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r1

(−h)2 + . . . , (12.4)

x1 := x−1 +
∂ x

∂ r

∣
∣
∣
∣
r−1

2h +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r−1

(2h)2 + . . . , (12.5)

x1 := x0 +
∂ x

∂ r

∣
∣
∣
∣
r0

h +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r0

h2 + . . . , (12.6)

Assuming a onstant grid, the grid onstant is denoted by h, whih further

simpli�es the writing. Choosing the appropriate pairs, one extrats the �rst

and seond derivative at one of the three points. Taking the pair 12.1 and
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12.6 and ignoring the error terms for the time being :

x−1 − x1 := −2
∂ x

∂ r

∣
∣
∣
∣
r0

h ,

∂ x

∂ r

∣
∣
∣
∣
r0

:= −x1 − x−1

2h
.

For the seond derivative one �nds:

∂2 x

∂ r2

∣
∣
∣
∣
r0

:=
x−1 − 2x0 + x1

h2
.

For the error terms of the �rst derivative one �nds:

O(h2) := − h3

3! 2h

(

∂3 x

∂ r3

∣
∣
∣
∣
ξ−1,0

+
∂3 x

∂ r3

∣
∣
∣
∣
ξ0,1

)

,

≈ − h3

3! 2h
2

∂3 x

∂ r3

∣
∣
∣
∣
ξ−1,0

,

≈ −h2

3!

∂3 x

∂ r3

∣
∣
∣
∣
ξ−1,1

.

where ξab is the value of r ∈ [ra, rb] with

∣
∣
∣
∣
∂3x
∂ r3

∣
∣
∣
ξ−1,1

∣
∣
∣
∣
is maximal.

For the seond derivative trunation only ours at the 4-th order term:

O(h2) := − h4

4!h2

(

∂4 x

∂ r4

∣
∣
∣
∣
ξ−1,0

+
∂4 x

∂ r4

∣
∣
∣
∣
ξ0,1

)

,

≈ −h2

12

∂4 x

∂ r4

∣
∣
∣
∣
ξ−1,1

.

The pair 12.3 and 12.5 yields the two approximations for the derivatives at

r−1 and �nally the pair 12.2 and 12.4 gives the two at r1.
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Derivative Approximation Error Estimate

∂ x
∂ r
∣
∣
r−1

1
2h

(−3x−1 + 4x0 − x1)
h2

3
∂3 x
∂ r3

∣
∣
∣
ξ

∂ x
∂ r
∣
∣
r0

1
2h

(−x−1 + x1) −h2

6
∂3 x
∂ r3

∣
∣
∣
ξ

∂ x
∂ r
∣
∣
r1

1
2h

(x−1 − 4x0 + 3x1) −h2

3
∂3 x
∂ r3

∣
∣
∣
ξ

∂2x
∂ r2

∣
∣
∣
r−1

1

h2 (1x−1 − 2x0 + x1) −h ∂3x
∂ r3

∣
∣
∣
ξ1
+ h2

6
∂4 x
∂ r4

∣
∣
∣
ξ2

∂2x
∂ r2

∣
∣
∣
r0

1

h2 (1x−1 − 2x0 + x1) −h2

12
∂4 x
∂ r4

∣
∣
∣
ξ

∂2x
∂ r2

∣
∣
∣
r1

1

h2 (1x−1 − 2x0 + x1) h ∂3x
∂ r3

∣
∣
∣
ξ1
+ h2

6
∂4 x
∂ r4

∣
∣
∣
ξ2

Table 12.1: Three point approximations

The 12.1 lists all the three point approximations (ξ := ξ−1,1)

The analysis an be extended to more points thereby inreasing the auray

with whih the derivation is approximated though with the ost of inreasing

omplexity of the expressions. Most ommonly the 3 point approximations

are being used and signi�antly less often the 5-point approximations (see

tables 12.2 and 12.3)

12.2.2 Non-equally spaed grids

In many ases things happen fast in one part of the onsidered system,

whilst in other parts things are a little less heti. So we really want to look

a little loser at the part where things happen fast whilst in the slow parts

things do not hange so muh with distane. We ould ertainly introdue

a grid that is simply �ne enough for the fast part and use it aross the

whole distributed domain, but then that is not very e�ient indeed. This

de�nes a request for de�ning a variable grid, so that we an adjust it to

the dynami of the proess loally. To derive the equations, we repeat the

derivation above, but now with a grid that hanges. Sine the error terms

do not hange, we give the equation without them. Again if we look at

the 3-point approximation, we get the six equations of above, but now with

hanging grid width. De�ning h1 := rk − rk−1 and h2 := rk+1 − rk we get:
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Derivative Approximation

∂ x
∂ r
∣
∣
r−2

1
12h

(−25x−2 − 48x−1 + 36x0 − 16x1 − 3x2)
∂ x
∂ r
∣
∣
r−1

1
12h

(−3x−2 − 10x−1 + 18x0 − 6x1 + x3)
∂ x
∂ r
∣
∣
r0

1
12h

(x−2 − 8x−1 + 8x1 − x2)
∂ x
∂ r
∣
∣
r1

1
12h

(−x−2 + 6x−1 − 18x0 + 10x1 + 3x2)
∂ x
∂ r
∣
∣
r2

1
12h

(3x−2 − 16x−1 + 36x0 − 48x1 + 25x2)

∂2x
∂ r2

∣
∣
∣
r−2

1

24h2 (70x−2 − 208x−1 + 228x0 − 112x1 + 224x2)

∂2x
∂ r2

∣
∣
∣
r−1

1

24h2 (22x−2 − 40x−1 + 12x0 + 8x1 − 2x2)

∂2x
∂ r2

∣
∣
∣
r0

1

24h2 (−2x−2 + 32x−1 − 60x0 + 32x1 − 2x2)

∂2x
∂ r2

∣
∣
∣
r1

1

24h2 (−2x−2 + 8x−1 + 12x0 − 40x1 + 22x2)

∂2x
∂ r2

∣
∣
∣
r2

1

24h2 (22x−2 − 112x−1 + 228x0 − 20x1 + 70x2)

Table 12.2: Five-point approximations

Derivative Error Estimate

∂ x
∂ r
∣
∣
r−2

h4

5 f (5)(ξ)

∂ x
∂ r
∣
∣
r−1

−h4

20 f (5)(ξ)

∂ x
∂ r
∣
∣
r0

h4

30 f (5)(ξ)

∂ x
∂ r
∣
∣
r1

−h4

20 f (5)(ξ)

∂ x
∂ r
∣
∣
r1

−h2

3 f (5)(ξ)

∂2x
∂ r2

∣
∣
∣
r−2

−5
6h

3 f (5)(ξ1) +
h4

15 f (6)(ξ)

∂2x
∂ r2

∣
∣
∣
r−1

h3

12 f (5)(ξ1)− h4

60 f (6)(ξ)

∂2x
∂ r2

∣
∣
∣
r0

h4

90 f (6)(ξ)

∂2x
∂ r2

∣
∣
∣
r1

−h3

12 f (5)(ξ1)− h4

60 f (6)(ξ)

∂2x
∂ r2

∣
∣
∣
r2

5
6h

3 f (5)(ξ1) +
h4

15 f (6)(ξ)

Table 12.3: Errors for the �ve-point approximations
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Derivative Approximation

∂ x
∂ r
∣
∣
r−1

(

−2h1 h2−h2

2
)

x−1

h1 h2 (h1+h2 )
+

(

h1

2
+2h1 h2+h2

2
)

x0

h1 h2 (h1+h2 )
− h1 x1

h2 (h1+h2 )

∂ x
∂ r
∣
∣
r0

− h2 x−1

h1 (h1+h2 )
−

(

−h2

2
+h1

2
)

x0

h1 h2 (h1+h2 )
+ h1 x1

h2 (h1+h2 )

∂ x
∂ r
∣
∣
r1

h2 x−1

h1 (h1+h2 )
−

(

h1

2
+2h1 h2+h2

2
)

x0

h1 h2 (h1+h2 )
−

(

−h1

2−2h1 h2

)

x1

h1 h2 (h1+h2 )

∂2x
∂ r2

∣
∣
∣
r−1

x−1

h1 (h1+h2)
− x0

h1 h2

+ x1

h2 (h1+h2 )
∂2x
∂ r2

∣
∣
∣
r0

x−1

h1 (h1+h2)
− x0

h1 h2

+ x1

h2 (h1+h2 )
∂2x
∂ r2

∣
∣
∣
r1

x−1

h1 (h1+h2)
− x0

h1 h2

+ x1

h2 (h1+h2 )

Table 12.4: Three approximations for variable grid

The six equations are, not showing the error terms:

x−1 := x0 +
∂ x

∂ r

∣
∣
∣
∣
r0

(−h1) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r0

(−h1)
2

x−1 := x1 +
∂ x

∂ r

∣
∣
∣
∣
r1

(−h1 − h2) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r1

(−h1 − h2)
2

x0 := x−1 +
∂ x

∂ r

∣
∣
∣
∣
r−1

h1 +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r−1

h21

x0 := x1 +
∂ x

∂ r

∣
∣
∣
∣
r1

(−h2) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r1

(−h2)
2

x1 := x−1 +
∂ x

∂ r

∣
∣
∣
∣
r−1

(h1 + h2) +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r−1

(h1 + h2)
2

x2 := x0 +
∂ x

∂ r

∣
∣
∣
∣
r0

h2 +
1

2

∂2 x

∂ r2

∣
∣
∣
∣
r0

h22

An equation system we an solve for the 6 derivatives:

The 12.4 lists all the three point approximations (ξ := ξ−1,1):

Whilst these expressions look rather ompliated, there is a very generi

struture there and their derivation is really not di�ult, though it is a lot

of writing if one does not use a symboli manipulation program.



152 CHAPTER 12. APPROXIMATIONS

b b b

1 −2 1

left boundary

b

interior right boundary

bb

1 −2 1 1 −2 1

Figure 12.2: Stenils for 3 point approximations: left boundary, interior,

right boundary

12.3 Approximation of the di�usion equation

We take the example of �nding numerial solutions to the di�usion problems

� most simple: heat di�usion. The energy balane for a body exhibiting

only heat ondution, also alled heat di�usion, is known as Fourier's heat

di�usion equation. Using the symbol T for temperature and x for the spaial
o-ordinate in whih diretion the system is distributed, de�ning D as the

heat di�usivity and as usual t for time, Fourier's law takes the familiar form:

∂ T

∂ t
= D∂2 T

∂ r2

Having a seond-order derivative to approximate, the minimal number of

points in the approximation required is three. This three point approxima-

tion introdues a regular pattern for the internal points and a separate one

for eah side at the boundary. This an be readily visualised using three

stenils (12.2)

Using the stenils the partial di�erential equation beomes a network of

ordinary di�erential equations. De�ning n interior points, labelling them

with the indies i := 1, . . . n, and a regular grid width of ∆r the equations
for the interior points are:

dT i

d t
=

D
∆r2

(T i−1 − 2T i + T i+1) ; i := 1, . . . , n (12.7)

and for the left and the right boundary the respetive equations are:

dT 0

d t
=

D
∆r2

(−2T 0 + T 1 + T 2)

dT n+1

d t
=

D
∆r2

(T n−1 + T n − 2T n+1)

When formulating distributed problems one requires additional information

to speify a proper mathematial problem. In most ases this will be the

boundaries and the initial onditions. In the ase where the state at the

boundary is spei�ed, the last two equations are replaed by the boundary

figures/C_12__ApproximateDistributed/Stencil1D3Points.eps
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ondition. For example in our ase this may be that the temperatures at the

two boundaries are spei�ed as a funtion of time. So the problem would

read like:

dynami:

dT i

d t
=

D
∆r2

(T i−1 − 2T i + T i+1) ; i := 1, . . . , n

left boundary: T 0 = fl(t)

right boundary: Tn+1 = fr(t)

The state are those quantities that are on the left-hand-side, the time deriva-

tives, here the temperatures in the internal grid points. The dynamis are

driven by the temperatures at the boundary, thus those beome the input

to the dynami system, being the heat di�usion system. With the equations

being linear, we must put it into a matrix form by de�ning:

state: x :=
[

T 1, T 2, . . . , T n

]T
:= [T i]i:=1,...,n

left input: ul := T 0

right input: ur := T n+1

we get the niely patterned dynami matrix equation:

ẋ =
D
∆r2



















−2 1 0 . . . . . . . . . 0

1 −2 1 0 . . . . . .
.

.

.

0 1 −2 1 0 . . .
.
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.

.

.

.

.

.

.

.

.

.

.

.
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.
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u .

This equation an be readily solved beause it is a linear set of ordinary

di�erential equation, naturally given the initial onditions and the boundary

temperature as a funtion of time.

12.3.1 Extension to Higher-Dimensional Problems

This extension is straightforward as the approximation is done in eah dire-

tion separately. As long as the grid is equally spaed and equally saled in

eah diretion, the stenils look quite simple and the equations are equally

regular in terms of the patterns. So the equations an be written very on-

isely using the fat that the entral grid points are in the diagonal. 12.3
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b

b b

b

b

b

b b

b

1−22 1 1

1

1

1−2 −2

−1
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corner boundary interior

b1
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1

Figure 12.3: 2-D, 3 point stenil for equally spaed

b

b
b

b

b

b

b b

b1

3

1

1

1

1

1−2

−3

−6

corner boundary interior

b
b 1

b
1

1

1

b

b

b1

b1

b

b

1

−2

−2 1
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Figure 12.4: 3-D, 3 point stenil for equally spaed grid

and 12.4 show the stenils and the respetive weights for the two and the

three dimensional equally-spaed grids.

Construting the matrix equations requires, as in the 1-D ase, a stak-

ing up proedure for the state variables in the di�erent loations. In any

ase the indies for the di�erent diretions are �looped� in one or the other

sequene. In any ase the dimensionality grows with the power of the di-

mension. The resulting matries are all sparse, meaning that there are very

few elements in the matries that are di�erent from zero. Most numerial

pakages have speial proedures to handle sparse matries, storing only the

non-zero elements and a map of where they are loated in the matries and

vetors.

These shemes have been further developed mainly beause a retangular

grid is not always a very good idea but it is muh better to adapt the grid

to the dynamis of the proess, for example to stream lines. These methods

have been developed and omputational tools exist that perform adaptive

gridding very e�etively.
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Material models are everywhere

Synopsis Materials have partiular properties with regard to the intensive

properties, like density. The equations of state represent the ore knowl-

edge two of whih are required to generate an energy funtion, whih in turn

provides aess to the other energy funtions through Legendre transforma-

tions.

13.1 Fundamentals

Earlier we already elaborated on mass arrying energy or being energy, for

that matter. Not too surprising then, that the desription of material is

also tightly interlinked with the energy onept. The material is seen as

a system and its behaviour, whih we observe, is being desribed in terms

of energy due to hanges in its internal struture or e�ets imposed by the

embedding environment. The fundamental measure for the behaviour of a

material is the internal energy, a onept that is ompletely abstrat, whih

has been developed based on observations in the 17th and 18th entury

being ontinuously re�ned, but not fundamentally hanged. On the maro-

sopi level, the internal energy is seen to be a funtion of a number of key

extensive quantities, whih together with the energy form the fundamental

thermodynami state spae. In fat the term �state� is most likely being

derived from thermodynamis so it is not lear on who used it �rst. Cer-

tainly Caratheodory (1909) did use the term �Zustand� (state) already. Not

too surprisingly, the term is very losely related to the abstrat de�nition

of the behaviour of a system. In essene it leads to a irular de�nition

of state and behaviour. The onept of state and behaviour desription is

thus to be seen as a purely abstrat onept and as suh annot be proven

to be orret but is only supported by our ontinuous observations of the

orretness of the postulates forming the foundation of this abstration.

Several versions of postulates exist. The most ommonly ited ones are due

to Callen (1985):

1. There exist partiular states (alled equilibrium states) of simple sys-
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tems that, marosopially, are haraterized ompletely by the inter-

nal energy U , the volume V , and the mole numbers n1, n2 , ..., nn of

the hemial omponents. (Callen p 13)

2. There exists a funtion (alled the entropy S) of the extensive param-

eters of any omposite system, de�ned for all equilibrium states and

having the following property: The values assumed by the extensive pa-

rameters in the absene of an internal onstraint are those that max-

imize the entropy over the manifold of onstrained equilibrium states.

(Callen p 27)

3. The entropy of a omposite system is additive over the onstituent

subsystems. The entropy is ontinuous and di�erentiable and is a

monotonially inreasing funtion of the energy. (Callen p 28)

4. The entropy of any system [is non-negative and℄ vanishes in the state

for whih (

∂U
∂S = 0 (that is, at the zero of temperature). (Callen p 30)

The building of thermodynami funtions an be onstruted on these pos-

tulates. We shall not do this here but we shall have a lose look at the

mathematial struture of this building.

For this purpose we pik up the onept of internal energy and the thermo-

dynami spae:

Statement 1: There exists a funtion alled internal energy, whih is a

fundamental funtion of some extensive variables. U (S,X), where the X is

a vetor of extensive quantities onsistent of volume V , omponents mass
measured in moles n.

Statement 2: There exists a funtion alled entropy, whih is a fundamental

funtion of some extensive variables S (U,X)

Both are funtions of Euler degree 1. Thus:

U (λS, λX) = λU (S,X)

and

S (λU, λX) = λS (U,X)

None of the two fundamental funtions S,U are known, or at least only

very simply idealised systems an be omputed from quantum theory. But

some of the strutures of these funtions are known, whih give at least

a template of the equations representing the material properties. These

�templates� are then replaed or �lled in with empirial models that have

the requested struture. This replaing of unknown relations by intelligent

guesses is quite ommon throughout siene and engineering.
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The sientist of the 18th entury ame eventually to the onlusion that the

thermodynami phase spae is spanned by the a set of extensive quantities

and their derivatives. Even more, they also found that they always appear

in pairs, alled onjugate pairs. In a �rst round it was the pairs (T , S) and,
(p, V ) that haraterised the internal energy, where the onjugate to the

extensive quantities are the intensive quantities being the partial derivative

of the internal energy with respet to the paired extensive quantity. Even

more spei� they found that it is the produt of the quantities in the

pairs that make up the internal energy. It took some time to add the

remaining pairs, namely (µi, ni), the hemial potential and the omponent

mass, whih is onsidered to be due to Gibbs, published in 1873 in a paper

entitled �A Method of Geometrial Representation of the Thermodynami

Properties of Substanes by Means of Surfaes�. The strutural statements

then being that:

U = T S − p V +
∑

∀i
µini

and

dU = T dS − p dV +
∑

∀i
µi dni (13.1)

with:

T := ∂U
∂S −p := ∂U

∂V µi :=
∂U
∂ni

The thermodynami phase spae is then:

F

(

U,S, V ,n,
∂ U

∂ S
,
∂ U

∂ V
,
∂ U

∂ n

)

whih is a �rst-order partial di�erential equation.

The role of U and S an thereby be swithed. Thus if we ount s speies

we have n := s + 2 related variables, then the dimension of the on�gura-

tion spae is 2n+ 1 in dimension, namely U or S as the �+1� standing out
quantity, the extensive quantities S or U , namely the not hosen one, and

V together with the s omponent masses and the derivatives of the seleted

quantity with respet to the remaining extensive quantities. In this on�g-

uration spae we have n dependenies, namely the derivatives and we have

one to be satis�ed, namely the �rst law of thermodynamis (13.1). Thus

there exists 2n+1 equations that desribe a thermodynami system. The

theory of �rst-order partial di�erential equations provides these equations

Du� (1956).

In Gibbs terms, there are the two alternatives for the fundamental equation:

internal energy U := U(S, V ,n)

entropy S := S(U, V ,n)



158 CHAPTER 13. MATERIAL MODEL

and the above-de�ned derivatives provide the e�ort variables, whih are the

equations of state:

T :=
∂ U

∂ S
:= T (S, V ,n)

−p :=
∂ U

∂ V
:= −p(S, V ,n)

µ :=
∂ U

∂ n
:= µ(S, V ,n)

So all these are a funtion of the n dimensional spae or the 2n + 1 di-

mensional thermodynami phase spae. There are n equations of state,

from whih we an eliminate n variables. The result is a funtion of n+ 1
variables.

For example if we have U,S, V , n, thus a single substane, the dimension

of the on�guration spae an be redued by looking at the densities only:

F (u, s, v,
∂ u

∂ s
,−∂ u

∂ v
) := F (u, s, v, T , p) ,

with u, s, v being U/(nR), S/(nR), V /(nR) the respetive densities formed
by norming with the molar mass and the gas onstant. For a monoatomi

gas and hoosing s as the base variable and given two of the linking equa-

tions

1

are:

T := p v

u :=
3

2
T

The remaining 3 equations are readily onstruted. First the base variable

s:

ds− p

T
dv − 1

T
= 0

ds− 1

v
dv − 3

2

1

u
du

and integrating:

s = ln v +
3

2
lnu+ onst

s = lnu2/3 v

1

urrent physis literature terms all of these 5 equations equations of state, whih is

in some ontrast with the use in engineering
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de�ning the spei� entropy up to a onstant. The remaining two equations

are simply:

1

T
:=
(
∂ s
∂ u
)

v ;
p

T
:=
(
∂ s
∂ v
)

u

Given the appropriate information, namely n+1 equations, the system is

ompletely de�ned. In hemial engineering it ommon to use the internal

energy as the base variable and not as above the entropy. In this ase

the internal energy is only a funtion of the temperature, so for purpose

of demonstrating the onept entropy was hosen as the base variable and

thus its funtion was onstruted.

Choosing the appropriate set of n equations, and eliminating n variables

the equation of states are being onstruted; the equations of state as are

ommonly used in engineering. For ideal gas, this is the elebrated equation:

p V = nRT

with R being the ideal gas onstant.
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Mixing patterns

Synopsis Two extremes are ommonly analysed: the ideal mixing, where

mixing is really fast ompared to anything else in the system, and, no mixing.

The �rst is termed ideally mixed tank whilst the latter is the elebrated plug

�ow.

14.1 Two Extremes

The abstration of the proess-relevant universe into systems separated by

idealised walls from its environment an be further abstrated. Two impor-

tant ases of �ow systems are generated by analysing two extreme, limiting

ases: one in whih the �ow system is �own through with minimal internal

re-irulation and one in whih the in-�ow and the out-�ow is minimal om-

pared to the internal re-irulation. The limit is in both ases a redution

of minimal �ow to no �ow (14.1).

In the �rst ase, one assumes a zero internal re-irulation whilst in the

seond ase one sets the �ow aross the boundary zero. The argument is

not only an order of magnitude assumption in the �ow, but also in the

time sale: it is assumed that the dynami window for the internal proess

is learly in the short time sale, ompared to the dynamis of the �ows

aross the system's boundary.

14.2 Small Internal Re-Cirulation, No Reations

and Slow Changes at the Boundary

In this ase, the stationary and onstant ontrol volume is plaed in a

�ow �eld. The modelling is done in a range of the time-sale, where the

hanges at the boundary are very slow, thus one may assume a stationary

�ow �eld, whih has no internal re-irulation, that is, the url of the �ow

�eld is zero (Deen (1998); Bird et al. (2001)). This in turn implies that the

aumulation terms in both the basi balanes, the integral balane (4.3)

and the di�erential balane (4.4) approah zero, whih is often referred to

161
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ht
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Figure 14.1: Two extremes: on the top no mixing at all resulting in a plug

�ow, whilst below there is nearly only mixing, at least in the short time

sale resulting in the ideally mixed volume.

as pseudo-steady state.

Thus the integral balane (4.3) redues to:

0 := −
∫

S
φ̂
T
n dS , (14.1)

To simplify one step further, we assume that the boundary of the system is

split into piees in whih eah piee has uniform onditions. This simpli�es

the handling of the �ows aross the boundary and we have a diretionality

de�ning a loal referene o-ordinate, pointing inwards or pointing outwards

for eah �ow. Thus the behaviour of this system with �lumpy� boundaries

writes:

0 :=
∑

c

αc Φ̂c , (14.2)

:= Fs Φ̂ , (14.3)

where in the seond line we have wrapped the diretion indiators into a

matrix and the vetor of �ows into a stak of vetors. In terms of the

behaviour, for the steady-state behaviour, the in�ows balane the out�ows,

whih mathes our expetations.

The di�erential balane (4.4) simpli�es to:

0 := − ∂

∂ r
φ̂ (14.4)
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14.2.1 Pure transport systems

Equation 14.4 desribes an idealised fast transfer system, in whih the in-

ternal transport is fast ompared to the hanges at the boundary. The

transport is a funtion of the state of the system and the state of the on-

neted system. With the aumulation term �disappearing�, the resulting

set of equations beome algebrai from whih the stationary distribution of

the state an be omputed as a funtion of the onditions at the boundaries

as we have disussed before.

Substituting the simple isotropi gradient transport law 5.4, one gets:

0 := − ∂

∂ r

(

C
∂

∂ r
π

)

. (14.5)

So this is a seond-order di�erential equation in π. For the transfer to be

omputable, the solution to the seond-order di�erential equation must ex-

ist (Lin and Segel (1988), p121). The existene of a solution is disussed

early in the literature Courant et al. (1928). Lin and Segel, though, ex-

pressed the fat Lin and Segel (1988), p418) that most sientists on most

oasions do not onern themselves with the thorny philosophial questions

that emerge from a searhing examination of what lies at the foundation of

their endeavours. ...

The solution forms a hyper-surfae with the boundary ondition de�ning

the position of this surfae. Integrating above equation one states that the

�ux tensor φ̂ is onstant:

φ̂ := −C
∂

∂ r
π := onst . (14.6)

Two important lessons are to be drawn from this, namely the fats that

� the state is eliminated and

� there is no time e�et assoiated with the transfer

For simple two-ative boundary systems suh as disussed in 10.2.1 the

time-sale assumption leads to a simpli�ation of the transfer system to

a simple resistane, whih is what the arrows in the �rst piture of the

deomposition represent.

14.2.2 Plug �ow reators

Flow systems of this type that exhibit reations are alled plug-�ow reators.

They are idealised reators whih represent one of the two extreme reator
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systems. The shell balane equation for a plug-�ow with lumpy boundaries

is:

0 := n̂r − n̂r+dr + ñ(cr) dV ,

The out�ow of the di�erential volume is approximated by the �rst variation

on the in�ow:

0 = n̂r − (n̂r + dn̂r) + ñ(cr) dV ,

We divide by the di�erential volume:

0 = −dn̂r + ñ(cr) dV

Expanding the prodution term and assuming onstant density and onstant

volumetri �ow then yields:

0 = −V̂ dcr +NT ξ̃(cr) .

So with

V̂ := Av , V := r A ,

Substitution results in:

0 =−Av dcr +NT ξ̃(cr)Adr

0 =− v
d cr
d r

+NT ξ̃(cr)

Sine

dr
v =: dt we get the result

d cr
d t

= NT ξ̃(cr)

If we now substitute a kineti model we get a �rst-order di�erential equation

with the onentration vetor being the state. This is also the model for

a bath reator, as we shall see shortly. Thus one of the interpretations of

the result is to look at the tubular reator to transport bathes of reative

mixture. The residene time of these bathes is determined by the length

of the tube and the �ow rate. With the �ow being onstant, eah bath is

the same.

14.3 Maximal Internal Flow, Slow Reations and

Small, Slow Flows Aross the Boundaries

In this ase one assumes stritly no �ow aross the boundary and maximal

internal �ow. Plaing the dynami window into the small time sale, where
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the reations are slow and thus the turnover very small ompared to the

internal �ows, the di�erential balane 8.5 redues to

∂ϕs
∂ t

:= − ∂

∂ r
φ̂ ,

Further assuming that the in�ow and the out�ow from the ontrol volume

are small ompared to the internal �ows, the equilibrium is reahed quikly.

Thus on the larger time sale, the internal fast dynamis are in equilibrium

and no hange with time is observed:

0 := − ∂

∂ r
φ̂ ,

Sine the in�ow is negligible in this time sale, the system is losed and the

solution is a onstant. So the intensive quantity ϕs is onstant everywhere

in the region.

With the onditions in the ontents being uniform, we shift time sale to

a longer one. Now 8.5 simpli�es signi�antly: the densities are onstant

everywhere in the volume, thus the volume integrals involving the densities

hange to the volume times the densities, whih is simply the orresponding

extensive quantity:

dΦs
d t

= −
∫

S
φ̂
T
n dS + ñs .

Lumping the boundary (4.5) and assigning the global o-ordinate, the equa-

tion for the reative, ideally-mixed domain emerges:

dΦs
d t

= Fs Φ̂+ ñs .

whih for the omponent mass reads:

dns
d t

= Fs n̂+ ñs .

This equation desribes an idealised apaity, namely a lumped system. The

above-made fast mixing assumption yields that the intensive quantities are

uniform within the ontrol volume at a time sale that is large relative to

the internal mixing. In hemial engineering this type of reator is referred

to as ideally stirred tank reator.

In the ase where there is no in�ow and no out�ow, this beomes the model

of a bath reator, where the reator is an ideally stirred volume. In the

ase of onstant volume, one often applies a state variable transformation:

n := V c
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whih an readily be di�erentiated with respet to time:

dn

d t
:= V

d c

d t

and expanding the prodution term:

d cs
d t

= NT ξ̃(cs) ,

whih is idential to what we got for the plug-�ow reator.
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Sur�ng on the state onept

Synopsis The term state has been oined implying that knowing the state

of a system one knows everything about the system at the point in time

the state is reported. De�ning the state as a identi�able unique quantity

assoiated with the proess provides the stage for an abstration, whih is

suitable for analysis and omputational engineering.

15.1 The mehanism of �things�

The behaviour of a system is desribed using a set of suitable variables that

are alled �the state� living in the state spae. The state ontains all the

information one requires to predit the next state given knowledge of the

urrent state and the input. Or as Kalman formulated it 1963 (Kalman,

1963): �The state is to be regarded always as an abstrat quantity. Intuitively

speaking, the state is the minimal amount of information about the past

history of the system whih su�es to predit the e�et of the past upon

the future.� The state of a system an hange due to internal hanges or

interations with the environment in whih the system is embedded.

For physial marosopi, lassial systems the behaviour of a system is

desribed by the dynami onservation laws that state: the hange of the

state, whih is the vetor of onserved quantities, is the onsequene of

exhanging onserved quantities with the environment in one or the other

form. For example, plaing a hot body into a old room will indue a heat

exhange between the hot body and the old room - as we all experiened,

the body will get older and the room may get slightly warmer, probably

not notieably, if the body is not large ompared to the room. Similarly,

pulling the plug in the full bath tub will make the water to run out and if

you leave a oloured objet like a newspaper on your niely laquered desk

you may experiene that the dye di�uses into the laquer permanently.

For physial systems the state is extended with quantities that olletively

satisfy a onservation law, but may undergo onversion between them. The

appliation of the later extension is speies. They may undergo reations or

167
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phase hanges. Whilst the speies itself is not onserved, the total mass is.

For an example, we all know that if we have a ontainer full of oxygen and

hydrogen and initiate the reation with a spark, the mixture will exhibit a

very fast violent reation where the produt is water.

15.2 The grand sheme

Having disussed all the major omponents, the �grand sheme� an be as-

sembled. It has four major omponents: The balane equations providing

the desription of the dynamis, the transport of the balaned extensive

quantity aross the systems' boundaries, the internal transposition and re-

ations, and the state-variable transformations that are required for the

desription of the transport and transposition that inludes material prop-

erties, thus thermodynamis and geometry.

F
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Figure 15.1: The grand sheme as a blok diagram

15.1 shows the four main omponents and indiates the priniple sequene in

whih they are established. It should be noted though, that before one an

onstrut this equation system, whih is a di�erential algebrai system of

index one, there are two major steps to be taken before: (i) the proess must

figures/C_15__StateConcept/TheGrandScheme.eps
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be identi�ed usually in the form of a tehnial drawing or a orresponding

sketh, whih makes it lear to the user of the model as to whih proess

is being modelled and what embedding into the environment is. This is

followed by (ii) an abstration of the proess into a physial topology so

as to disuss and settle the dynami ontents of the plant, answering the

question of what is preisely modelled with what type of dynami system

omponent. This is to be supplemented by �lling in the �hemistry� and

energy that is essential for the proess desription. Only then an the above

sheme be established.

The topology maps into the inidene matrix of the direted graph, whih in

general will have a blok struture, as eah stream is possibly transporting

several quantities suh as di�erent speies. The inidene matrix provides

the diretionality oe�ients that indiate the referene o-ordinate for eah

�ow, namely the diretion that is shown in the graph. The atual �ow may

well go in the opposite diretion namely when it is negative.

The sheme also shows a matrix N, whih in the ase where reations are

taking plae, is the stoihiometri matrix for all systems This stoihiometri

matrix is a blok matrix with one blok for eah system.

All the arrows in the blok diagram represent �ow of staks of vetors indi-

ated by the two wiggly brakets. So the matries are also blok matries.

Whilst the latter are tehnial details that naturally fall into plae on use, it

is essential to apture the overall struture of these models. This struture

only assumes lumped models.

15.2.1 Dynamis: balanes

The onservation priniple are strit in the sense that they are always sat-

is�ed and thus form a strong foundation for building the models on. They

also learly identify the state, whih is the quantities that are hanging with

time, and thus are in the aumulation term:

aumulation of onserved extensive quantity

=

transport of onserved extensive quantity aross the boundary

On a global base, the internal transposition that may take plae in the

form of reations, for example, is not a�eting the total onserved quantity.

Thus onversion of speies in reations is mass neutral. If however, what

we nearly always do, formulate the omponent balanes:

aumulation of extensive quantity

=

transport of extensive quantity aross the boundary
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+

internal onversion

Important so, is that the sum over the omponent masses follows the �rst

version of the onservation law, thus the sum of the internal onversion

terms must be annihilated.

For the sake of simpliity, and the fat that we an always approximate

distributed systems as a set of lumped systems, we shall limit our disussion

to lumped systems, whih here is represented by the member labelled with

s. In the state spae notation, in whih the state is denoted by x and the

understanding that the above applies:

ẋs =
∑

∀m
αs,mx̂m + x̃s (15.1)

15.2.2 Exhange: transport

Transport an only take plae between adjaent systems being driven by

the di�erene in the e�ort variables. The two system being ouple have a

ommon boundary, whih is one way in whih the geometry omes into the

formulation. So the transfer is

x̂a|b := x̂a|b
(

y
a
,y

b
,p

a|b

)

(15.2)

The �ows introdue the e�ort variables and some parameters. Some of

these parameters may be manipulated from the outside making them the

manipulating elements ontrolling the �ow, suh as valves.

15.2.3 Internals: transposition / reation

Internal onversion of one type of extensive quantity into another one is

harateristi for the manipulation of speies as they our in reative sys-

tems both on human-made proesses as well as natural proesses. Every

onversion goes in ratios. For reative systems this is the stoihiometri

oe�ients. The reation dynamis itself is desribed by the hange in the

extent of reation, whih we denote by ξ̃. Thus:

x̃s := NT
s
ξ̃
r

(15.3)

with the rate being a empirial relation that re�ets the fat that speies

have to physially meet to undergo reation and that the reation itself

usually must be promoted in terms of energy:

ξ̃
r
:= ξ̃

r
(y

s
,p

r
) (15.4)
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The most notieable part of this relation is that again a vetor of quanti-

ties is introdued. The stoihiometri matrix is here de�ned in the spae

of speies x reations, whilst also the transposed de�nition is being used.

Whilst the reation ours inside the system, at least for homogeneous sys-

tems, the rate expression is for the reation. It is the seondary state,

usually a material density suh as omposition and the intensive seondary

state temperature, that drives the reation.

15.2.4 Link: fundamental state and seondary state

The �new variables� being introdued by the transport and transposition

relations are all a funtion of the state. So the last blok must provide

these links, namely the mapping of the fundamental or primary state into

the �new variables�, whih we term seondary states. This blok is the most

di�ult part to �ll in. It inludes some simple de�nitions like omposition

as a funtion of the molar masses; but also more omplex relations like

the equation of states or derivatives of the fundamental energy funtion

with respet to the extensive quantities like entropy, volume, omponent

mass, the latter being the e�ort variables. Very ommonly the relation

between mass and volume also omes into this blok, thus the density, for

whih we hardly have any analytial expressions beyond empirial models

in the form of equations of state. Geometry omes into the piture more

often through the fat that the exhange between two adjaent systems is

going through the ommon piee of interfae. Thus the interfae relative to

the two systems omes into the de�nition of the proess. Another reason

geometry omes into the desription is the need for �measurable� quantities

suh as levels or pressures. This �linking box� an be build by starting with

the seondary state variables, reursively extending the set of equations

thereby onstruting a tree of equations, the leaves being variables that are

known, usually parameters of one or the other orrelation, or omponents of

the fundamental state for the system. In both ases the extension stops, thus

forms the bottom-out rule in the reursion. Often these equations form a

nearly triagonal equation/variable struture, whih is easy to handle, exept

that it is also quite ommon that some variables are de�ned by impliit

relations. One of these is often temperature. The tree is usually not very

deep. Three to four layers is ommon and orrespondingly a handful of

seondary variables. Rarely it inreases to the order of 10.

The de�nition of the model requires that the relation between the two set of

quantities must exist, thus at least numerially it must be possible to solve

the equation for the seondary state variables as a funtion of the primary

state variables.
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Lumping these relative versatile set of equations together in one we ould

write:

0 := s(y
s
,p

i
,xs,Θs) (15.5)

or onsidering the fat that this set of at least partially impliit equations

must be solvable:

y
s
,p

i
:= root

(

s(y
s
,p

i
,xs,Θs)

)

(15.6)

15.2.4.1 Compliations

All of the above �onstitutive� equations: transport, transposition/reation,

and state variable transformations are often a funtion of the state, in most

ases the seondary state. Probably. the most outstanding one is the re-

ation �onstant�, whih is anything but onstant: it is modelled by an

exponential funtion of the temperature, thereby indiating a �rst-order

dynami dependeny of the probability of reatants to meet. The onse-

quene is that another set of �onstituent� equations is to be added, whih is

the dependeny on the (seondary) state of the above-de�ned parameters.

p
i
:= p

i
(xs,ys

,p
i
) (15.7)

This set of equations is material dependent, suh as transport parameters

re�et the property of the physial transport system suh as ondutivity,

apaity and density, whih not too surprisingly are a funtion of the state

of the transport system. Similar is the ase with the reation parameters.

As has been mentioned they are a funtion of the state.

The �devil� is often in the �link� between the fundamental state and the

seondary variables and in the ontinuation the �parameters�. The insight

atually questions the use of the term �parameter� as, whilst a harateristi

of the system/material/reation et, it is state dependent and not really

onstant. If one follows this line of through, �parameters� in the sense of

onstant harateristi quantities do hardly exist. It is only the quantities

appearing in empirial relations that are �tted that are kind of �parameters�

and physial onstants, some being universal, that, stritly speaking, �t

reasonably well into this desription. In this ontext the often used term

proess parameters for utility temperature, pressures or the like are better

termed as �onditions�.

15.2.5 Strutures

Some textbooks onsider it �good pratise� to substitute equations as early

as possible in the modelling proess with the main argument being that
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one is interested in the measured quantities. The person writing the model

is thus asked to go through the ordeal of exeuting a set of substitutions

and variable transformations on the above di�erential algebrai equation

system. This is not only work, but it also is a great soure of errors both

in algebra and simply opying from one line to the next or whatever goes

into transribing material.

F
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{ẋ}∀s

{tm(y, θt)}∀m

{kr(y, θk)}∀r

{root (ss(x,y, θs))}∀s
b
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Figure 15.2: The omputation sequene: start with state (initial state at

time zero), 1. ompute seondary state, 2. ompute transport and trans-

position and 3. the onservations

If we have a good look at the above equation set and de�ne the problem

of putting it into a simulation, thus integrating the equations given initial

onditions and the �parameters�, the omputation sequene is preisely the

inverse of the de�nition sequene as it was hosen above: one works its way

around the blok diagram (15.2) starting with the fundamental state x.

First one omputes the seondary state, whih is the most omplex task. It

potentially requires the solution of the simultaneous set of equation:

y
s
,p

i
:= root

(

s(y
s
,p

i
,xs,Θs)

)

,∀s, i ∈ [{a|b}, r, s]

figures/C_15__StateConcept/TheGrandSchemeSequence.eps
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One the seondary state vetor for all systems s are known, the transport
and the kinetis an be alulated:

x̂a|b := x̂a|b
(

y
a
,y

b
,p

a|b

)

ξ̃
r
:= ξ̃

r
(y

s
,p

r
)

x̃s := NT
s
ξ̃
r

Whih then makes it possible to ompute the right-hand sides of the di�er-

ential equations:

ẋs =
∑

∀m
αs,mx̂m + x̃s

15.2.5.1 What is to be aurate

When we simulate a plant, we want to have an aurate response from the

simulator, whatever it is. But what is aurate? If we think about putting

energy into a small system and having limited amount of information about

the loal geometry, one has to resort to approximations, whih often have

the feature that the volume/surfae ratio is inorret. Thus putting energy

into this system and having a state spae whih inludes the temperature as

one of its variables, it is quite obvious that the resulting temperature will

be arbitrary and may even approah in�nity as the volume goes to zero.

This kind of phenomena, whih are typial for intensive properties, do not

our when using onserved/extensive quantities as the state, and thus is

the fundamental state.

To solve di�erential equations, we readily use omputing omponents that

we take from libraries. Numerial mathematiians have spent a lot of time

and e�ort to make these algorithms robust, whih often inludes a ontrol of

step lengths based on the estimated auray of the solution. The ommon

piees of information the integration faility requires are thus not only the

model in the form of a funtion that omputes the state derivatives with

time as a funtion of the inputs and the urrent state, the initial onditions,

the �nal time, but also a measure for the auray besides other things like

output intervals. The auray measure goes into the part of the integration

algorithm that ontrols the solution progress. Taking the above ase into

onsideration and omparing the representation of the system in the spae

of energy in ontrast to temperature has a obvious advantage as the rite-

rion applies to the energy and not the temperature, latter being extremely

sensitive to the modelling of the geometry and physial properties.

In omposite systems, where the software will ompose the overall model

from sub-models, it is desirable that one maintains ertain global properties,
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whih in the author's opinion are the losure of the balanes, having top

priority. One annot have any on�dene in a solution that does not satisfy

this basi ondition. Unfortunately this is the point to raise a big warning

�ag indiating that generations of hemial engineers have been eduated

to represent systems in the state spae of intensive properties.

15.2.5.2 Solvability

Numerially one annot make muh of a statement, beause at this point

no numbers are given. However, in terms of struture one an do a simple

analysis by substituting the algebrai parts into the di�erential equation to

show that indeed it redues to a set of ordinary di�erential equations, thus

the problem is of di�erential index 1:x

p
i
:= p

i
(xs,ys

,p
i
) := s−1(xs,Θs)

x̂a|b := x̂a|b
(

y
a
,y

b
,p

a|b

)

:= x̂(s−1(xs,Θs)) := x̂′
m(xs,Θs)

ξ̃
r
:= ξ̃

r
(y

s
,p

r
) := ξ̃

′
r
(s−1(xs,Θs))

x̃s := NT
s
ξ̃
r
:= x̃(s−1(xs,Θs)) := x̃′

s(xs,Θs)

ẋs =
∑

∀m
αs,mx̂m + x̃s

=
∑

∀m
αs,mx̂

′
m(xs,Θs) + x̃′(xs,Θs)

whih is only a funtion of the fundamental state and the parameters Θs

15.2.6 The Text Book Representation

The above representation 15.1- 15.5 represents the plant in the form of a

set of ordinary di�erential equations augmented with a set of di�erential

equations. Traditionally one teahes to represent the model in the spae of

the observed quantities, where observed is to be interpreted as measurable.

Thus text books will usually aim at a representation in the spae of a set of

intensive variables suh as onentration, temperature and pressure aom-

panied with an extensive quantity, often volume. Suh a representation is

usually not minimal but inludes obsolete information. For example hoos-

ing the onentration vetor, temperature, pressure and volume ontains at

least one obsolete variable as one of the onentrations is a funtion of the

others and the volume. The mapping into the spae of observables is mo-

tivated by the fat that one is most often interested in these quantities and

not in the onserved ones. Also, it results in a set of ordinary di�erential
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equations that an be solved using standard tehniques. No need for a DAE

solver. It is thus no surprise that one an �nd statements suh as: early

substitution is a good pratie in standard textbooks.

The two representations are formally linked by a variable transformation.

Let the model 15.1- 15.5 be aptured in the form

ẋ := f(v) , (15.8)

v := g(y) , (15.9)

y := h(x) . (15.10)

where x is the vetor of balaned extensive quantities and v the vetor of

transports and transpositions and y again the vetor of seondary states.

Seeking a representation in the seondary state, for example, one di�eren-

tiates the seondary state with respet to time:

ẏ :=
∂ h(x)

∂ x
ẋ ,

:=
∂ h(x)

∂ x
f(g(y)) .

If the expression

∂ h(x)
∂x is not funtion of x the result is, as desired, a

funtion of y only. Otherwise it must be possible to �nd an expliit relation

between x and y. Whilst the latter mapping must exist, it may only be

possible to do so numerially.

In some ases 15.10 is given expliit in the primary state:

x := d(y) ,

then

ẋ :=
∂ d(y)

∂ y
ẏ ,

ẏ :=

(
∂ d(y)

∂ y

)−1

f(g(y)) ,

in whih ase

(
∂ d(y)

∂y

)

must be invertible.

15.3 A B C

The {A,B,C,D} representation of a proess model is obtained by lineari-

sation of the above non-linear model (see C.2.3). The four matries are an
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abbreviation of the linear-time invariant system (LTI system):

ẋ = Ax+Bu

y := Cx+Du

The four matries are not a funtion of time and not a funtion of either the

state x or the input u and are thus onstant or time-invariant. Interpreting

the LTI systems in the physial ontext is relatively straight-forward, if we

have not transformed the original mehanisti desription. In this ase, the

meaning of the state has not really hanged exept that it represents the

linear approximated ounter part of the balaned extensive quantities. The

fat that it is linearised alls for some autiousness in the interpretation.

The seond stati equations essentially ontain the other three �boxes� in

our representation as shown in 15.1, though with the restrition that the y

is typially only a eletion of the y as shown in 15.1.

The linear time invariant systems are the pet systems of ontrol beause they

have all the nie things: they are linear in the state, the time derivative of

the state and the input. The equations an be readily integrated (C.1.1).
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16

Time-sale based model redution

Synopsis Models need only be as good as required by the appliation. Thus

target is to be good enough. If one has an unneessary omplex model, why

then not simplify it !

16.1 Nature of models

So models only need to be good enough; they must �t the purpose, the

appliation. There is no question of right or wrong: Models are always

wrong simply beause a proess model never is the proess it is modelling.

It is though imperative that one must have the purpose, the appliation

of the model in mind, when designing it, partiularly when one hooses

the struture and the sub-models making up the mimiked behaviour of

the modelled proess. Having already onstruted a model and thus gone

through a modelling proess makes it desirable to also have the faility to

modify existing models suh that it �ts the new purpose. If the require-

ment for a modi�ation are suh that one requires more detail, one needs to

get bak to the very beginning and reonsider the topology, thus the basi

struture of the model. In the ase the struture is generated in a pro-

grammed environment, as this is the ase in omputational �uid dynamis

(CFD), then it is the meshing that needs to be repeated generating a new,

improved spatial disretisation, thus a new network. In ase this has been

done manually, one has to go bak to the drawing board, whih makes it

interesting to have a well-designed graphial interfae. However in the ase

where one requires less auray, one an onsider to simplify the existing

model, whih is the subjet of this hapter.

We onstrut proper model, whih have four bloks: the balanes that

model the dynamis of the proess, the transport providing the information

of what is rossing over the boundaries between the adjaent ommuniating

ontrol volumes, the apaity-internal dynamis, namely the transposition

of tokens and the state-variable transformations that lose the gap between

the onserved quantities and the seondary state variables required for the

transport and the transposition sub-models. Simpli�ations are possible

179
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for all these parts and all ases these are order-of-magnitude assumptions.

Here we disuss the �rst two, the order-of-magnitude assumptions for re-

ative systems, namely fast vs slow reations have been disussed in Se-

tion 8.4.2. The tehnique used to redue the model is singular perturbation

Appendix D.

16.2 Conservation

The dynamis is representation as a network of apaities interating by

exhanging extensive quantities suh as mass, energy and momentum.

time scales

constant

constant

fast slow constantevent dynamic

fastevent dynamic

event dynamic slow

dynamics of the plant environment

Figure 16.1: Shrinking the dynami range.

Any representation in the form of a physial topology, the network repre-

senting the physial ontainment, is the result of making time-sale assump-

tions as it was disussed earlier 2.1.1.2. Simpli�ation of the representation

is ahieved by narrowing the middle part of the time sales, whih is the

dynami range onsidered by the model. The simpli�ation is only mean-

ingful, if the dynami range an be split into two time sales, namely a slow

one and a fast one. There must be a signi�ant gap between them, whih,

as a rule of thumb, should be at least of two order-of-magnitudes. If they

are loser or even overlap, any split is not appropriate and will result in

serious de�ienies of the model's ability to represent the plant's dynamis.

Figure 16.1 shows how the dynami range an be shrank. In the ase where

the onstant part of the network is made bigger, one shrinks the plant in

favour of the environment that is onstant by moving the slow part into the

onstant domain, whilst if one extends the event-dynami part by moving

./figures/C_16__TimeScaleBasedModelReduction/TimeScaleShrinking_01.eps
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the fast parts into the event-dynami range.

16.2.1 A minimal example

Three system represent a minimal on�guration to demonstrate the shifting

of the two time sale boundaries, namely three serially onneted lumps.

The setup is suh that the three lumps have a signi�ant di�erent apaity.

The left one is very large, whilst the left one is very small.

Φ̂R|C Φ̂C|S
R C S

Figure 16.2: A minimal example onsisting of three serially onneted lumps

with dereasing apaity for the token.

The full model would take the form:

Φ̇R = −Φ̂R|C

Φ̇C = +Φ̂R|C − Φ̂C|S

Φ̇S = +Φ̂C|S

16.2.1.1 Expanding the onstant domain

The objetive of the simpli�ation is to shift the large system R into the

onstant time-sale domain, thus make it a reservoir. This means that we

shift the boundary between the dynami system and enlarge the time sale

haraterised as onstant.

The simpli�ation involves the �size� of the system. We need to norm the

system to size and then allow it to approah the limit to in�nity. This

we an ahieve by saling the extensive property Φ in the order of another

extensive property, usually the volume. We de�ne the saling fator ε:

ϕ :=
Φ

ε

As desired, the volume now shows up as a saling fator.

The modi�ed model then reads:

εR ϕ̇R = −Φ̂R|C

∴ ϕ̇R = −
Φ̂R|C
εR
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Now we let the volume approah in�nity:

ϕ̇R = − lim
εR→∞

(

Φ̂R|C
εR

)

ϕ̇R = 0

whih yields that the intensive property is not hanging with time, thus is

onstant. The seond onsequene is that we annot balane the system

R, but we have to get aess to the �ow rate Φ̂R|C either in that the �ow

an be measured and thus appears as an input or that there exists a model

with that is driven be a di�erene in the e�ort variables, whereby the e�ort

variable in the reservoir again is measurable. The model thus redues to

the two balanes for C and S.

16.2.1.2 Introduing an event-dynami domain

The original model had no event-dynami parts. So we introdue one by

assuming the apaity of the lump S is small ompared to the other two.

We hoose a saling fator that is in the order of the volume. The saling

fator is the singular perturbation parameter:

εS ϕ̇j
S = Φ̂C|S

Taking the limit of the volume to go to zero:

lim
εS→0

εS ϕ̇j
S = Φ̂C|S

whih says that the token exhange is negligible. So if start with the model

with the extended onstant domain, we end up with a single balane, namely

the one for the middle lump C.

Φ̇C = +Φ̂R|C

with the Φ̂R|C being known. This represents the outer solution for the R−S
system.

16.2.1.3 Analysing the fast system

The modeller may not only be interested on the inner solution, in whih

the dynami of the fast part dominates. This represents an extension of

the onstant domain, but now seen from the small system S. The approah
is idential to the one taken above, just now we �nd the result that the

lump C is being shifted into the onstant domain and we are left with the

dynamis of S.
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16.3 Transport

In ontrast to the apaity disussion, here order-of-magnitude assumptions

are made about transport. One side is simple, namely nothing is �owing

between two apaities, whih simply nulli�es the orresponding onnetion,

it removes it. The interesting assumption is a transfer to be fast, faster

than the other relevant transfers. Our sample system serves as an exerise

ground. If we take model we obtained after expanding the onstant domain,

we have two balanes and we now need in addition the two models for the

transfers. We use the simple models where the transfer is driven by the

disrete gradient of the e�ort variables on either side of the onnetion:

Φ̂R|C := −ΘR|C (πC − πR)

Φ̂C|S := −ΘC|S (πS − πC)

Sine we apply the order-of-magnitude assumption to the transfer parame-

ters and the said parameter will de�ne the singular perturbation parameter,

we need to substituting the two transfer laws into the balane equations �rst:

Φ̇C = −ΘR|C (πC − πR) + ΘC|S (πS − πC)

Φ̇S = −ΘC|S (πS − πC)

We now introdue the order-of-magnitude assumption that theΘC|S is muh
larger than the ΘR|C .

16.3.1 Small time sale

We zoom into the time and streth the time axis suh that τ is in the order

of 1 in the boundary layer:

τ := ε−1 t

The dynami equations in the �new time� introdue the saling fator:

ε−1dΦC

d τ
= −ΘR|C (πC − πR) + ΘC|S (πS − πC)

ε−1 dΦS

d τ
= −ΘC|S (πS − πC)

Multipliation with the sale (ε) yields

dΦC

d τ
= −εΘR|C (πC − πR) + εΘC|S (πS − πC)

dΦS

d τ
= −εΘC|S (πS − πC)
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In order to see boundary layer behaviour, the sale is hosen in the same or-

der of magnitude as the large transport parameter. Thus the produt εΘC|S
is muh larger than the produt εΘR|C . Whih leads to the simpli�ation:

dΦC

d τ
= +εΘC|S (πS − πC)

dΦS

d τ
= −εΘC|S (πS − πC)

whih is the same as:

Φ̇C = +ΘC|S (πS − πC)

Φ̇S = −ΘC|S (πS − πC)

Sine we have in addition assumed that the apaity of the lump C is

muh larger than the apaity of lump S, we an in addition apply the

simpli�ation of the large/small apaity for the short time sale and get:

Φ̇S = −ΘC|S (πS − πC)

with πC being onstant.

16.3.2 Large time sale

This is the more ommonly used approximation, as one is more often in-

terested in the long time sale. For the singular perturbation to apply, we

divide both equations by the large parameter ΘC|S:

Θ−1
C|S Φ̇C = −ΘR|C

ΘC|S
(πC − πR) + (πS − πC)

Θ−1
C|S Φ̇S = − (πS − πC)

and take the limit of Θ−1
C|S → 0. The result is that

0 = (πS − πC)

whih implies that the two lumps C and S are in equilibrium with respet

to the transferred token. But, having made the order-of-magnitude assump-

tion, we do not know on how muh of the token is being transferred between

the two lumps.
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16.4 Fazit

16.4.1 Small time sale

The fous is on the fast system shifting the slow system into the onstant

domain. Thus the onstant domain is extended and one zooms into the

time sale where things happen quikly

Small/large apaities: The fast system is analysed in isolation, the

large apaities are seen as onstant.

Slow/fast transfer: The slow transport is ignored and fous is on the

fast transport

16.4.2 Large time sale

Small/large apaities: Redution based on small apaity simply leads

to negleting the small apaity.

Slow/fast transfer: The result is that the two strongly-onneted sys-

tems will, for all pratial purposes, be at equilibrium with regard to the

transferred token. But we do not know how muh of the token is being

transferred. It provides though an argument to simplify the topology for

this partiular token by simply eliminating the unknown transfer by om-

bining the two onneted primitive system.

16.5 Fast networks and slow networks

Many systems have the properties of being represented as multiple networks

some of whih have quite di�erent dynami properties than the other. In

proesses any of the units may be represented as a sub-network, for example

a distillation, a reator, a heat exhanger. The fat that the model ompo-

nents are now networks, in ontrast to primitive system, requires additional

onsiderations.

The redution proess aims at lumping relative small apaities between

whih extensive quantities are transferred relatively quikly. If the model

has been transformed into the spae of intensive variables, one an argue on

the basis of time onstants, that is, on the ratio of the stream parameter and

the system apaity. This ratio expresses the inverse of the time onstant
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for the proess and a partiular �ow. If the time onstant is signi�antly

shorter in one ase, then the two systems oupled by the mentioned stream

have nearly the same intensive properties in the longer time sale. The

redution is thus the implementation of an order-of-magnitude assumption

with regards to the apaities and �ows in the frame of a longer time sale

than what was used to establish the original model.

Figure 16.4 shows the generi struture of a fast network oupled with a

slow network.

fast network

slow network

constant

c|f

c|s

f |s

Figure 16.3: A slow network onneted to a fast network

The splitting of the dynami part of the network into a fast and a slow

network is formally done using seletion matries that grab the respetive

parts. We start with the network repesentation:

Φ̇ := FΦ̂

Multiplying the set of equations with the respetive row seletion matrix

Sr
f
and Sr

s
, we get the desired split indiated by the two indies s, f :

Φ̇f := R
f
FΦ̂

Φ̇s := R
s
FΦ̂

Next we split the �ow vetor into the 5 parts, one for the internal �ows in

the slow and the fast sub-networks, and one for eah �ow as indiated in

Figure 16.4:

Φ̇f := R
f
FC

f |f C
T
f |f Φ̂+R

f
FC

f |sC
T
f |sΦ̂+R

f
FC

c|f C
T
c|fΦ̂

Φ̇s := R
s
FC

s|sC
T
s|sΦ̂+R

s
FC

f |sC
T
f |sΦ̂+R

s
FC

c|sC
T
c|sΦ̂

./figures/C_16__TimeScaleBasedModelReduction/SlowAndFastNetworks.eps
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This an be ompated by de�ning:

F•|◦ := R• FC•|◦

Φ̂•|◦ := CT
•|◦Φ̂

yielding:

Φ̇f := F
f |f Φ̂f |f + F

f |s Φ̂f |s + F
c|f Φ̂c|f

Φ̇s := F
s|s Φ̂s|s +F

s|f Φ̂f |s + F
c|s Φ̂c|s

Fousing onto the short time sale does not inlude any surprises; it simply

shifts the slow network into the onstant domain. More interesting is the

slow network

constant

c|r

c|s

r|s

reduced

Figure 16.4: A slow network onneted to a fast network

opposite, namely a fous on the slow time sale. With �fast network� we im-

ply that for the fast network, the apaities are omparable in �size� and the

�ows between them are fast ompared to the apaities. The simpli�ation

is then to eliminate all internal streams in the fast network by ombining

all nodes together into one. Formally this is the null spae of the matrix

F
f |f . We de�ne the left null spae matrix Ω and get:

ΩΦ̇f := ΩF
f |f Φ̂f |f +ΩF

f |s Φ̂f |s +ΩF
c|f Φ̂c|f

with

0 := ΩF
f |f

The null spae is easy to �nd as eah olumn in the F has only two elements,

namely a +1 and a −1. Thus the null spae matrix is simply a row vetor

of ones. The topology has hanged, the redution replaes the fast network

with one single node. It represents the umulative apaity of all the nodes

./figures/C_16__TimeScaleBasedModelReduction/SlowAndFastNetworksReduced.eps
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in the fast network. This node is shown as �redued� in Figure 16.4. The

new inidene list are formally obtained by replaing all node identi�ers

now lumped into �redued� are replaed by the identi�er of �redued�. So,

the �ows between the fast network and the other two networks simplify to

be all linked to this single node that replaes the fast network.

Φ̇r := F
r|s Φ̂r|s + F

c|r Φ̂c|r

with F
r|s := ΩF

f |s and F
c|r := ΩF

c|f .

16.5.1 Assumptions on Assemblies

It is not unommon that one has knowledge about a state-dependent quan-

tity of an assembly of primitive system and thus stimulates implementing an

assumption. A well-known example is the assumption of onstant, known

volume of a multiphase system that is enlosed in a ommon on�nement.

A �ash tank or a tank with an over�ow are a well-known examples.

Given the standard network model

ẋ := F x̂+ x̃ ,

one an split the network into two subsetion thereby isolating the part for

whih the assumption shall be made. Let matrix S
a
be a seletion matrix

that is non-square and isolates the part for whih the assumption shall be

made. Further let Ω be a matrix of the dimension k x n , then it a typial

assembly assumption is

ΩS
a
ẋ := ΩS

a
F x̂+ΩS

a
x̃ := 0 .

that is a linear ombination of the states is onstant. This then de�nes k

algebrai onstrains providing equations for k dependent algebrai variables.

The above equations may be used to determine a set of dependent quantities.

Bi-partite graph analysis an here help to determine the set of possible

quantities that an be determined in a spei� ase. Further, the above

equations an be added to the other part thereby eliminating the onneting

streams, but providing the opportunity to possibly ompute quantities that

depend on the algebrai onstraints.

16.5.2 Assumptions in the Spae of the Seondary States

The network models, being formulated in the spae of the onserved quan-

tities, whih we term the primary state spae, an be transformed into
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seondary state spae by means of state variable transformations. In fat

in hemial engineering models in the seondary states are more ommon

than in the primary, beause substituting as early as possible is onsidered

a good mathematial praxis. Thus one usually does not use the models

in the primary state spae, whih is also a minimal spae. The approah

disussed here represents therefore a deviation from the standard hemial

engineering pratie.

The transformation an be formalized readily yielding

Jy
x
ẋ := Jy

x
F x̂+ Jy

x
S x̃ .

with:

Jy
x
:=

∂ y

∂ xT
.

resulting in a transformed model:

ẏ := Fy x̂(y) + Sy x̃(y) .

From this point on one an implement the same assumptions as they were

disussed above. Very ommon is the assumption of onstant volume for

single systems or assemblies.

16.5.3 Unmodelled Components

When modelling a plant it is quite ommon that one does not have muh of a

lue on what preisely happens in a plant, but may have a thought on what

the e�et is. Two very ommon problems are that one does not know on

how to model a �ow preisely or what reation is taking plae. However, one

knows that ertain things are being ontrolled, for example the temperature,

or that the volume is approximately onstant in an over�ow situation et.,

or the apaity e�ets an be negleted.

Thus the before mentioned simpli�ations an be used to �determine� the

missing model omponents by means of making order-of-magnitude assump-

tions. One may assume the apaity e�et is zero, or a seondary respetive-

dependent state variable is onstant, or event dynamis on the �ow in ques-

tion yields an algebrai ondition for the missing stream information.
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17

System Identi�ation

17.1 Mathing the Model to the Plant

There is really only one purpose for system identi�ation, and that is to �nd

an appropriate model for the modelled plant limited to the range of oper-

ating onditions in whih the identi�ation experiments an be performed.

So why do these models have to be mathed with, and what about these

operating onditions? Mathing is neessary beause the model is not a

preise image of the plant and it is not always suh that all the information

about the plant's behaviour is known in all details thought some of them

may be neessary to be inluded in the model in order to meet the spei�a-

tion one has de�ned for the use of the model. Thus system identi�ation is

done to �nd a model desribing the proess on the level of details required

for the appliation of the model. Appliation an be anything from just

trying to understand the behaviour of the system, to using it for design and

operational tasks suh as ontrol.

What about the operating onditions? Plants, or any system for that mat-

ter, must be disturbed, exited, as the speialist alls it, in order for the

proess to reveal his behaviour. For example, in order to �nd out on how

heavy something is, one has to aelerate it or expose it to a gravitational

�eld. The same for any other proess: it must be moved about in order

to test out its behaviour. For the purpose of identi�ation one thus injets

a well-ontrolled disturbane, an exitation signal, that moves the proess,

that is, hanges its state. The model is then fed with the same exitation

signal and the behaviour of the plant and the simulated proess is ompared

on the basis of whih the model is hanged. The model is hanged until its

behaviour �ts satisfatorily within the plant's range of operation, whereby

satisfatorily is determined by introduing a measure for the di�erene be-

tween the plant and the model.

Proess identi�ation has been subjet of researh for as long as models are

de�ned. The reent literature body inludes the review paper of Åström

and Eykho�, the book by Eykho� and the book on the subjet by Ljung

(Ljung (1987); Eykho� (1974); Astroem and Eykho� (1971)). The subjet

has also been of interest in the statistis ommunity in partiular assoiated

with parameter identi�ation and signal proessing.

193
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17.2 De�ning System Identi�ation

We shall de�ne system identi�ation as follows:

Given a set of models M := {M i|∀i} where eah of the models may belong

to a spei� lass of models, the system identi�ation task is to �nd the

best model in the de�ned set given reords of input-output data D from the

plant obtained under operating onditions C where best is measured by the

riterion J.

In the ase where the model set M onsists of struturally di�erent models,

one talks about system identi�ation. In the ase where the set onsists of

one parameterised model with the varying parameters being the set gener-

ator, one talks about parameter identi�ation

1

.

Fitting best implies that system and parameter identi�ation is an optimisa-

tion problem. The measure must be suitable to be used in an optimisation

and onvexity is a desired property. The sum of squares of the deviation,

where deviation needs to be de�ned, is the most ommonly used riterion,

though also other norms are suitable for the purpose, the 2-norm being

mathematially easy to handle.

plant

M(θ)

identi�ation

θ

u y

ŷ

bc

bc

Figure 17.1: The grand sheme of parameter identi�ation: The plant is

exited with a su�iently rih signal to stimulate the interesting modes of

the plant. The same input is used to simulate the model's (M) behaviour.

All three generated signals, namely the exitation signal u, the plant's re-

sponse y, and the model's response ŷ is used to ompute an estimate of the

model's parameters, whih then are used to update the model.

1

The two things may overlap in that a parameter appearing as a fator in an expres-

sion may eliminate the assoiated term from the model as this parameter assumes the

value zero. The zero takes thus a somewhat speial position when interpreting model

strutures. This fat is extensively used in network representations suh as neural nets
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The fat that the neessary experiments an usually only be done in a

limited range of operating onditions is often not su�iently appreiated,

beause the identi�ed model is stritly speaking only valid for the range the

model has been validated, whih usually oinides with the range in whih

the model has been identi�ed. There is no guarantee on the extrapolation

ability of the model, even if the model is a mehanisti model. For dynami

models the operating onditions may be best haraterised by the frequeny

range and the amplitude range in whih the identi�ation experiments were

performed. They de�ne some kind of spetral onditions, whih for example

in robust ontrol beome very handy to have available.

In any ase, the auray of the identi�ed model should ultimately be judged

in the framework of the appliation of the model. Thus for example if the

model is used for ontroller design, the performane of the ontrolled proess

should be taken as the ultimate measure. This underlines the statement that

the model is being onstruted for a partiular purpose, a fat that should

be kept in mind at all times.

17.2.1 Consequenes

Having de�ned the task system identi�ation, it is apparent that the iden-

ti�ed models are a funtion of all the elements entering the proedure: the

data, the set of models and the riterion: The riterion provides the mea-

sure, thus the result is obviously dependent on what yard stik is being

used. The most ommon hoie is the sum of squares, mostly beause of its

nie mathematial properties. It usually serves its purpose very well indeed

to the extent that most people would not spend a thought on the hoie.

The model set has a rather obvious e�et on the result as the parameters

are stritly speaking de�ned in the ontext of the model. Not having a

model in the set straightforwardly means that it is not being onsidered �

obvious indeed, but not in a hidden ontext. The input, namely the exi-

tation signal being used for the identi�ation period, has a huge impat

on the result. This fat is muh too often ignored and �standard� exitation

signals are being applied without being aware what e�et they have on the

plant and onsequently on the identi�ed model parameters. If one views

the problem in the frequeny domain one gets quite quikly a good insight.

Figure 17.2 shows the frequeny behaviour of two models for the same pro-

ess. The one with the steeper asymptote and higher phase shift is the more

omplex one. Assuming that the more omplex model indeed desribes the

plant better, one observes that the simpler model does very well up to a

frequeny of about 1 Hz. Above the phase hanges to the double quite

quikly. If one thinks about identi�ation, then one observes two major
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Figure 17.2: Bode plot of two models, a ompliated and a simpli�ed one.
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parameters, eah represented by a orner or a bend in the amplitude plot:

One 3 10−2
Hz and the other around 2 Hz for the omplex ase and about 1

Hz for the simpli�ed model. If one uses an input signal that is on the high

end frequeny limited around 0.01 Hz, none of the orners an be extrated

as the output signal will be essentially the same as the input signal. Thus

only the steady state value an be obtained from this experiment. If one

inreases the frequeny ontents to 0.1 or 1 Hz, one will see the e�et of

the �rst orner: The amplitude drops and the output is shifted by about

90 degrees. However, the output signal will have no information about the

seond orner and the beyond. In order to �nd this seond orner, one has

to experiment in the domain of 1 to 10 Hz.. This example makes it appar-

ent that the frequeny ontents of the exitation signal is essential for the

proedure and it is reommendable that one spend some time on designing

the experiment so as to tikle the proess at the right point, so-to-speak.

17.3 Models

With models being the main objetive, it is put into the entre, whilst the

methodologies assoiated with identi�ation is put into the seond plae as

it is extensively treated in the literature: for example Ljung (1987); Eykho�

(1974); Astroem and Eykho� (1971).

Models are typially lassi�ed using attributes suh as linear, nonlinear,

stohasti, parameterised, disrete and ontinuous.

But for example what does linearity mean? Most ommonly the term linear-

ity is used in onnetion with the state, so more preisely: linear-in-the-state

systems, whih re�ets that on e is primarily interested in the evolution of

the state, thus proess simulation. In identi�ation, one is mostly interested

in linear-in-the-parameters, as it is the parameters that one is solving for.

Nonlinearities in the inputs are usually quite manageable, whilst if one is

interested in using the model for ontrol, nonlinearities represent a major

obstale.

Literature uses often the term parameterised and the opposite un-para-

meterised for model lassi�ation. This attribute is not seen as a very

desriptive and we rather use data-driven instead of un-parameterised.

Disrete and ontinuous models: On the marosopi sale nature is well

approximated by ontinuous systems, that is, the state is a ontinuous fun-

tion of time and spatial o-ordinates.
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17.3.1 Data-driven Models

Data models ome as input-output data or time series. As suh system

responses belong into this lass suh as impulse response and step response

being the two main ones. The impulse response is the hemial engineer's

residene time distribution. Numerially onvoluting the impulse response

with an input series results the response of the system.

Assuming disretely hanging inputs one an apply the step response for

eah time step to obtain the response of the system. The step response as

a model is extensively used in model preditive ontrol appliations. The

bakground is linear time-invariant systems.

Using fast Fourier transform tehniques, one an use tabled information

about the transfer funtion to obtain input/output data.

17.3.2 Speial Forms

17.3.2.1 Hammerstein Model

Nonlinear input transformation followed by a linear dynami system. Ham-

Gf (.)
u x y

Figure 17.3: Hammerstein model

merstein models appear for example when making event-dynami assump-

tions for parts of the systems whih onvert these parts into transfer sys-

tems.

17.3.2.2 Wiener Model

Linear dynami system followed by a nonlinear output transformation. Wiener

G f (.)
u x y

Figure 17.4: Wiener model

models appear for example when making event-dynami assumptions about

reations ourring in a apaity. The dynamis part then represent the hy-

drauli, whilst the stati part represents the event-dynami reation system.
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17.3.2.3 Stati L-i-P (Linear-in-Parameters) Models

This type of model is used to desribe the stationary behaviour of proessing

systems. With hemial engineering being traditionally taught based on

stationary behaviour of ontinuous plants, this type of model is of partiular

interest to this group.

A rather generi formulation of the lip model is multi-input, single output:

y := fT (u) θ

where the vetor of funtions f may be nonlinear in the input vetor u. The

model is learly linear in the parameters θ ∈ R
k
.

The nonlinearity of the funtion f of u is virtually arbitrary. The most om-

mon strutures being used are polynomials and exponentials. For example:

fT (u) := [ur]r:=1,2,. . . ,1/2,1/3... ,

but also mixed nonlinearities are permitted.

17.4 The Analytial Framework

The following setions are devoted to proess identi�ation both for sta-

tionary systems and dynami systems. In the previous setion we de�ned

identi�ation as an operation that �ts a model to the proess. With the

proess usually being a physial objet, one has no means to quantify the

mismath between the model and the proess exept than omparing re-

sponses to exitations. So quality an only be assessed on the basis of

omparative desriptive power measured on the deviation of the observed

proess quantities and the orresponding signals obtained from the model

simulation using the same exitation signal. This is what we re�eted in

Figure 17.5.

If one though works on the methods, one is interested to learn what e�ets

ertain model-mismathes have one the results, being the parameter esti-

mates and their stohasti properties. So the logial approah is to replae

the physial model by an abstrat mathematial objet, whih we all nom-

inal model. This nominal model an then be tailored to exatly deviate

from the identi�ed model as desired. We also added two noise signals: one

that is added to the �plants� input and one that adds to the observation.

This again is a simpli�ation of the �reality� in that this assumes that the

noise is additive to the respetive signals.
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u

ȳ

M(θ)

identi�ation

θ

ŷ

bc

M̄(θ̄)bc

w v

Figure 17.5: Analysing grand sheme of parameter identi�ation: The plant

is replae by a nominal model of whih one has omplete knowledge, a

mathematial model. Otherwise the sheme remains the same: All three

generated signals, namely the exitation signal u, the plant's response ȳ,

and the model's response ŷ is used to ompute an estimate of the model's

parameters, whih then are used to update the model.

17.5 Point Estimators

The �tting of a model to an experiment uses the input/ouput data from

the proess to whih the model is being �tted. Estimators Ψ are �rules�

on how to ompute the parameters of a model

2

. The proess is usually a

physial proess, whih we an observe. If we are interested in disussing the

properties of the estimation proedure, then omparing what was observed

on the proess and ompare it with the reonstruted observation using the

model is not providing us with enough information to disuss the properties.

For this purpose we have to introdue an abstrat substitute of whih we

have omplete knowledge: a mathematial model. This model we term

nominal model, whih in general will be more omplex than the model being

�tted.

Let our nominal model be:

ȳ := M̄(u, θ̄) + v (17.1)

The v is a vetor of random variables that satisfy the Gauss-Markov as-

2

The following follows losely the book of Goodwin and Payne (1977)
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sumptions (see Setion G):

E [v] := 0

E
[

(v −E[v])2
]

:= σ2 < ∞

The analysis of estimators aims at de�ning its quality, so how good the

estimator is. The �rst property we going to test a estimator for is if it

gives bak the information we expet, namely the parameters of the model

if applied to the data generated by the same model. So we apply the esti-

mator Ψ̄ := Ψi

(
u, ȳ

)
to our nominal model M̄ and we expet the nominal

parameters θ̄ bak:

Property - Unbiased : An estimator is alled unbiased if

E
[
Ψ̄
]
= θ̄

Property - Uniformly minimal mean square error : An estimator

Ψ̄ for a parameter θ̄ is said to be uniformly minimal mean square error if

E
[(
Ψ̄i − θ̄

) (
Ψ̄i − θ̄)T

)]
≤ E

[(
Ψ̄j

(
u, ȳ

)
− θ̄
) (

Ψ̄j

(
u, ȳ

)
− θ̄)T

)]

for all estimators in the set

{
Ψ̄j |∀j

}

De�nition - Minimum variane unbiased estimator MVUE : Es-

timator that is unbiased and has the property uniformly minimal means

square error.

De�nition - Best linear unbiased estimator BLUE : MVU Estimator

that is a linear funtion of the data.

It is often not feasible to �nd a MVUE or a BLUE estimator, but usu-

ally su�es to use an estimator that approahes the lower variane bound

de�ned by the Cramer-Rao inequality Goodwin and Payne (1977):

Theorem 17.5.1 (Cramer-Rao inequality). Let Pθ be a family of distri-

butions on a sample spae Ω with the density pȳ|θ, then, subjet to some

regularity onditions, the ovariane V(Ψ̄) of any unbiased estimator Ψ̄ of

θ̄ satis�es the inequality

V(Ψ̄) ≥ M−1

θ̄

with V(Ψ̄) = E
[(
Ψ̄i)− θ̄

) (
Ψ̄i)− θ̄

)T
]

and were the matrix M−1

θ̄
, alled

the Fisher information matrix, is de�ned by

M
θ̄
:= E





(

∂ log p(ȳ|θ̄)
∂ θ̄

)T (
∂ log p(ȳ|θ̄)

∂ θ̄

)
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Proof. Ψ̄is an unbiased estimator of θ̄, thus:

E
[
Ψ̄
]
= θ̄

i.e.

∫

Ω
Ψ̄ p

(
ȳ|θ̄
)
dȳ = θ̄

∂

∂ θ̄

∫

Ω
Ψ̄ p

(
ȳ|θ̄
)
dȳ = I

Assuming regularity under the integral

∫

Ω
Ψ̄

∂ p
(
ȳ|θ̄
)

∂ θ̄
dȳ = I

∫

Ω
Ψ̄

∂ log p
(
ȳ|θ̄
)

∂ θ̄
p
(
ȳ|θ̄
)
dȳ = I

E

[

Ψ̄
∂ log p

(
ȳ||θ̄

)

∂ θ̄

]

= I

Also we have:

E

[

∂ log p
(
ȳ|θ̄
)

∂ θ̄

]

=

∫

Ω

∂ log p
(
ȳ|θ̄
)

∂ θ̄
p
(
ȳ|θ̄
)
dy =

∫

Ω

∂ p
(
ȳ|θ̄
)

∂ θ̄
dȳ

=
∂

∂ θ̄

∫

Ω
p
(
ȳ|θ̄
)
dȳ =

∂

∂ θ̄
(1) = 0T

(17.2)

With the 17.5 and 17.2, the ovariane of

∂ logp
(

ȳ|θ̄
)

∂ θ̄
and Ψ̄

(
ȳ
)
is

E









(
Ψ̄
(
ȳ
)
− θ̄
)

∂ logp
(

ȳ|θ̄
)

∂ θ̄





[
(
Ψ̄
(
ȳ
)
− θ̄
)T ∂ logp

(

ȳ|θ̄
)

∂ θ̄

]


 =

[

V(Ψ̄) I

I M
θ̄

]

(17.3)

whih is learly non negative sine it is a ovariane matrix. Thus

[

I,−M−1

θ̄

] [

V(Ψ̄) I

I Mθ̄

] 


I

−M−1

θ̄



 ≥ 0

yielding

V(Ψ̄)−M−1

θ̄
≥ 0
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Property - E�ieny : The unbiased estimator is e�ient if its o-

variane is equal the Cramer-Rao bound, i.e. the inverse of the Fisher

information matrix.

Theorem 17.5.2. Subjet to regularity onditions, there exists an e�ient

unbiased estimator for θ̄ if and only if we an express

∂ logp
(

ȳ|θ̄
)

∂ θ̄
in the

form

[

∂ log p
(
ȳ|θ̄
)

∂ θ̄

]T

= A(θ̄) [Ψ̄− θ̄]

where A(θ̄) is a matrix not depending upon y

Proof. Su�ieny: Assume the theorem holds then Equation 17.3 beomes:

E

[[

(Ψ̄
(
ȳ
)
− θ̄)

A(θ̄) [Ψ̄ − θ̄]

]
[

(Ψ̄
(
ȳ
)
− θ̄) A(θ̄) [Ψ̄ − θ̄]

]
]

=

[

V(Ψ̄) V(Ψ̄)AT (θ̄)

A(θ̄)V(Ψ̄) M
θ̄

]

whih from Equation 17.3 is:

=

[

V(Ψ̄) I

I Mθ̄

]

whih gives

A(θ̄)V(Ψ̄) = I

and

A(θ̄)V(Ψ̄)AT (θ̄) = Mθ̄

hene

V(Ψ̄) = M−1

θ̄
(17.4)

Neessity: Assume Equation 17.4 then from Equation 17.3

E









[Ψ̄
(
ȳ
)
− θ̄]

∂ logp
(

ȳ|θ̄
)

∂ θ̄





[

[Ψ̄
(
ȳ
)
− θ̄]T

∂ logp
(

ȳ|θ̄
)

∂ θ̄

]


 =




M−1

θ̄
I

I M
θ̄
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Premultiplying with

[

M
θ̄
,−I

]

and postmultiplying with

[

M
θ̄
,−I

]T
gives:

E







Mθ̄ [Ψ̄
(
ȳ
)
− θ̄]−

(

∂ log p
(
ȳ|θ̄
)

∂ θ̄

)T


×

×



M
θ̄
[Ψ̄
(
ȳ
)
− θ̄]−

(

∂ log p
(
ȳ|θ̄
)

∂ θ̄

)T




T



 = 0

Consequently

Mθ̄ [Ψ̄
(
ȳ
)
− θ̄] =

(

∂ log p
(
ȳ|θ̄
)

∂ θ̄

)

whih proves the theorem.

Corollary (17.5.2.1). The proof also reveals that if the theorem applies

then A(θ̄) = Mθ̄, the Fisher information matrix.

17.5.1 Least-Squares Estimator and L-i-P Models

17.5.1.1 Getting the Best Parameters

Let the instane of the multiple-input, single-output, l-i-p model Equa-

tion 17.3.2.3 be:

ŷ := fT (u) θ ∈ R
1 ,

with θ ∈ R
k
. We assume having n instanes of input-output experimental

data available.

To ondense the equations, we stak the n input-output instanes up:

ŷ := [ŷi]∀i ,

F :=
[
fT (ui)

]

∀i ∈ R
n×k ,

in order to get:

ŷ := F θ ∈ R
n .

Let in addition the observation orresponding to the input ui be yi, whih
we also stak up:

y := [yi]∀i .
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In order to de�ne the ost funtion, we �rst de�ne the error as the di�erene

between the response of the plant and the response of the model to the

exitation signal applied to both identially:

e(θ) := y − ŷ(θ) ,

with the model this gets:

e(θ) := y − F θ ,

and the ost funtion being the Q-weighted sum of squares:

J(θ) := e(θ)T Qe(θ) (17.5)

with Q being a positive semi-de�nite weighting matrix.

The regression problem is then an optimisation problem by de�ning the

optimal parameter being the one that minimises the ost funtion, thus

leads to a minimal sum of square error. Let the optimal solution be marked

with a

⋆
. Then:

∂ J(θ)

∂ θ

∣
∣
∣
∣
θ⋆

:= 0

0 := 2

((
∂ e(θ)

∂ θ

)T

Qe(θ)

)

θ⋆

0 := −2

((
∂ ŷ(θ)

∂ θ

)T

Qe(θ)

)

θ⋆

0 := FT Qe(θ) (17.6)

0 := FT Q
(
y −F θ⋆

)

0 := FT Qy − FT QF θ⋆ .

The equation Equation 17.6 is also alled the normal equation. It is also

alled the stating that the error is orthogonal to the funtion of the input,

thus no more information an be extrated from the input.

Re-arranging to solve for the parameter vetor gives:

θ⋆ :=
(

FT QF
)−1

FT Qy . (17.7)

17.5.1.2 E�et of Measurement Noise

Measurement noise is one of the most ommon problems with measured

data. Making a ouple of assumptions, it is straightforward to estimate
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the e�et of the measurement noise on the estimated parameters. Again

assuming a single-output system, let the additive measurement error be v,
then the key assumptions are:

1. inputs are unorrelated,

2. E(v) := 0 :: mean error is zero,

3. var(v) := σ2
being the variane σ2

being the standard deviation of

the error distribution.

Simplifying the writing of the unity-weighted estimator:

θ⋆ :=
(
FT F

)−1
FT y ,

θ⋆ := Sy .

The estimated variane of the parameter vetor is

var
(
θ⋆
)

:= var
(
Sy
)

:= S var
(
y
)
ST

:= S σ2 ST

:= SST σ2

:=
(
FT F

)−1
FT F

(
FT F

)−1
σ2

:=
(
FT F

)−1
σ2 . (17.8)

The result is a symmetri matrix alled the variane-ovariane matrix, the

diagonal being the varianes and the o-diagonal the respetive ovarianes.

The ovariane implies that a hange in the expetation (average) of one

parameter will also hange the orrelated parameter in the diretion and

magnitude indiated by the respetive ovariane. As a normed measure

one uses the orrelation.

Correlation The orrelation matrix is the variane-ovariane matrix

normed by the varianes:

R :=

[

cov(θ⋆i θ
⋆
j)

(
varθ⋆i varθ

⋆
j

)1/2

]

∀i,∀j

,

:=

[
cov(θ⋆i θ

⋆
j)

σ2
i σ

2
j

]

∀i,∀j
,

:= [ri,j ]∀i,∀j .
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The orrelation varies between -1 and 1 being ompletely negative or om-

pletely positively orrelated. In most appliations orrelation is an unde-

sired property and large orrelation an be an indiation of pure experimen-

tal design.

17.5.1.3 Expeted Auray

One an use the estimated parameters to predit the behaviour of the plant

for a partiular instane. Let the instane be

ŷi := fT (ui) θ
⋆ + v .

where v is a measurement error that is normally distributed and has a zero

mean. Under these onditions, the variane is:

var (ŷi) := var
(
fT (ui) θ

⋆
)
+ var (v)

:= fT (ui) var (θ
⋆ f(ui)) + var (v)

:=
(

fT (ui)
(
FT F

)−1
f(ui) + 1

)

σ2 .

If we repeat the experiment m times, we an improve the estimate of the

variane:

var
(
ŷi,m

)
:=

(

fT (ui)
(
FT F

)−1
f(ui) +

1

m

)

σ2 .

Given the variane, the on�dene limits (upper :: u, lower :: l) are:

[
ŷi,l, ŷi,u

]
:= fT (ui) θ

⋆ ± 2σ2

√
(

fT (ui)
(
FT F

)−1
f(ui) + 1

)

.

If one estimates the variane, the �2� is replaed by the respetive value from

the student t-distribution with the appropriate degrees of freedom and the

hosen on�dene limit.

17.5.1.4 Con�dene Limits for Parameters

Having found the best parameters poses the question on how on�dent one

an be in them. So how does the ost funtion hange with the parameters?

Let the ost funtion be the identity-weighted version as given in equation



208 CHAPTER 17. SYSTEM IDENTIFICATION

17.5, then its hange with the parameters is:

J(θ) := eT (θ) e(θ) ,

:=
(
y − F θ

)T (
y −F θ

)
,

:=
((
y − F θ⋆

)
− F

(
θ − θ⋆

))T ((
y − F θ⋆

)
− F

(
θ − θ⋆

))

:=
(
y − F θ⋆

)T (
y − F θ⋆

)

−
(
y − F θ⋆

)T
F
(
θ − θ⋆

)
−
(
θ − θ⋆

)T
FT

(
y −F θ⋆

)

+
(
F
(
θ − θ⋆

))T
F
(
θ − θ⋆

)
,

:= J(θ⋆) +
(
θ − θ⋆

)T
FT F

(
θ − θ⋆

)
,

where we used the fat of equation Equation 17.6 twie for the middle terms.

Thus

J(θ)− J(θ⋆) :=
(
θ − θ⋆

)T
FT F

(
θ − θ⋆

)
.

This is an ellipsoid in the parameter spae. The length of the axis is related

to the eigenvalues of the matrix C := FT F and the eigenvetors to the

orientation: The equatorial radii are the inverse of the square roots of the

eigenvalues whilst the eigenvetors, whih, due to the spetral theorem, are

orthogonal, determine the diretion.

3

The α on�dene limits of the parameters are given by the orresponding

value of the F-distribution:

(θ − θ⋆)T FT F (θ − θ⋆) ≤ k s2 Fα
k,n−k(α) .

The on�dene ellipsoid is thus de�ned by the matrix C normed by the

right-hand-side value.

The variane an be estimated from the ost funtion:

s2 :=
eT (θ⋆) e(θ⋆)

n− k
,

where n is the number of observations and k the number of estimated pa-

rameters. In the ase of a BLUE estimator, and assuming the statistis to

be normal, then one an prove that the BLUE estimator approahes the

Cramer-Rao minimal variane bound (Goodwin and Payne, 1977).

3

Sine C is symmetri, C = VΛV
−1 = C

T =
(

VΛV
−1

)T

Thus V
T = V

−1
the

quadrati form x
T
F

T
Fx an be rewritten as x

T
VΛV

T
x := z

T
Λz with z := V

T
x.
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17.5.1.5 How Good is the Identi�ed Model: Variane Analysis

Beause of the experimental errors one will not get the same response from

the plant when repeating an experiment using the same input. If the re-

sponses are within the limits of the expeted output error, one has no reason

to be suspiious about the model appropriately desribing the proess. If

one tries to �t the same data a more omplex model, one will �nd no im-

provement. Naturally if one performs more experiments, it may show that

the model is indeed not the best one an �nd. Latter aspet is used to

design experiment fousing on the weak parts of the model.

The means to hek on the model is to analyse the variane for the various

ontributions. Again we start with the sum of squares of the error, the ost

funtion Equation 17.5 whih we expand:

eT e :=
(
y − F θ⋆

)T (
y − F θ⋆

)

:= yT y− θ⋆T FT y − yT F θ⋆ + θ⋆T FT F θ⋆

:= yT y− θ⋆T FT F θ⋆ − θ⋆T FT F θ⋆ + θ⋆T FT F θ⋆

:= yT y− θ⋆T FT F θ⋆

Isolate the total sum of squares over the outputs:

yT y := θ⋆T FT F θ⋆ + eT e .

The total sum of squares is thus the sum of the regression sum of squares

plus the rest sum of squares. Eah of these terms is onneted to a degree of

freedom being used to ompute the respetive term. The sum of squares of

the outputs uses n :: number of observations. The regression sum of squares

is omputed from k :: number of parameters normal equations. Thus the

di�erene n−k is are the left degrees of freedom for the rest sum of squares.

It is ustomary to show this in a table:

SSQ DOF

total SSQ yT y n

regression SSQ θ⋆T FT F θ⋆ k

rest SSQ eT e n− k

One an show that if

eT e
n−k estimates the variane of the experimental error,

then the model is desribing the proess appropriately. If we take the rest
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SSQ divided by the respetive degrees of freedom as an estimate for the

variane, thus

s2e :=
eT e

n− k
,

and knowing the atual variane of the experimental error to be σ2
then

the ratio of the estimated variane and the n − k saled variane is χ2

distributed thus algebraially:

s2
n− k

σ2 ∼ χ2
n−k .

One has good reasons do delare the model as not �tting well and thus

reonsider its struture if :

s2

σ2 >
χ2(α)

n− k
,

α being the on�dene limit.

Not knowing the variane The variane of the experimental error is

usually not known and must be estimated from the data. Assuming that

we make ni experiments for the input ui and obtain a orresponding set of

responses y
i
and repeat the experiments by varying i := 1, . . . , q, then the

estimate for the variane is omputed by :

s2e :=

∑q
i=1

(
y −E

[
y
])2

∑q
i=1 (ni − 1)

:=

∑q
i=1

(
y −E

[
y
])2

∑q
i=1 ni − q

.

The −1 thus the redution of the degree of freedom by one is due to the

mean being E
[
y
]
, whih is alulated from the same data. So for the s2e

total degree of freedom is:

ne :=

q
∑

i=1

ni − q

If the model �ts well, then the experimental error is also estimated by the

rest sum of squares. The two variane estimates an be ompared with eah

other as one an show that their ratio is F-distributed with the respetive

two degrees of freedom.
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If the ratio gets too large the model does not �t well and one may onsider

the model to be a bad �t:

1

n− k

eT e

s2e
> Fα

n−k,ne
.

The above test assumes that the variane is estimated with one set and the

parameters with another. It is, though, meaningful to use all experiments

for the regression and split the variane aordingly:

soure deviation SSQ DOF average SSQ

regression θ⋆
T
FT F θ⋆ k

θ⋆
T

FT F θ⋆

k

lak of �t eT e−∑q
i=1

(
y −E

[
y
])2

n− k − ne

eT e−
∑q

i=1

(

y−E
[

y
])

2

n−k−ne

pure error

∑q
i=1

(
y −E

[
y
])2

ne

∑q
i=1

(

y−E
[

y
])

2

ne

total SSQ yT y n

De�ning the varianes:

s2ef :=
eT e−∑q

i=1

(
y −E

[
y
])2

n− k − ne
,

s2e :=

∑q
i=1

(
y −E

[
y
])2

ne
,

the lak of �t test is then:

s2ef
s2e

≤ Fα
n−k−ne,ne

to aept the model.

How to proeed Identi�ation is an iterative proess. One �ts a model,

heks if it �ts well and if not, modi�es the model until one is satis�ed. The

lak-of-�t measure is thus used as the deision riterion if or if not a modi�ed

model should be adopted: The lak-of-�t for the new model ompared to

the old model must be statistially signi�ant better. An appropriate F-test

provides the information.
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17.5.1.6 Bias

Under ertain irumstanes the estimator will not deliver the desired result,

but an estimate that is ontaminated with a bias. With E
[
Ψ̄
]
being the

estimated parameters and θ̄ the true parameter values, a biased estimator

is de�ned as:

E
[
Ψ̄
]
:= θ̄ + b .

If b is not equal zero, the estimator is alled biased, otherwise the estimator

is unbiased.

Bias due to omitted variables This is unfortunately a very ommon

ase, as one often does not know what variables do a�et the output of the

plant. The linear model that one identi�es thus may not inlude all those

variables and the e�et is a bias in the estimate. To show the e�et, let the

plant be represented by a mathematial objet, namely:

ȳ := fT (u) θ + gT (u) θ .

The model to be �tted shall be idential to the �rst term of the plant, thus

the seond term is the omitted one, the output of whih we abbreviate as

z̄.

ŷ := fT (u) θ .

Consequently one an write the plant output as:

ȳ := ŷ + z̄ ,

Using the model as a basis and the analogue staking of the individual

experiment instanes, the estimator Equation 17.7 is

θ⋆ :=
(
FT F

)−1
FT ȳ

:=
(
FT F

)−1
FT

(
ŷ + z̄

)

:= θ̄ +
(
FT F

)−1
FT z̄ .

Clearly the seond term is now the bias of the estimate.

Bias due to orrelation in output noise Asymptotially the bias is

given by Astroem and Eykho� (1971)

E
[
θ⋆ − θ

]
:=
(
E
[
FT F

])−1
E
[
FT e

]
.

where e is the output error.
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Bias due to input noise Bias is also introdued into the parameter

estimation if the input has a stohasti omponent. The mathematial

treatment of this ase is rather involved and losely linked to the derivation

of the Kalman �lter.

17.5.1.7 Instrumental Variables

The least squares estimator an be obtained from the model

ŷ := F(u) θ + e

by multiplying both sides of the error-free model with FT
:

FT ŷ := FT F θ⋆ .

The estimate will be unbiased if the term FT e has zero mean, whih is not

the ase when the error is orrelated. The instrumental variable method

replaes the FT
matrix by an instrumental variable matrix WT

in above's

manipulation. It is a matrix whih is a funtion of the data with the prop-

erties

E
[
WT F

]
:: not singular

E
[
WT e

]
:= 0 .

The orresponding estimator is

WT ŷ := WT F θ⋆

θ⋆ :=
(
WT F

)−1
WT ŷ ,

whih is unbiased.

Choie of instruments For dynami systems (17.8), most ommonly

a �ltered input is used as instrument where the �lter's disrete transfer

funtion may be

g(q) :=
D(q)

C(q)
.

An attrative alternative is the modulating funtion �lters introdued by

Maletinsky (1978); Preisig (1984); Preisig and Rippin (1993a,b).
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17.5.2 Maximum Likelihood Estimator

The maximum likelihood estimator selets the most likely parameter Box and Tiao

(1973); Ljung (1987). The approah is based on Bayes' theorem Equa-

tion G.1. Given the vetor of observations y := {yi} the joint density

funtion is p(y , θ) that depends on a vetor of parameters θ. This density
may be interpreted in two ways:

p(y θ) := p(y|θ) p(θ) ,
:= p(θ|y) p(y) .

The onditional distribution of θ is:

p(θ|y) :=
p(y|θ) p(θ)

p(y)
.

The denominator an be rewritten as:

p(y) :=

{∫
p(y|θ) p(θ), θ ontinuous

∑
p(y|θ) p(θ), θ disrete

p(θ) is denoted as prior probability, p(θ|y) as posterior probability and p(y|θ)
as likelihood.

In ontrast to the least squares method, the maximum likelihood method

assumes the parameter to be distributed and not the measurement depend-

ing on the parameter. This assumption is exatly inverted for the least

squares method Johnston and DiNardo (1997); Koh (2007); Box and Tiao

(1973).

17.6 Non-linear Regression

17.6.1 Finding the best parameters

In the previous setion we assumed the model is linear in the parameters,

whih in many ases is a stringent assumption requiring the linearisation of

the proess model with respet to the parameters. Often this is not feasible

and one has to resort to solve the non-linear problem. The model is then

of the form:

ŷ := f(u, θ)

The least-square estimator then minimises the objetive funtion:

J(e) := eT e
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with the output error being:

ei := ŷ − yi := f(u, θ)− yi

If the non-linearities are mild, then one an onsider to linearize the model

and revert to linear regression. With more severe non-linearities, one may

still try the approah, but may well have to submit to solve the optimisa-

tion as a non-linear problem. The di�erene is that in the linear ase, the

optimisation has a lose solution, whilst in the non-linear ase, one may

be faed with multiple minima and a non-onvex surfae of the objetive

funtion in the parameter spae.

The solution is usually to use a surfae searh method starting with a initial

guess, one �walks� the response surfae, here being the objetive funtion

in the parameter spae. Finding the global optimum an, as usual not be

guaranteed in ases where one has multiple minima. The methods are being

disussed in more details in the orresponding setion <ref>.

17.6.2 Con�dene limits

As in all regression problems, one is interested in the on�dene regions. If

the problem was linearised, then the linear on�dene regions an be used as

was disussed before. They are ellipsoids. For the non-linear ase, one has

to ompute the on�dene limits based on the observation that the ratio:

J(Θ)− J(Θ⋆)

J(Θ⋆)
≤ k

n− k
Fα
k,n−k

follows an F-distribution.

Re-arranging the above equation gives the objetive funtion for a point in

the parameter spae

17.7 Robust Data Analysis

17.7.1 The Issue

If we look at a data set that was generated as the result of some proess we

often �nd data points that seem to be ontaminated with an extraordinary

amount of error. These data are alled outliers, implying that indeed some-

thing extraordinary has happened when they were taken. As suh this may

be just a simple error, suh as in hand-taken data a omma error, a writing

error or when taken automatially the mistake an be in any of the involved
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omponents, the sensor, the measurement instrument, the data onveresion,

the transmission line, the transmission eleroni, the transmission software,

the program piking it up, a writing error in the memory, the dis et et.

Soures are manifuld even though we have usually a high on�dene in the

involved systems. Certainly the error may also ome from the proess it-

self. And again dependent on the proess a multitude of soures may be

suggested in eah ase. The outlier thus may very well ontain interesting

and relevant information, and people indeed learnt to pay attention to this

issue and analyse outliers. But for the model identi�ation, these outliers

represent an unneessary or avoidable inrease in the unertainty of the

identi�ed model. Thus one is interested in taking them out of the data set

for the purpose of identi�ation, and deal with them separately for the men-

tioned reasons. For small data set, the elimination may be done manually,

but for larger sets or more omplex underlying strutures, the exlusion of

data is not a trivial matter whih triggered new researh in the 1960/70ties.

The key referenes are Hampel et al. (2005); Huber (2009); Maronna et al.

(2006).

The problem of outliers an be readily demonstrated when omputing the

average and the standard deviation whih are ommon estimates of the

distribution funtion underlying the data set. For the disussion we assume

that we know a �true� data set inluding the underlying distribution. So let

us assume we have an ordered list of random variables Y := [yi] of length n
for whih we know the distribution to be symmetrial. The average of the

data then is an estimate for the entre

4

of the distribution µ̂:

µ̂ =
1

n

n∑

i=1

yi

And for the variane the standard estimator is given by:

s :=

√
√
√
√

1

n− 1

n∑

i=1

(yi − µ̂)2

Adding an outlier, say x = ∞ it is apparent that the estimate is now also

∞. The estimator of the mean value of the distribution is thus extremely

sensitive to outliers. The same applies to any of the entral moments thus

also to the estimator of the variane and skewness, et. Hampel de�ned a the

breakdown point of an estimator theoretially (Hampel et al. (2005)). In

loose terms, the breakdown point is the maximal fration of outlying objets

in the data, that the estimator an handle yielding aeptable estimates.

4

Robust statistis uses the term loation estimator
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For instane, the breakdown point of the mean estimator equals 0% being

the smallest possible.

The median is ommonly used as a robust estimator for the mean loation

estimator. For an odd number of samples, the median is the one in the

middle of the ordered set of data points, whilst if the ardinality is even,

one takes the average of the two middle points. The median has the highest

possible breakdown point, namely 50 %. In a multi-dimensional one an

use an Euledian-based measure:

min
µ̂

n∑

i=1

||yi − µ̂||1

with || · ||1 being the L1-norm. It an be shown that this estimator is

less sensitive to outliers than the L2-based estimator (min sum of squares

estimator). Again this estimator has a breakdown point of 50 %.

Di�erent measures of the quantiles are known to be robust estimators.

Quantiles are the points when taking regular intervals from the umula-

tive distribution funtion or a random variable. Applying it to ordered lists

of data taken from a random proess, the size-ordered data are divided into

q equal-sized sub-lists with the quantiles being the data points marking the

boundary between the sub-lists. Some of the quantiles have speial names:

number name symbol

2 median M

3 teriles or teriles T

4 quartiles Q

5 quintiles QU

6 sixtiles S

10 deiles D

100 perentiles P

1000 permilles Pr

The median is, as mentioned a measure for the loation of the mean. The

standard deviation may be estimated using the quartils or sixtiles di�erenes

as follows:

s ≈ 3

4
(Q3 −Q1)

s ≈ 1

2
(S5 − S1)

s ≈ cmi (|Y i −mj(Y j)|)
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The third estimator is alled the MAD estimator with MAD standing for

median absolute deviation. It is the median of the absolute deviations form

the data's median. The onstant c depends on the underlying distribution

funtion. For normally distributed data c = 1.4826.

For the median estimate of the average one an in addition also provide an

estimate for the 95 % on�dene limits, whih is

√
m.

17.7.2 Visualisation and Data Transformations

It is quite ommon pratie to �rst visualise the data primarily with the

objetives to learn about the properties of the data suh as underlying dis-

tribution funtion, outliers and trends, ergodiity et. To learn about the

distribution funtion one has developed several plots. Commonly used are

PP plots and QQ plots. The PP plot is plots the estimated umulative

distribution of the data versus a proposed umulative probability test fun-

tion. The QQ plot does essentially the same, but uses quantile di�erenes

on both axis and is onsidered to be more robust than the PP plot.

Box plots are used to explore if di�erent data set have the same underlying

distribution. For the onstrution of the plot eah data set is ordered and

the quartiles are determined. Next a graph is onneted in whih either

horizontally or vertially the experiment number is shown, whilst on the

other axis the data sale is shown. For the quartile di�erene a box or

thik beam is shown indiating also the entre (median). From the boxes

outwards two �whiskers� are added, whih may be of the length: (i) min and

max of the data (ii) 1.5 the interquartile range (iii) one standard deviation

(iv) 9th and 91st perentile (v) 2nd and 98th perentile. Any data not

inluded in the range of the two extremes of the whiskers are onsidered

outliers.

Often data are treated by empirial transformations, with logarithmi trans-

formations being a popular one. The bakground of this transformation is

the the observation that data are often the result of a �rst-order proess,

whih has an exponential as a solution. The transformation brings it often

bak to at least a symmetrial distribution.

Centring is a ommon operation done mainly for the reason of improving the

numerial nature of the estimator. It is routinely done for minimal sum-

of-square estimators. So the data are, after having removed the outliers

transformed by subtrating the average or a robust estimate of the average:

zi = yi − µ̂

Auto-saling is another popular transformation tehnique, whih is applied
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after entring. The data are saled by the (robust) estimate of the variane:

vi =
zi
s

17.7.3 Robust regression

As for the estimate of basi distribution parameters of stohasti variables,

also parameter identi�ation is strongly a�eted by outliers. The detetion

of outliers may not be a trivial matter. Graphial representation of the data

is ertainly one of the �rst ations one an take, though if the input/output

interation does not result in a very regular pattern, then identifying outliers

is not possible based on a visual pattern and one must resort to take the

model into the outlier detetion proess, whih lead to the introdution of

what is labelled as �robust� regression.

The idea is to identify those observations that give a very large deviation

from the expeted observation, whih gives a large output error. Robust re-

gression modi�es the optimisation riterion by giving large errors less weight

than the smaller ones. This implies that one adds additional empirial infor-

mation to the regression problem de�nition. Tehnially the method an be

implemented by diretly de�ning a objetive funtion that has the desired

property or use a �standard� objetive funtion ombined with a hosen

weighting funtion. Both methods are used in implementations.

To failitate the de�nition we introdue the objetive funtion as a funtion

of the output error:

J(e) :=

n∑

i:=1

ρ(ei)

17.8 Seleted Dynami Systems

In this setion two ommonly used dynami models are being introdued,

whih then are extended to a generi transfer-funtion model, whih ap-

tures a large family of models. In terms of overall struture, one distin-

guishes between three strutures omputing the error in the three di�erent

ways: 1) equation error, 2) output error, 3) input error.

17.8.1 Auto-Regressive-eXtra-input (ARX) Model

The ARX model is an equation error model and is given by the following

disrete polynomial representation (Ljung (1987)) using the shift operator
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Type ρ(e)

L1 |e|
L2 1/2 e2

Huber

{

1/2 e2 ; |e| ≤ k

k |e| − 1/2 k2 ; |e| > k

Welsh e2/2
[
1− exp

(
−(e/c)2

)]

Bisquare

{

k2/6
[

1−
[

1− (e/k)2
]]

; |e| ≤ k

k2/6 ; |e| > k

Table 17.1: A seletion of �robustifying� objetive funtions

q ??:

A(q) y(k) := B(q) u(k) + e(k) ,

or

y(k) :=
B(q)

A(q)
u(k) +

1

A(q)
e(k)

with:

A(q) := 1 +
∑

A
ai q

−i ,

B(q) :=
∑

B
bi q

−i ,

A := {i := 1, . . . , n} ,
B := {i := 0, . . . ,m} ,

and e denoting the error signal.

5

The ARX aronym derives from the statistis literature labelling the di�er-

ent terms with:

AR A(q) y(k) Auto-Regressive

X B(q)u(k) eXtra input

6

This model an be ast is linear in the parameters and results a standard

5

The notation used here is ompated in that only the index sets are shown implying

the operation to run over the index set for the implied index. For example the summation

denoted by

∑

A−′ ai stands short for
∑n

i=1 given the de�nition of A above.

6

in eonomis this term is also referred to as exogenous input
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linear regression problem. Let:

7

θ := [[ai]A; [bi]B]

z(k) :=
[
[−q−i]A y(k); [q−i]B u(k)

]
,

then the model an be written in the form:

ŷ(k|θ) := zT (k) θ .

17.8.2 Auto-Regressive-Moving-Average-eXtra-input (ARMAX)

Model

The ARX model has a very simple struture with respet to the error. The

ARMAX model extends this by de�ning also dynamis for the error. For

this purpose an additional polynomial is introdued (Ljung (1987)):

C(q) :=
∑

C
ci q

−i ,

C := {i := 1, . . . , o} ,
whih is used to de�ne the ARMAX model:

y(k) :=
B(q)

A(q)
u(k) +

C(q)

A(q)
e(k) .

The parameter vetor is orrespondingly expanded too:

θ := [[ai]A; [bi]B; [ci]C ] .

In the ARX ase we ould ast the parameter estimation problem into a

simple linear regression form. In order to �nd a similar form, we �rst have

to onstrut an estimate for the output for the ARMAX proess. For this

derivation we ompat the notation:

y(k) := G(q)u(k) +H(q) e(k) ,

with

G(q) :=
B(q)

A(q)

H(q) :=
C(q)

A(q)

:= 1 +

∞∑

i:=1

hi q
−i .

7

The notation used here is ompated following the same idea: [q−i]A stands for

[q−i]∀i or [q
−1

, q
−2

, . . . , q
−n]
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The variane of the error is thus saled suh that the H(q) polynomial is
moni, d.h. the leading oe�ient is 1. We further de�ne:

v(k) := H(q) e(k) .

Thus:

v(k) := e(k) +

( ∞∑

i:=1

hi q
−i

)

e(k) ,

:= e(k) + (H(q)− 1) e(k) .

The expetation of the v(k) given the data at k − 1 is then:

v̂(k|k − 1) := E [v(k)|k − 1] ,

:= E [e(k)] +E [(H(q)− 1) e(k)] .

With the data being known at the time k − 1, the seond term is atually

know and the expetation of the error is zero, thus

v̂(k|k − 1) := (H(q)− 1) e(k) ,

:= (H(q)− 1) H−1(q) v(k) ,

:=
(
1−H−1(q)

)
v(k) .

Now we an assemble the expression for the expeted output:

ŷ(k|Θ) := G(q)u(k) + v̂(k|k − 1) ,

:= G(q)u(k) +
(
1−H−1(q)

)
v(k) ,

:= G(q)u(k) +
(
1−H−1(q)

)
(y(k)−G(q)u(k)) ,

:= G(q)u(k) +
(
1−H−1(q)

)
y(k)−

(
1−H−1(q)

)
G(q)u(k) ,

:=
(
1−H−1(q)

)
y(k) +H−1(q)G(q)u(k) .

Substituting the two polynomials

ŷ(k|Θ) :=

(

1− A(q)

C(q)

)

y(k) +
A(q)

C(q)

B(q)

A(q)
u(k)

:=

(

1− A(q)

C(q)

)

y(k) +
B(q)

C(q)
u(k) . (17.9)

we get the one-step preditor for the ARMAX model.

Some more manipulations: First multiply with the C(q) polynomial:

C(q) ŷ(k|Θ) := (C(q)−A(q)) y(k) +B(q)u(k) .
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Extend on both sides:

C(q) ŷ(k|Θ) + (1− C(q)) ŷ(k|Θ) :=

(C(q)−A(q)) y(k)+ B(q)u(k) + (1− C(q)) ŷ(k|Θ) .

Simplify the left-hand side �rst and expand the right-hand side aiming at

an expression of the predition error

ǫ(k,Θ) := (y(k)− ŷ(k|Θ))

ŷ(k|Θ) := (C(q)−A(q)) y(k) +B(q)u(k)+

(1−C(q)) ŷ(k|Θ)− y(k) + y(k)

:= B(q)u(k) + (1−A(q)) y(k) + (C(q)− 1) (y(k)− ŷ(k|Θ)) ,

:= B(q)u(k) + (1−A(q)) y(k) + (C(q)− 1) ǫ(k,Θ) .

The estimated output an thus be written in the form:

ŷ(k|Θ) := zT (t,Θ) θ ,

with :

θ := [[ai]A; [bi]B; [ci]C ]

z(k,Θ) :=
[
[−q−i]A y(k); [q−i]B u(k); [q−i]C ǫ(k,Θ)

]
,

ŷ(k|θ) := zT (k,Θ) θ . (17.10)

whih is a nonlinear relation, though looking very muh like the linear

regression model we had for the ARX model. This form is alled pseudo-

linear regression.

17.8.3 General Transfer Funtion Model Strutures

Along this line a generi transfer model an be suggested (Ljung (1987)) :

A(q) y(k) :=
B(q)

F (q)
u(k) +

C(q)

D(q))
e(k) .

The one step preditor for this generi model, analogue to Equation 17.9,

is:

ŷ(k|Θ) :=

(

1− D(q)A(q)

C(q)

)

y(k) +
D(q)B(q)

C(q)F (q)
u(k) .
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The following table, also taken from Ljung (Ljung (1987) p77) shows the

models and their names depending on what polynomials are used in the

general model:

polynomial model name

B FIR �nite impulse response

A, B ARX auto regressive with extra input

A, B, C ARMAX auto regressive moving average with ex-

tra input

A, C ARMA auto regressive moving average

A, B, D ARARX 2 (auto regressive) with extra input

A, B, C, D ARARMAX 2 (auto regressive) moving average with

extra input

B, F OE output error

B, F, C, D BJ Box-Jenkins

This model an also be ast into the pseudo-linear regression form. Again

de�ning the error:

ǫ(k,Θ) := (y(k)− ŷ(k|Θ))

one �nds:

ǫ(k,Θ) :=
F (q))

C(q)

(

A(q) y(k)− B(q)

F (q)
u(k)

)

.

Introduing the variables:

w(k,Θ) :=
B(q)

F (q)
u(k)

v(k,Θ) := A(q) y(k)− w(k,Θ) ,

this simpli�es to:

ǫ(k,Θ) :=
F (q)

C(q)
v(k,Θ) .

With :

θ := [[ai]A ; [bi]B ; [ci]C ; [di]D ; [fi]F ]

z(k,Θ) :=
[
[−q−i]A y(k) ; [q−i]B u(k) ; [q−i]C ǫ(k,Θ) ;

[−q−i]D v(k) ; [−q−i]F w(k)
]
,

one has the model again in the pseudo-linear regression Equation 17.10

form.
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17.9 Kalman Filter in Identi�ation

The Kalman �lter has been giving its name beause the tehnique got most

attention after being published by Rudolf E Kalman but the basi idea has

been worked on by several people also earlier. This inludes mainly Buy,

who is often also inluded in the name of the �lter but rarely people like

Ruslan L. Stratonovih and others

8

. For the sake of briefness it shall be

alled Kalman �lter in the ontinuation.

The �lter and its derivation is interesting as it solves an old problem formu-

lated by Wiener, namely the issue of having stohasti omponents ative at

the input of a dynami system. For linear systems the Kalman �lter solves

this problem for stohasti omponents exiting the input an the output

independently and both distributions being at least symmetrial.

The nominal model being used for a disrete system is:

x̄(k) := Φ x̄(k − 1) + Γu(k) +w(k) ,

ȳ(k) := C x̄(k) + v(k) .

Where the stohasti omponents are here assumed to be Gaussian:

w ∼ N
(

0,Q
)

,

v ∼ N
(
0,R

)
.

The derivation of the �lter an be done in many di�erent ways, inlud-

ing the orthogonality priniple, Bayes' theorem, sequential minimal sum of

squares, gradient searh method for sum of squares and others. We shall not

derive the �lter, but refer the interested reader to the literature for example

Jazwinski (1970) whih is still one of the books with the most thorough

treatment of this subjet.

The Kalman �lter works in two steps:

Predition: of the state and the estimates' ovariane

state x̂(k|k − 1) := Φ x̂(k − 1|k − 1) + Γu(k − 1) ,

ovariane P(k|k − 1) := ΦP(k − 1|k − 1)ΦT +Q(k − 1) .

Update: of measurement residuals, ovariane of measurement residuals;

omputation of the Kalman gain being used to update the state estimate

8

see for example Wikipedia http://en.wikipedia.org/wiki/Kalman_�lter for more in-

formation on this subjet
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and the ovariane of the state estimate:

residual e(k|k − 1) := ȳ(k)−C x̂(k|k − 1) ,

residual ovariane S(k) := CP(k|k − 1)CT +R(k) ,

Kalman gain K(k) := P(k|k − 1)CT S−1(k) ,

state estimate x̂(k|k) := x̂(k|k − 1) +K(k) e(k|k − 1) ,

estimate ovariane P(k|k) :=
(
I−K(k)C

)
P(k|k − 1), .

Γ 1
q C

Φ

K

−1

Γ

Φ

1
q C

u x̄

ȳ

e

x̂
ŷ

w v

�lter

proess

Figure 17.6: Nominal model and Kalman �lter

The Kalman �lter is a state variable �lter, meaning that the output of the

�lter provides an estimate of the state given a vetor of observations. The

main use of this �lter is to reonstrut the state from a set of measurements.

It is thus also alled an observer. There other observers known in the liter-

ature, in partiular the Luenberg observer, whih di�ers from the Kalman

�lter mainly by having a �xed gain. The gain of the Luenberg observer is

designed by setting the dynamis of the error propagation setting the poles
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of the set of linear di�erential equations that evelove from the derivation of

the residual error.

17.9.1 Extetended Kalman Filter

The extended Kalman �lter is using a linearised version of the nonlinear

model for the omputation of the variane propagation, whilst the predi-

tion step is done with the nonlinear model. This idea was extended for the

use in parameter identi�ation in that the state of the system is extended by

the parameters to be estimated setting the dynamis of these new �states�

to zero. The tehnique su�ers from a number of problems, whih are mostly

assoiated onvergene and providing a good, or better, workable estimate

of the variane-o-variane matries for the atual state, the parameters

and the measurements. The literature is orrespondingly rih on modi�a-

tions to this sheme inluding onstraining the parameters, introdution of

forgetting fators, �xed matries for the Kalman gain et. et.

17.10 The Exitation Signal

The behaviour of the plant an only be observed if it is �moving�, meaning

it has to be disturbed, or exited by applying an exitation to the plant.

The exitation must be hosen suh that the plant is �exed su�iently so

as to make all �movements� visible. For example, if one wants to know the

mass of a physial objet, one must to move the objet, for example lift it.

If one only pulls on it without moving it, one an only state that the mass is

bigger than what one applied in fore during the un-suessful experiment.

This onept applies diretly to the plant identi�ation problem: if one

wants to obtain information about the plant in a ertain time sale, then one

needs to exite it in that time sale, whih diretly translate into applying a

ertain frequeny as an exitation input. This an be niely demonstrated

in the ase shown in 17.7. It shows a Bode amplitude plot. The blak line

represents the behaviour of the true plant. A �rst-order model is being

�t, whih has two parameters, the gain and the time onstant. One thus

needs at least two independent experiments that provide the information

neessary to �nd estimates for the two parameters. In the red ase, the two

sinusoidals indiated by the two dotted red lines are being used and in the

green ase it is the orresponding green dotted lines that indiate the input

signals. The result is obviously di�erent. In the red ase the low-frequeny

behaviour is aptured whilst in the green ase more of the high-frequeny

behaviour is re�eted into the model.
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log(ω)

log(|g|)

Figure 17.7: The hoie of frequenies is essential for the identi�ation

experiment

The literature is rih on disussions and suggestions of what type of input

signals should or an be used. In many ases people aim at identifying a

plant as a kind of �whole�, meaning that they do not think in time sales

and thus hierarhial models. If one �nds a split in the time sale, it is

almost always feasible to work with two models, one for the high-dynami

range and one for the low-dynami range. For example, it is quite thinkable

that the red model is used to desribe the plant in 17.7 in the low-frequeny

range whilst in the high-frequeny range the green model is used.

If one indeed aims at identifying the whole plant, one must provide a model

that is able to apture the behaviour, thus is rih enough. Having suh a

model, one then must exite the plant persistently, meaning with a signal

that is rih enough in frequeny ontents. For more details on the de�ni-

tion of persistant see for example Ljung (1987); Eykho� (1974), whih also

inlude referenes to work on this subjet.

Obviously one of the simple solutions for the latter problem is to use all

frequenies, for example a random signal. Sine this may not be trivial

to apply, one often uses signals that are oming lose, suh as random

binary signals. Adding a variation in the amplitude gives multi-level random

signals.

From the pratial point of view, one should also keep the signal-noise ratio

in mind. If one applies for example a random binary signal, the energy one

has usually available in a limited amount, is spread over all the frequenies
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equally, at least ideally. In any ase it is spread making the signal of the

individual frequeny less �strong� and thus more likely to be �overed� by

noise omponents ating on the equipment, for example the measurement

devies. It is thus often better to apply a frequeny or a seleted set of

frequenies. In any ase though, one should keep in mind in what time-

sale the model will be used and thus to what detail the proess should or

must be desribed.

17.11 Sampling

Dynami systems, whih will be disussed in the next setion, are usually

onneted to omputer systems that provide the ontrol for the exita-

tion signal and that take the samples. With the omputing devie being a

disrete-time devie, both operation our in a sampled-data environment,

meaning there is a sampler on the measurement side and a signal output

on the other side. In other proesses, this sampling is not so obvious, for

example if one deals with a large population, suh it ours frequently in

onnetion with quality ontrol. Examples are in�ow of material that omes

in disrete units, parels, groups, lumps of one or the other kind. Consider

for example a stream of potatoes, whih are to be pried based on their

ontents of starh. It is not feasible to hek every potato but samples must

be taken. Similarly if one reeives a train full of material of non-uniform

omposition. Being faed with having to assess the distribution of the pop-

ulation, people have invented a set of sampling tehniques eah of whih has

its own harateristis and takes are of one or the other speial situation

one may our in this ontext.

17.11.1 Random sampling

This is one of quite obvious methods to get an idea of the distribution in

a population. It requires though, that one really aesses the population

uniformly, meaning that eah member in the population is seletable with

the same probability. This is known as equal probability seletion. All

samples are onsequently given the same weight. If the uniform seletable

ondition is not satis�ed, then one talks about exlusion bias.

17.11.2 Systemati sampling

The population is pre-ordered and the sampling is adjusted to this order.

Sampling is then done in a systemati way making sure that one samples

uniformly over the ordered population. If the order is having a periodi
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harateristi, then the sampling must not sample periodi, but must ran-

domise within a period as otherwise the wrong distribution is obtained. The

sampling must thus be in aordane with the frequeny distribution of the

population.

17.11.3 Strati�ed samples

If the population an be ordered or split into lasses or layers, the sampling

must be done in eah of these layers. This approah also provides informa-

tion about the di�erenes between the di�erent strata. One may also tailor

the sampling to the individual stratum. Equally well is it possible to shift

fous or to put more or less weight on one or the other stratum.

17.11.4 Proportional-probability sampling

If one has a priori knowledge, suh as the size of a population, relative to

another one, one may sample in the orresponding proportions.

17.11.5 Cluster sampling

This is ommonly implemented as a multi-stage method. On the top level

one onstruts the lusters whilst on the seond level one applies a sampling

tehnique that is appropriate for the luster.

17.12 Design of Experiments

Models are onstruted based on the available knowledge. If the nature of

the plant is known in details, one may deide on onstruting a mehanisti

model suh as it was disussed in the earlier hapters. I this is not the ase,

one has to resort to empirial models, whih re�et the plant's behaviour in

a funtional form that the person modelling the proess believes ��ts� the

behaviour of the plant best. It is ustomary to label the �rst type of models

as white-box models, whilst the latter are alled blak-box models. What

was disussed in the earlier hapters is typially a mix of the two. The

foundation is usually mehanisti and the more one gets into the internal

details, what is often referred to as the onstitutive equations, one has

less and less information about the basi nature and blak-box models are

being used seleted on experiene: The onservation onepts of physis are

onsidered as mehanisti and so are large parts of the marosopi theory-

based desription of the hydraulis of a plant. As one gets into the details of

transport and in into the desription of material properties and reations,
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the understanding of the underlying proesses beomes thinner and thinner

or more and more involved so that one usually has to resort to essentially

empirial models. Often some remainders of the underlying onepts are

preserved re�eting into the funtional form the empirial model takes.

Asking the following three questions leads stepwise to a proess model:

� What a�ets the plant? � sreening experiments aim at pro-

viding rudimentary information about the input/output behaviour of

the plant.

� How do Inputs A�ets the Plant? � Response-surfae Method

usually uses simple models, often polynomial models to desribe the

steady-state input-output behaviour of the plant, searhing then for

the optimum in the approximate spae.

� Why does the plant do what it is doing? � Mehanisti model

are the only models that explain the internal behaviour of the plant.

17.12.1 Single Blok Design

Some of the harateristis are not available through dedutive studies and

must be identi�ed using proess identi�ation tehniques. The experiments

are to be designed to provide most information as possible. Design of exper-

iments has its roots in the statistial literature whih refers to the inputs or

stimuli signals as fators Box et al. (1978). The most e�ient way of arrang-

ing experiments is in bloks meaning a set of experiments whih modi�es

the input levels systematially. Potentially to eah input a step is being

applied. One waits long enough to get su�iently lose to the steady state

value of the observation, whih implies that one has to wait for at least 5

times the maximal time onstant in the plant.

17.12.1.1 Linear in input and linear in input model

The simplest model is linear in the inputs and the parameters:

ŷ :=
[
uT
]
θ (17.11)

with:

u := diag ([∆u]) ū

The elements in the diagonal matrix are the perturbations in the individual

inputs around a entral point de�ned as u0
. The perturbations are done in
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both the positive and the negative diretion. If one uses all ombinations,

then this is a omplete design.

For example for a 3-input systems, one gets the S matrix:

S :=



















+1 +1 +1

−1 +1 +1

+1 −1 +1

−1 −1 +1

+1 +1 −1

−1 +1 −1

+1 −1 −1

−1 −1 −1



















.

This forms a ube with the orners being the ∆u away from the entral

point. The plan generates the inputs :

F(u) := Fo(uo) + diag [∆u] ST .

The response of the model to the plan is:

ŷ = F(u) θ

Simplifying the notation by de�ning the norming matrix

D := diag [∆u] (17.12)

Then the regression problem an be reformulated. More ompatly we write:

F := Fo +DST .

Substituting the input matrix in Equation 17.3.2.3 one gets

ŷ :=
(
Fo +DST

)T
θ .

Performing experiments as the entre, averaging them and subtrating them

from the measurement obtained when exeuting the plan, one gets

ŷ − ŷ0 :=
(
DST

)T
θ ,

:= SD θ .

The least-squares estimator 17.7 is then:

D θ :=
(
ST S

)−1
ST
(
ŷ − ŷ0

)

θ := D−1
(
ST S

)−1
ST
(
ŷ− ŷ0

)
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The ST S is orthogonal and thus makes the regression analysis extremely

simple:

ST S := nI

and thus:

θ :=
1

n
D−1 ST

(
ŷ − ŷ0

)

17.12.1.2 Linear in parameter models with interations of the

inputs

If the above linear-in-input and linear-in-parameter model does not perform

satisfatorily, one would usually inrease the omplexity of the model by

adding interation terms and quadrati terms. For example one ould extent

the above model with interation terms:

ŷ := [u1, u2, u3, u1u2, u1u3, u2u3, u1 u2 u3] θ

The plan is as above, and so are the inputs. What hanges is the formulation

of the F. For the given ase it takes the form:

S̄ :=



















+1 +1 +1 +1 +1 +1 +1

−1 +1 +1 −1 −1 +1 −1

+1 −1 +1 −1 +1 −1 −1

−1 −1 +1 +1 −1 −1 +1

+1 +1 −1 +1 −1 −1 −1

−1 +1 −1 −1 +1 −1 +1

+1 −1 −1 −1 −1 +1 +1

−1 −1 −1 +1 +1 +1 −1



















.

This matrix is onstruted from S:

S̄ :=
[
S, s1◦ s2, s1◦ s3, s2◦ s3, s1◦ s2◦ s3

]

with ◦ being the Hadamard operator.

The F is then readily onstruted

F := Fo + D̄ S̄
T
.

with the D̄ being the respetive norming matrix, whih for our example is:

D̄ := diag([∆u1,∆u2, ∆u3,∆u1 ∆u2,∆u1 ∆u3,∆u2 ∆u3,∆u1 ∆u2∆u3])
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and again the regression problem is orthogonal and simpli�es to:

θ :=
1

n
D̄

−1
S̄
T (

ŷ − ŷ0
)

17.12.1.3 Models with onstant term

It is straightforward to extend the above models with a onstant term, if it

is to be estimated as well. This then adds an additional parameter, namely

the o�set and extends the regression matrix orrespondingly.

In the approah taken above, any onstant term is removed by taking the

di�erene of the measurements at the orners minus the measurement in

the entre.

17.12.1.4 Redued plans

The linear model (Equation 17.11) has three parameters plus a possible o�-

set. Thus four equations are enough to get an estimate of all the parameters

and one ould use half of the set of equations generated by the full plan.

The four equations are hosen from the extremes, namely the ones opposite

along the two spae diagonals, thus the two pairs of opposite orners. Ap-

parently two on�gurations are possible orresponding to the two possible

bloked plans.

The redued plans an be generated systematially using plan generators

as they are disussed in Box et al. (2005).

17.12.1.5 Handling Additive Noise

The e�et of measurement noise an be redued by repliation of individual

experiments. This redues the variations by the square root of the number

of idential experiments assuming the noise is stationary. Assuming the

variane is σ2
and one performs n experiments getting n responses {yi}i:1...n,

then mean is

y̆ :=
1

n

n∑

1

yi
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The variane is then

var(y) :=
1

n2

n∑

1

var(yi)

:=
1

n2
nσ2

:=
σ2

n

In praxis suh repeated experiments are often di�ult to perform as a lot of

other �disturbanes� a�et the plant. Not at least the person or instrument

performing the experiments.

17.12.1.6 Reduing Trends

Randomising Trends aused by orrelation of the inputs an be redued

by �randomsing� the experiments. In this proess one introdues a random

variable seleting the experiments. For example randomizing the experi-

mental plant Equation 17.12 one would randomly mix the olumns eah of

whih represent an individual experiments.

Blok Designs Trends an be also be redued in the ase when one deals

with similar items / plants, whih are to analysed modeled exiting the

orresponding inputs. For example if one has two di�erent pair of shoes

and wants to know their ability to absorb a dye and grease, the shoes are

the items / plants and will be bloked. The experiments are then to apply

grease / dye respetively in ombinations. An experimental plan is then

established for eah blok, whih in turn is randomized as disussed above.

17.12.2 Optimal Designs

The optimal experiment design builds on information theory, beause for an

unbiased estimator the estimator variane is related to Fisher information

matrix: Minimizing the variane orresponds to maximizing the informa-

tion.

There exist several riteria of optimality. The traditional ones build on the

invariants of the Fisher information matrix M. The inverse of the Fisher

information matrix is the lower bound of the variane-ovariane: 17.5.1.

Thus the optimal design attempts to minimize the variane-ovariane ma-

trix or, whih is for uniform varianes the V := FT F (see Equation 17.8).

Commonly used measures are:
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b

b

b

b

b

A-criterion: trace

D-criterion:determinant

E-criterion: largest eigenvalue

M-criterion: confidence interval

Figure 17.8: The various riteria visualised

A (average) - optimality: min trae(V)
average length of the half axes

D (determinant) - optimality: min |V|
volume

E (eigenvalue) - optimality: maxλ
(
V
)

largest half axis

M (dominant diagonal value) - optimality : max
√
mii

largest side of enlosing box
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A

Linear algebra

A.1 Matries and vetors

Many engineering and siene problems make extensive use of linear al-

gebra. Why hemial engineering? Our problems are almost never one-

dimensional, but the dimensionality is given by the number of speies plus

energy and one to three dimension from the hydrauli. Latter adds 3 di-

mensions if one solves the momentum balanes in the three dimensional

spae. Whilst overall proess models are nonlinear, the fundamental bal-

ane equations are linear: the superposition applies, they are of Euler degree

one. The nonlinearities enter mainly through the material desription and

to some extend also through the transport equations. De�nitely the re-

ation add a strongly nonlinear term as the �reation onstant� is indeed

anything else than onstant but a strong funtion of the temperature. Ar-

rhenius being the standard model, whih desribes the reation onstant as

an exponential funtion of the temperature.

The utilisation of models often utilises linearisation, thereby approximating

the nonlinear behaviour loally by a linear model. Overall, it is no surprise

that linear algebra forms a ore in applied mathematis. There exist many

exellent text books and the reader is being reommended to �onsume� one

of these text in full. It ertainly is useful to have a good bakground and a

referene at hand when the need omes about. Myself I enjoyed partiularly

the book by Gilbert Strang (Strang (2009)).

This appendix does not over linear algebra. The idea is to review and

ollet some of the main results, whih are used here and there in this text.

Denoting the real numbers with R, let x ∈ R, a olumn vetor is a stak of

numbers. Let us de�ne a olumn vetor of real numbers as a vertial stak

of real numbers:

x :=









x1

x2
.

.

.

xn









∈ R
n

(A.1)
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Or if onvinient we may write:

x := [xi]i:=1,2,...,n ∈ R
n

(A.2)

The sum of two vetors is alulated by adding omponent by omponent:









x1

x2
.

.

.

xn









+









y1

y2
.

.

.

yn









=









x1 + y1

x2 + y2
.

.

.

xn + yn









(A.3)

This implies that the two vetors must be of the same length and thus must

belong to the same spae.

The transposed is a row vetor:

xT :=
[

x1 x2 . . . xn

]

(A.4)

A matrix of real numbers is a two-dimensional objet, a full table of real

numbers:

A :=









a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
.

.

.

.

.

.

.

.

.

.

.

.

am,1 am,2 . . . am,n









∈ R
m×n

(A.5)

Or again we may write:

A := [ai,j]i:=1,...,m,j:=1,...,n ∈ R
m×n

(A.6)

The transposed matrix:

AT :=









a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2
.

.

.

.

.

.

.

.

.

.

.

.

a1,n a2,n . . . am,n









∈ R
n×m

(A.7)

Inner produt:

xT y :=
∑

∀i
xi yi (A.8)
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Outer produt:

xyT := [xi yi]∀i,∀j (A.9)

Matrix - vetor produt:

b := Ax :=




∑

∀j
ai,j yj





∀i

(A.10)

Matrix produt:

C := AB :=




∑

∀j
ai,j bj,k





∀i,∀k

(A.11)

Inverse:

A−1 := |A|−1
adj(A) (A.12)

Example 2 x 2 matrix:

A :=

[

a1,1 a1,2

a2,1 a2,2

]

(A.13)

|A| := a1,1 a2,2 − a1,2 a2,1 (A.14)

adj(A) :=

[

a2,2 −a1,2

−a2,1 a1,1

]

(A.15)

(A.16)

given matrix A ∈ R
n×n

� De�ne minor of A denoted by M
i,j

∈ R
(n−1)×(n−1)

by deleting the i

row and the j olumn.

� De�ne the i, j o-fator of A:

c
i,j

:= (−1)i+j |M
i,j
|

� De�ne the adjoint or adjugate of A as the transpose of the o-fator

matrix:

adj(A) = [ci,j ]
T
∀i,∀j = [cj,i]∀j,∀i
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A =






A11 A12 A13

A21 A22 A23

A31 A32 A33




 =






1 2 3

4 5 6

7 8 9






C =



















+

∣
∣
∣
∣
∣

A22 A23

A32 A33

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A21 A23

A31 A33

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A21 A22

A31 A32

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A12 A13

A32 A33

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A11 A13

A31 A33

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A11 A12

A31 A32

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A12 A13

A22 A23

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A11 A13

A21 A23

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A11 A12

A21 A22

∣
∣
∣
∣
∣



















=



















+

∣
∣
∣
∣
∣

5 6

8 9

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

4 6

7 9

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

4 5

7 8

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

2 3

8 9

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1 3

7 9

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

1 2

7 8

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

2 3

5 6

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

1 3

4 6

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1 2

4 5

∣
∣
∣
∣
∣
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adj(A) =



















+

∣
∣
∣
∣
∣

A22 A23

A32 A33

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A12 A13

A32 A33

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A12 A13

A22 A23

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A21 A23

A31 A33

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A11 A13

A31 A33

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A11 A13

A21 A23

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A21 A22

A31 A32

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

A11 A12

A31 A32

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

A11 A12

A21 A22

∣
∣
∣
∣
∣



















=



















+

∣
∣
∣
∣
∣

5 6

8 9

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

2 3

8 9

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

2 3

5 6

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

4 6

7 9

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1 3

7 9

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

1 3

4 6

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

4 5

7 8

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

1 2

7 8

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1 2

4 5

∣
∣
∣
∣
∣



















=






−3 6 −3

6 −12 6

−3 6 −3






A.1.1 Speial matries

Permutation matries: The permutation of rows is done with a matrix that

permutes the respetive rows of an identity matrix. Premultiplying a 3× n
matrix by the following permutation matrix

P :=






1 0 0

0 0 1

0 1 0




 (A.17)

will exhange the 2rd with the 3th row:






1 0 0

0 0 1

0 1 0











a 1 0

b 2 0

c 3 0




 =






a 1 0

c 3 0

b 2 0




 (A.18)
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A.1.2 Vetor spaes

Some fats (Strang (2009))

� The spae R
n
ontains all olumn vetors with n omponents, also

the zero vetor 0.

� A subspae R
m

ontaining v,w ∈ R
m

must also ontain all linear

ombinations cv + dw with c,w ∈ R.

� The ombination of all olumns of the matrix A form the olumn

spae of A denoted by C
(
A
)
. One says: the spae is spanned by the

olumns of A.

� Ax = b has a solution only if b ∈ C
(
A
)

A.1.3 Null spae for fat matries

A.1.3.1 Example:

ax x+ ay y + az z = 0

is a plane that goes through the origin of the o-ordinate system. This plane

is a subspae of R
3
. It is the nullspae of of the matrix

[

ax ay az

]

.

The solution to:

ax x+ ay y + az z + b = 0

also forms a plane but goes not through the origin of the o-ordinate system

and is thus not a subspae.

Fat matries have more olumns than rows: A ∈ R
m×n,m < n

� The solutions of Ax = 0 is the null spae of A denoted by Null

(
A
)

or kernel of A denoted by kern

(
A
)

Null

(
A
)
:=
{
x ∈ R

n : Ax = 0
}

(A.19)

� The null spae is invariant to row manipulations, whih makes it pos-

sible to onvert A to the row eholon form and by swapping olumns

to the redued row ehelon form or row anonial ehelon form, whih

orresponds to re-ordering the omponents in the x-vetor:

R :=

[

I F

0 0

]

. (A.20)
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� The non-zero top rows belong to the pivot variables. The lower rows

belong to the free variables.

� The rank is the number of non-zero rows, thus the number of pivot

variables.

� For fat matries the matrixA has at least one olumn without a pivot,

whih thus gives a speial solution. Consequently there are non-zero

solution vetors in Null

(
A
)
.

� The result is matrix with the olumn vetors spanning the null spae:

Null

(
A
)
:=

[

−F

I

]

. (A.21)

A.1.3.2 Proedure

1. Ax → Ux: Transform equations to upper triangular form through

linearly ombining rows and swapping rows. The resulting upper tri-

angular matrix U has the pivots as the �rst non-zero element in eah

row, thus in eholon form.

2. Ux → Rx: Eliminate the non-zero elements above the pivots through

linearly ombining rows. This operation deouples the pivot variables.

The resulting matrix is alled to be in redued row eholon form.

R :=

[

I F

0 0

]

3. Extrat null spae: Null

(
A
)
:=

[

−F

I

]

A.1.3.3 Example

Let the equation system be de�ned as:

2x1 + 4x3 + 4x4 + 6x5 = 0

x3 + 4x4 2x5 = 0

4x1 + 8x3 + 8x4 12x5 = 0

6x1 + 4x2 + 2x3 + 12x4 = 0

(A.22)
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The oe�ient matrix is then:









2 0 4 4 6

0 0 1 4 2

4 0 8 8 12

6 4 2 12 0









(A.23)

Eliminate the �rst element in row 3 by substrating 2 times row 1 and

eliminate the �rst element in row 4 by substrating 3 times row 1:









2 0 4 4 6

0 0 1 4 2

0 0 0 0 0

0 4 −10 0 −18









(A.24)

Next: move row 3 one down:









2 0 4 4 6

0 0 1 4 2

0 4 −10 0 −18

0 0 0 0 0









(A.25)

Then swap row 2 and 3:









2 0 4 4 6

0 4 −10 0 −18

0 0 1 4 2

0 0 0 0 0









(A.26)

Divide row 1 by 2 and row 2 by 4:









1 0 2 2 3

0 1 −2.5 0 −4.5

0 0 1 4 2

0 0 0 0 0









(A.27)

This is now in row ehelon form, all the leading elements that are non-equal

0 are one position to the right ompared to the one above and zero rows are

on the bottom. It looks somewhat like a upper triangular matrix, though it

is not square. Next we �make� all element above the leading 1's also zero.
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We use row 3 to do so and get:









1 0 0 −6 −1

0 1 0 10 0.5

0 0 1 4 2

0 0 0 0 0









(A.28)

The null spae is thus:











6 1

−10 −0.5

−4 −2

1 0

0 1











(A.29)

A.1.4 Eigenvalues, eigenvetors

Given a square matrix A, almost all vetors hange diretion when mul-

tiplied with A exept then for the eigenvetors. They point in the same

diretion. The basis equation for the eigenvalues is:

Ax = λx (A.30)

where λ is an eigenvalue of A. Solving the equation

det
(
A− λ I

)
= 0 (A.31)

The eigenvetors are found by solving for eah eigenvalue the basis equation:

(
A− λi I

)
vi = 0 (A.32)

The matrix with the olumns being the eigenvetors is alled the eigenvetor

matrix:

V := [v1,v2, . . . ,vn]∀i (A.33)

A.1.5 Matrix diagonalisation

If the matrix A is square of dimension n× n and has n distint eigenvalues,

then the Eigenvetor matrix is invertible.

V−1 AV = Λ :=







λ1

.

.

.

λn







(A.34)
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This an be proven easily onsidering that AV = VΛ (Strang (2009)):

AV =: A
[

x1 . . .xn

]

:=
[

λ1 x1 . . . λn xn

]

whih in turn is:

[

λ1 x1 . . . λn xn

]

=:
[

x1 . . .xn

]







λ1

.

.

.

λn






:= VΛ

A.1.5.1 Multiple eigenvalues

If the matrix has multiple eigenvalues, the diagonalisation is not possible.

However other funtions an be omputed, suh as the power of the matrix

or, whih is essential for the solution of linear ordinary di�erential equations,

the exponential. There exists a anonial representation alled the Jordan

form, in whih multiple eigenvalues along the diagonal form Jordan bloks,

whih for an arbitrary eigenvalue λi have the form:

J
1

:=













λ1 1 0 . . . 0

0 λ1 1
.

.

.

.

.

.

.

.

. 0
.

.

.

.

.

. 0
.

.

.

.

.

.

.

.

. 1

0 0 . . . 0 λ1













(A.35)

A.1.5.2 Similar matries

Simularity transformations are essential in system theory, as they are used

to transform systems into alternative state spaes, whih for the purpose

are more onvinient or unover essential properties. The similarity trans-

formations are de�ned by:

M := S−1AS

The tranformation matrixMmay be any square invertible matrix. Quadarati

matries are similar if (Strang (2009)):
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they have the same: modi�ed S modi�es:

eigenvalues eigenvetors

trae nullspae

determinant olumn spae

rank row spae

number of independent eigenvetors singular values

Jordan form

A.1.6 Matrix di�erentiation

Let y be a vetor funtion of x : y(x) and Q be a symmetrial matrix, then

the salar quadrati form is:

d
(

yT (x)Qy(x)
)

dxT
=

dyT (x)

dx
Qy(x) + yT (x)Q

dy(x)

dxT
(A.36)

=
dyT (x)

dx
Qy(x) +

(

yT (x)Q
dy(x)

dxT

)T

(A.37)

=
dyT (x)

dx
Qy(x) +

dyT (x)

dx
QT y(x) (A.38)

= 2
dyT (x)

dx
Qy(x) (A.39)
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B

Calulus

B.1 Leibnitz' Rule

∂

∂x

∫ g(x)

f(x)
dx′ F (x, x′) := F (x, g(x))

∂g(x)

∂x
− F (x, f(x))

∂f(x)

∂x

+

∫ g(x)

f(x)
dx′

∂

∂x
F (x, x′) . (B.1)

B.2 Euler's Theorem on Homogeneous Funtions

Euler's Theorem of Homogeneous Funtions 1. Let f(x1, . . . , xk) be
a funtion suh that

f(λx1, . . . , λ xk) := λn f(x1, . . . , xk) . (B.2)

then f is said to be a homogeneous funtion of degree n for whih

n f(x1, . . . , xk) :=

k∑

i:=1

∂ f(x1, . . . , xk)

∂ xi
xi . (B.3)

Proof. Di�erentiation of the homogeneous ondition with respet to λ gives

d

dλ
f(λx1, . . . , λ xk) :=

d

dλ
λn f(x1, . . . , xk) ,

k∑

i:=1

∂ f(λx1, . . . , λ xk)

∂ λxi
xi := nλn−1 λn f(x1, . . . , xk) .

setting λ = 1, one obtains :

k∑

i:=1

∂ f(x1, . . . , xk)

∂ λxi
xi := nλn f(x1, . . . , xk) .
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B.3 Legendre Transformation Generating New Ex-

tensive Properties

Let Φ1 be a vetorial arbitrary extensive quantity, whih is a funtion of two

vetors of extensive quantities Φa and Φb:

Φ1 := Φ1(Φa,Φb) . (B.4)

A new extensive quantity Φ2 is de�ned:

Φ2 := Φ2(ϕ,Φb) , (B.5)

:= Φ1 −ϕ Φa . (B.6)

The last equation an be interpreted as a tangent plane to the original

funtion with slopes in the di�erent diretions, olleted in the Jaobian:

ϕ :=
∂ Φ1

∂ ΦT
a

,

whih take the role of the new variables.

Di�erentiating the two equations (B.4) and (B.6) one �nds:

dΦ1 :=
∂ Φ1

∂ Φa
dΦa +

∂ Φ1

∂ Φb
dΦb ,

dΦ2 := dΦ1 − ΦT
a dϕT −ϕ dΦa .

Elimination of dΦ1 gives:

dΦ2 :=
∂ Φ1

∂ Φb
dΦb − ΦT

a dϕT .

Applying the Legendre transformation to extensive quantities introdues

intensive properties, olleted in the Jaobian. The transformation an also

be inverted in whih ase the respetive roles are exhanged.

B.3.1 Examples

The Legendre transformations are basi to thermodynamis. For example,

let

Φ1 := Φ1 := U(S, V ,n) , (B.7)

Φ2 := Φ2 := H(T , V ,n) . (B.8)
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and

Φa := Φa := S , (B.9)

Φb := [V ,nT ]T . (B.10)

Thus

∂ Φ1

∂ Φb
:=

∂ U(S, V ,n)

∂ [V ,nT ]
, (B.11)

:=

[

p,
∂ U(S, V ,n)

∂ nT

]

, (B.12)

ϕ :=
∂ U(S, V ,n)

∂ S
, (B.13)

:= T . (B.14)
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C

Ordinary Di�erential Equations

C.1 Linear Ordinary Di�erential Equations

Linear ordinary di�erential (l-ODEs) are given by the equation:

ẋ = Ax+Bu

with

x :: state vetor ∈ R
n

u :: input vetor ∈ R
m

A :: system matrix ∈ R
n×n

B :: input matrix ∈ R
n×m

C.1.1 Similarity transformation

For the ase of the matrix A having n distint eigenvetors and eigenvalues,

then we an quite easily �nd the solution by introduing a similarity trans-

formation, by whih we map into another state. For the transformation we

introdue a transformation matrix T:

z := Tx

then with T being invertible:

x := T−1 z

and

ẋ := T−1 ż

Then

T−1 ż = AT−1 z+Bu ,

ż = TAT−1 z+TBu .
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Setting the transformation matrix T = V−1
with the latter being the eigen-

vetor matrix, we observe that:

V−1 AV = Λ

Thus

ż = Λz+TBu ,

the equations are deoupled and eah di�erential equation an be solved

independently:

żi = λi zi + sTi TBu .

where the row vetor sTi selets the ith row. The solution of this equation

is:

zi(t) := eλi t zi(0) +

∫ t

0
eλi (t−τ) sTi TBu(τ) dτ

Staking it up yields the solution to the matrix equation:

z(t) := eΛ t z(0) +

∫ t

0
eΛ (t−τ)TBu(τ) dτ

where:

eΛ t :=







eλ1 t

.

.

.

eλn t







Transforming bak:

Tx(t) := eΛ tTx(0) +

∫ t

0
eΛ (t−τ) TBu(τ) dτ (C.1)

V−1 x(t) := eΛ tV−1 x(0) +

∫ t

0
eΛ (t−τ)V−1Bu(τ) dτ

x(t) := VeΛ tV−1 x(0) +

∫ t

0
VeΛ (t−τ)V−1Bu(τ) dτ

x(t) := eA t x(0) +

∫ t

0
eA (t−τ)Bu(τ) dτ

x(t) := eA t x(0) +

∫ t

0
eA τ ′ Bu(t− τ ′) dτ ′

whih is the general solution for linear, time-onstant ODEs, in short also

alled LTI systems. These systems are widely used, as their solution is

readily available through the solution of the eigenvalue problem.
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C.1.2 Alternative derivation of the solution in the time &

Laplae Domain

The �rst part of this setion disusses the solution of the most fundamental

lass of linear systems, namely linear systems that are desribed by sets

of ordinary, time-onstant di�erential equations. Two solution methods are

introdued. The �rst is the general solution in the time domain. The seond

is derived in the Laplae domain.

C.1.3 A Time Domain Approah

Let y := f(u) be a salar, linear funtional that represents our system in

an input/output form, that is the output is a funtion f(·) of the input u.
The solution for this linear, time-invariant dynami model given the initial

onditions x0 = 0 is obtained in two steps.

First, the input funtion u(t) is approximated by a series of pulses (Figure

C.1):

time t∆t
ti ti +∆t

1
∆t

Figure C.1: Pulse funtion

u(−∞,∞) =

∞∑

i=−∞
u(ti) δ∆(t− ti)∆t

where the pulse funtion δ∆(t− ti) is de�ned by

δ∆(t− ti) :=







0 ; (−∞ < t < ti)

1/∆t ; (ti ≤ t ≤ ti +∆t)

0 ; (ti +∆t ≤ t < ∞)
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time ttiti +∆t

u(t)iδ∆(t− ti)∆t

u(t)
ũ(t)

Figure C.2: Approximation of input funtion with a series of onneted

pulses

y(k) = f(u(−∞, tk)) = f

(
k−1∑

i=−∞
u(ti) δ∆(t− ti)∆t

)

=
k−1∑

i=−∞
u(ti) f (δ∆(t− ti)) ∆t

where we took the fat into onsideration that u(ti) is a value and not a

funtion.

Seondly, the transition is made to in�nitely narrow pulses. Thus let ∆t
approah dt

y(t) = lim
∆t→dt

k−1∑

i=−∞
u(ti)f(δ∆(t− ti))∆t ,

to obtain the onvolution integral:

y(t) =

∫ t

−∞
f(δ(t− τ))u(τ) dτ , (C.2)

where δ(t− τ) the Dira impulse funtion :

δ(t− t1) = lim
∆t→0

δ∆(t− t1)

with the properties

∫ ∞

−∞
δ(t− t1) dt = 1

∫ ∞

−∞
f(t) δ(t− t1) dt = f(t1)
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The result C.2 is the onvolution integral, whih may be abbreviated by

writing :

f(δ(t− τ)) ⋆ u(τ)

Note that the funtion f(·) is shifted over the input funtion u(·) in opposite
diretion. In the above representation, the funtion f(·) �starts� thereby at

the lower limit, whilst the funtion u(·) �starts� at the upper limit. The

hanging integration variable moves the two funtions aross eah other,

so-to-speak. This operation is alled onvolution.

De�ning the impulse response

g̃(t, τ) := f(δ(t− τ)) ,

whih is equal to y(t) if u(t) := δ(t− τ) then

y(t) :=

∫ t

−∞
g̃(t, τ)u(τ) dτ .

The extension to the multi-variable ase is straightforward and results

y =

∫ t

−∞
G̃(t, τ)u(τ) dτ (C.3)

G̃(t, τ) :: the impulse response matrix

:= [[g̃i,j ]]∀i,∀j ∈ R
dim(y)×dim(u)

The impulse response matrix ontains the information about the dynamis

of the proess. The next setion will also provide a solution to omputing

the output given the model and the input. It will also shed some light on the

relation between the impulse response matrix and the di�erential equation

model.
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C.1.4 General Solution in the Laplae and Time Domain

Through the linearisation of non-linear proess models, a linear state-spae

desription is obtained. It desribes the propagation of the state in a set of

di�erential equations, one for eah state, and a set of algebrai equations

linearly ombining the inputs and the states to result the outputs:

ẋ = Ax(t) +Bu(t)

y := Cx(t) +Du(t)

In this setion, a solution is onstruted by �rst solving the equations in the

Laplae domain. Sine the Laplae transformation onverts the di�erential

equations into algebrai equations, the solution is found readily:

sx(s)− x(t = 0) = Ax(s) +Bu(s)

y(s) = Cx(s) +Du(s)

(I s−A)x(s) = x(t = 0) +Bu(s)

x(s) = (I s−A)−1
(
x(t = 0) +Bu(s)

)

The �nal result takes the form:

y(s) = C (I s−A)−1
(
x(t = 0) +Bu(s)

)
+Du(s) . (C.4)

This approah requires the inversion of a matrix, namely (Is − A). The

solution in the time domain is now onstruted by transforming the result

into the time domain using the inverse Laplae transformation. The result

for the �rst term is:

(Is−A)−1 x(t = 0)
L−1

−→ eAt x(t = 0)

And the seond term is the onvolution integral :

(I s−A)−1 Bu(s)
L−1

−→
∫ t

t=0
eA(t−τ) Bu(τ) dτ

The omplete solution for a time-onstant, linear set of ODEs in the time

domain is therefore

x(t) = Φ(t)x(t = 0) +

∫ t

t=0
Φ(t− τ)Bu(τ) dτ (C.5)

and

y(t) = CΦ(t)x(t = 0) +C

∫ t

t=0
Φ(t− τ)Bu(τ) dτ +Du(t) (C.6)
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with

Φ(t) :: fundamental or transition ma-

trix

:= eAt

For zero initial onditions x(t = 0) := 0 and D := 0 this simpli�es to

x(t) =

∫ t

t=0
Φ(t− τ)Bu(τ) dτ ,

y(t) := Cx(t) ,

:= C

∫ t

t=0
Φ(t− τ)Bu(τ) dτ ,

whih ompares with the result derived in the last setion. The relation

between the impulse response matrix and the quantities that appear in the

di�erential model is:

G̃(t, τ) := CΦ(t− τ)B.

As one would expet, the impulse transfer matrix ontains information

about the dynamis, paked into Φ, the input ampli�ation B, and the

link between the state and the output, whih is C.

C.1.5 Stability

The simplest way to derive the stability riterion is to look at the solution

in the time domain ??. The �rst term is the solution of the autonomous

system. If the system is stable, then it should return to its natural steady

state without any input after it has been disturbed.

The term

eA t x(0) := VeΛ tV−1 x(0)

The eigenvetor matrix determines the diretion, whilst the eigenvalue ma-

trix gives the magnitude of the movement. With imaginary part of the

eigenvalue will indue osillations, the real part of the eigenvalue is deter-

mining the magnitude of the hange with time. If the real part is positive,

the respetive exponential funtion will grow without limit and thus the

system is unstable.

The stability riterion is thus:

De�nition � Stable LTI: An LTI system is stable i� R
(
λi(A)

)
<

0∀i
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C.1.6 Steady state

The steady state of a stable system is haraterised by no hange, thus the

derivative of the state with respet to time is zero if the input is onstant:

ẋ|t:=∞ = A x|t:=∞ +Bu0 := 0

and thus if the system matrix is invertible:

x|t:=∞ := −A−1Bu0

C.2 Nonlinear di�erential equations

ẋ := f (x,u)

y := g (x,u)

C.2.1 Properties

� Sti�ness: large di�erenes in the eigenvalues of the Jaobian

(
∂ f(x,u)
∂ xT

)

.

Consider

� saling

� singular perturbation

� speialised solvers (integrators) mostly impliit solvers that ad-

just well to the loal topology

C.2.2 Similarity transformation

Again, let:

z := Tx

then with T being invertible:

x := T−1 z

and

ẋ := T−1 ż
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as before. Substitution into the nonlinear model results:

ẋ := T−1 ż := f
(
T−1x,u

)

ż := Tf
(
T−1x,u

)
:= f̄ (z,u)

y := g
(
T−1x,u

)
:= ḡ (z,u)

Again the input - output behaviour is not a�eted by the transformation.

The requirements obviously are that the transformation must be invertible.

It to be a linear transformation is not a requirement, though it is a ommon

ase.

C.2.3 Linearisation

Use trunated Taylor expansion to approximate the two funtions f ,g around
a point x∗,u∗

in the state-input spae and the de�nition of deviation vari-

ables:

f (x,u) ≈ f (x∗,u∗) +

(
∂ f (x,u)

∂ xT

)

x∗,u∗

∆x+

(
∂ f (x,u)

∂ uT

)

x∗,u∗

∆u

g (x,u) ≈ g (x∗,u∗) +

(
∂ g (x,u)

∂ xT

)

x∗,u∗

∆x+

(
∂ g (x,u)

∂ uT

)

x∗,u∗

∆u

Deviation variables:

z := ∆x := x− x∗

v := ∆u := u− u∗

w := ∆y := y − y∗

Thus:

ẋ := ẋ∗ −∆ẋ

Resulting in:

ż =

(
∂ f (x,u)

∂ xT

)

x∗,u∗

z+

(
∂ f (x,u)

∂ uT

)

x∗,u∗

v

w =

(
∂ g (x,u)

∂ xT

)

x∗,u∗

z+

(
∂ g (x,u)

∂ uT

)

x∗,u∗

v

C.3 Index of Di�erential Algebrai Equations

De�ning a general DAE:

0 := f(x, ẋ, t) . (C.7)
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the index (di�erential index) k of the (non)linear, su�iently smooth DAE

is the smallest k suh that

0 := f(x, ẋ, t) , (C.8)

0 :=
d

d t
f(x, ẋ, t) , (C.9)

.

.

.

.

.

.

.

.

. (C.10)

0 := dk

d tk
f(x, ẋ, t) . (C.11)

uniquely determines ẋ as a ontinuous funtion of x and t.



D

Singular Perturbation � An

Introdution

D.1 Purpose

In siene and engineering one �nds often problems where two systems of

largely di�erent nature a oupled. One of the sets of the equations desribes

the �main� system where the seond desribes the �small� system. Often the

e�ets of the small systems may be ignored, but very often too, the small

system makes all the di�erene. Flow systems are typially of this nature in

that the boundary layer is very important when desribing e�ets suh as

lift aused by �ow over a pro�le as it is used in the onstrution of a wing.

The onept, though, may also be applied to time sales suh as fast and

slow systems. Relevant readings are :

� Generi Lin and Segel (1988)

� Control Kokotovi et al. (1976) and Saksena et al. (1984)

D.2 Problem De�nition

For this very simple exposition to singular perturbation, let us de�ne a

simple time-onstant linear system whih desribes a system onsisting of

a slow, main subsystem and a fast seond subsystem both being intimately

oupled together :

ẋ = A
11
x+A

12
z; x(0) := x0

ε ż = A
21
x+A

22
z; z(0) := z0

y := C
1
x+C

2
z

D.3 The Outer Solution

First we assume that the �rst equation dominates and set and let the small

number ε → 0, thus a pseudo-steady-state assumption is made for the

265
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seond equation. This yields what is alled the outer solution :

ẋo = A
11
xo +A

12
zo; x(0) := x0

o

lim
ε→0

ε żo = A
21
xo +A

22
zo; zo(0) := z0o

0 = A
21
xo +A

22
zo

thus

zo := −A−1
22

A
21
xo

Using the result in the �rst matrix equations yields step-wise the outer

solution

ẋo = A
11
xo +A

12
(−A−1

22
A

21
)xo

= (A
11

−A
12
A−1

22
A

21
)xo

= Sxo

Integration results in the simple solution

xo(t) = eS t x0
o

The output for the outer solution (indiated by a subsribt o) is then

yo(t) := C
1
xo(t) +C

2
(−A−1

22
A

21
)xo(t)

:= (C
1
−C

2
A−1

22
A

21
)xo(t)

:= (C
1
−C

2
A−1

22
A

21
) eS t x0

The outer solution is thus a simple exponential as it was probably expeted.

This outer solution desribes the system approximately in the large time

sale, but what about the small time sale, partiularly at the beginning of

a hange ?

D.4 The Inner Solution

The inner solution is onstruted by time saling. The saling is done suh

that the saled time is in the order of the boundary layer. Let the new time

be τ :

τ := t/ε
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Then

ε−1 dxi

d τ
= A

11
xi +A

12
zi

dxi

d τ
= ε (A

11
xi +A

12
zi)

dxi

d τ
≈ 0 → xi(τ) :≈ x0

ε ε−1 d zi
d τ

= A
21
xi +A

22
zi

zi(τ) = e
A

22
τ
z0 +

∫ τ

0
e
A

22
θ
A

21
x0 dθ

= e
A

22
τ
z0 +A−1

22
e
A

22
τ
∣
∣
∣

τ

0
A

21
x0

= e
A

22
τ
z0 +A−1

22
(eA22

τ − I)A
21
x0

yi(τ) := C
1
x0 +C

2

(

e
A

22
τ
z0 +A−1

22
(eA22

τ − I)A
21
x0
)

D.5 Combining the Outer and the Inner Solution

Having the outer and the inner solution available, a ombined solution may

be onstruted by adding the two solutions together and subtrating the

ommon parts of the two :

yc(t) := yo(t) + yi(t)− c(t)

where the last term represents the ommon part of the two solutions. In this

ase, this ommon part is extremely simple as it is just a onstant whih

an be found easily by analysing the end value :

yc(t → large) = yo(t → large)

⇒ yi(t → large) = c(t)

Thus

lim
t→∞

yi(t) = C
1
x0 +C

2
A−1

22
(−I)A

21
x0

= (C
1
−C

2
A−1

22
A

21
)x0
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D.6 Example

The attahed �gures show the simulation results for a system :

A
11

:= −5 A
12

:= 1

A
21

:= 1 A
22

:= −1

C
1

:= 1 C
2

:= 1

x0 := 10 z0 := 5

ε := 0.01

outer solution      

inner solution      

approximate solution

exact solution      

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

16

18

20
Singular Perturbation : An Example using Matching

time

o
u

tp
u

t

Figure D.1: Inner solution, outer solution and ombined solution ompared

with the exat solution

figures/A_01__SingularPerturbation/SingularPerturbationComparison.eps
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error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3
Singular Perturbation : An Example using Matching

time

e
rr

o
r

Figure D.2: Error of exat solution and ombined solution

D.7 Tikhonov's Theorem

dx

dt
; = f(x, z, t),

µ
dz

dt
; = g(x, z, t).

Taking the limit as µ → 0 this beomes the �degenerate system�

dx

dt
; = f(x, z, t),

z(x, t);= root

(
g(x, z, t)

)

Note that there may exist more than one root.

Tikhonov's theorem states that as µ → 0, the solution of the system of

two di�erential equations above approahes the solution of the degenerate

system if z(x, t) is a stable root of the �adjoined system�

dz
dt = g(x, z, t).

figures/A_01__SingularPerturbation/SingularPerturbationError.eps
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E

Frition fator relations for

�ow-through systems

E.1 Approximations of the Colebrook equation

Soure: Wikipedia

Equation Author Year

λ = .0055(1 + (2× 104 · ε
D + 106

Re )
1
3 ) Moody 1947

λ = .094( ε
D )0.225+0.53( ε

D )+88( ε
D )0.44 ·Re−Ψ

where

Ψ = 1.62( ε
D )0.134

Wood 1966

1√
λ
= −2 log( ε

3.715D + 15
Re) Ek 1973

1√
λ
= −2 log( ε

3.7D + 5.74
Re0.9

) Jain and

Swamee

1976

1√
λ
= −2 log(( ε

3.71D ) + ( 7
Re)

0.9) Churhill 1973

1√
λ
= −2 log(( ε

3.715D ) + (6.943Re )0.9)) Jain 1976

λ = 8[( 8
Re )

12 + 1
(Θ1+Θ2)1.5

)]
1
12

where

Θ1 = [2.457 ln[( 7
Re )

0.9 + 0.27 ε
D ]]16

Θ2 = [(37530Re )16

Churhill 1977

1√
λ

= −2 log[ ε
3.7065D −

5.0452
Re log( 1

2.8257 (
ε
D )1.1098 + 5.8506

Re0.8981 )]

Chen 1979

1√
λ
= 1.8 log[ Re

0.135Re( ε
D
)+6.5 ] Round 1980
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Equation Author Year

1√
λ
= −2 log( ε

3.7D +
5.158log(Re

7
)

Re(1+Re0.52

29
( ε
D
)0.7

Barr 1981

1√
λ

= −2 log[ ε
3.7D − 5.02

Re log( ε
3.7D −

5.02
Re log( ε

3.7D + 13
Re))]

or

1√
λ
= −2 log[ ε

3.7D − 5.02
Re log( ε

3.7D + 13
Re)]

Zigrang

and

Sylvester

1982

1√
λ
= −1.8 log

[(
ε

3.7D

)1.11
+ 6.9

Re

]

Haaland 1983

λ = [Ψ1 − (Ψ2−Ψ1)2

Ψ3−2Ψ2+Ψ1
]−2

or

λ = [4.781 − (Ψ1−4.781)2

Ψ2−2Ψ1+4.781 ]
−2

where

Ψ1 = −2 log( ε
3.7D + 12

Re)

Ψ2 = −2 log( ε
3.7D + 2.51Ψ1

Re )

Ψ3 = −2 log( ε
3.7D + 2.51Ψ2

Re )

Serghides 1984

1√
λ
= −2 log( ε

3.7D + 95
Re0.983 − 96.82

Re ) Manadilli 1997

1√
λ

= −2 log{ ε
3.7065D − 5.0272

Re log[ ε
3.827D −

4.657
Re log(( ε

7.7918D )0.9924 + ( 5.3326
208.815+Re )

0.9345)]}
Monzon,

Romeo,

Royo

2002

1√
λ
= 0.8686 ln[ 0.4587Re

(S−0.31)
S

(S+1)

]

where

S = 0.124Re ε
D + ln(0.4587Re)

Goudar,

Sonnad

2006

1√
λ
= 0.8686 ln[ 0.4587Re

(S−0.31)
S

(S+0.9633)

]

where

S = 0.124Re ε
D + ln(0.4587Re)

Vatankhah,

Kouhakzadeh

2008

1√
λ
= α− [

α+2 log( β
Re

)

1+ 2.18
β

]

where

α = (0.744 ln(Re))−1.41

(1+1.32
√

ε
D
)

β = ε
3.7DRe+ 2.51α

Buzzelli 2008
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Equation Author Year

λ = 6.4
(ln(Re)−ln(1+.001Re ε

D
(1+10

√
εD)))2.4

Avi,

Kargoz

2009

λ = 0.2479−0.0000947(7−log Re)4

(log( ε
3.615D

+ 7.366
Re0.9142

))2
Evangleids,

Papae-

van-

gelou,

Tzi-

mopou-

los

2010
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F

Graph Theory

Graph is used for di�erent objets. Probably most ommonly one refers

to a graphial representation of data in the form of a plot, for example a

x-y plot or a pie-hart, a histogram et. The term graph is also used for

a (graphial) representation of a network onsisting of a set of nodes and

onnetions. Many problems an onvinently be represented by a diagram

onsisting of nodes (points, irles or other graphial entities) onneted

by lines or arrows thus forming a network. For nodes one also used the

term verties and for the onnetions one also uses frequently the term

ar. Graphially this may re�et into a set of points (irles, ellipses or any

other objet that visualises a body, volume or system) and a set of lines,

bars, arrows representing the onnetions.

Graphs are used in di�erent ontents where networks are useful suh as

Internet representation, English thesaurus (Words, 2016), abstrat syntax

tree, et. A number of examples an be found on (Viz, 2016), a webpage that

desribes a graph visualisation tool. In the ontext of modelling we have

three major uses of the graph theory, namely as a graphial representation

of the spae taken by the plant, thus a representation of ontrol volumes

and their interation ??, ??. In order to handle omplexity, that is a very

large graph, this is extended to a hierarhial graph representation. Graph

theory is also a very handy tool to analyse equations and variables in the

form of a bi-partite graph. Mathematial expressions an be mapped into

trees onsisting of variables and operators uses in omputer siene to store

oded expressions. These are known as abstrat syntax trees.

The theory of graphs is old and goes bak to Euler publishing a paper on

the Seven Bridges of K

�

'onigsberg and published in 1736, whih is regarded

as the �rst paper in the history of graph theory. The subjet being part of

disrete mathematis is doumented in many text books ommonly available

from the library. There are also many resoures on the web desribing the

subjet (Wikipedia, 2016; MathWorld, 2016). The exposition here is thus

only a summary of the material being used in the urrent ontext.

F.1 Basis of Graph Theory

Graph, vertie, node & inidene funtion : A graph is a triple
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A

B F

C E D

a

b

i
g

d e

c

h

Figure F.1: An example graph G

G := {V (G), E(G), fG} with V (G) being a set of verties (nodes) and

E(G) and a set of edges (ars) and an inidene funtion fG that

assoiates with eah edge of G an unordered, not neessarily distint,

pair of verties of G.

Joint : If e is an edge and u and v are two verties suh that f(e) = (u, v)
then e is said to join the vertie u with the vertie v.

Ends : The two verties u, v are alled the ends of the edge e.

Conneted : Two verties that are onneted by an edge are alled

adjaent.

Example :

The example graph G F.1 onsists of set of verties and edges:

V (G) := {A,B,C,D,E, F} , (F.1)

E(G) := {a, b, c, d, e, f, g, h, i} . (F.2)

ν(G) := |V (G)| = 6 . (F.3)

ǫ(G) := |E(G)| = 9 . (F.4)

The inidene funtion is then:

fE := { (A,B), (B,F ), (A,C), (B,C), (E,F ),

(D,D), (D,E), (C,E), (E,C) } . (F.5)

Ends : An edge with two distint ends is alled a link.

Inident : The ends of an edge are said to be inident with the edge,

and via versa.

figures/P3_A_06__GraphTheory/GraphFirst.eps
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Multiple edge : If there are more than one edge have the same end,

the edge is alled multiple edge.

Loop : An edge that has that onnets to the same vertie on both ends

is alled a loop

A

B F

C E D

a

b

i
g

d e

c

h

linklink

multi edge

not simplesimple

loop

Figure F.2: Basi graph strutures

Isomorphi graphs : Two graphsG andH are alled isomorphi G ≅ H
if there exists bijetions φ : V (G) → V (H) and Φ : E(G) → E(H)
suh that fG(e) = (u, v) if and only if fH(Φ(e)) = (φ(u), φ(u)). Suh
a pair (φ, Phi) of mappings is alled an isomorphism between G and

H. In layman terms: the struture of the two graphs is the same,

whilst the edges and the verties are labelled di�erently.

Simple graph : A graph is simple if it has no loops and no two of its

links join the same pair of verties.

Complete graph : If eah pair of distint verties is joined by an edge

is alled a omplete graph. Not onsidering isomorphism, there is only

one omplete graph with n verties, whih is denoted by Kn.

Empty graph : A graph is empty if it ontains no edges.

Finite graph : A graph is �nite if both its vertex set and the edge set

are �nite.

Trivial graph : A graph with only one vertex is alled trivial , all others

non-trivial.

Idential graphs : Two graphs G and H are alled idential if V (G) =
V (H), E(G) = E(H) and f(G) = f(H)

Bipartite graph : A bipartite graph is one whose vertex set an be

partitioned into two subsets X and Y , so that eah edge has one

figures/P3_A_06__GraphTheory/GraphLoopLink.eps
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A

C

D FE

B
b

g
d

a f

c

e

4 2

3

5

6

1

Figure F.3: Two isomorphi graphs with the mappings: A = 6, B = 5, C =
4,D = 3, E = 2, F = 1 and a = h, b = i, c = j, d = k, e = k, f = l, g = m

h

end in X and the other end in Y . The partition of a graph's vertie

V (G) = (X(G), Y (G) is alled a bipartition of the graph G.

Complete bipartite graph : Is a graph, whih is a simple bipartite

graph, with the bipartition X and Y in whih eah vertex of Y is

joined to eah vertex of Y . If m,n denote the ardinality of the two

sets X and Y , respetively, then the graph is denoted by Km,n. This

onept an be extended to k-partitioned graphs.

Inidene matrix : Any graph an be represented in a ν × ǫ matrix,
where ν := |V (G)| and ǫ := |E(G)|. The inidene matrix of G is the

matrix M(G) := [mi,j ] with mi,j being the number of times that a

vertie vi and an edge ej are inident.

Adjaeny matrix : The adjeany matrix of the graph G is the ν × ν
matrix A(G) := [ai,j] in whih ai,j is the number of edges joining vi
and vj

figures/P3_A_06__GraphTheory/GraphIsomorphic.eps
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A

C

B

a

c

b

Figure F.4: A bipartite graph showing the two sets on the left and the right.

The shown graph is also omplete.

Example : For our example above the inidene matrix is:

M :=

a b c d e f g h

A −1 −1

B +1 −1 −1

C +1 +1 −1

D ±1 −1

E −1 +1 +1

F +1 +1

(F.6)

figures/P3_A_06__GraphTheory/GraphBiPartite.eps
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and the djaeny matrix of the direted graph:

A :=

A B C D E F

A 1 1

B 1 1

C 1

D 1 1

E 1

F

(F.7)

with the rows being the soure nodes and the olumn the sink nodes.

LetU(A), D(A) be the upper triangular and the diagonal matrix extrated
from A then the adjaeny matrix for the un-direted graph is given by

U+D+UT
, whih is symmetrial.

Let G1 and G1 be two non-empthy graphs and de�ne the union as a new

graph: G := (V (G1) ∪ V (G2), E(G1) ∪ E(G2))

Subgraph : G1 and G2 are subgraphs of G.

Subergraph : G is a supergraph to G1 and G2

Disjoint : IfG1∩G2 := ∅ this being short for (V (G1) ∩ V (G2), E(G1) ∩ E(G2)) =
(∅, ∅) then the two graphs are disjoint.

Indued subgraph : The subgraph G1 := G[V1] is alled an indued

subgraph of G if E1 is the subset of E that have both ends in V1.

Edge-indued subgraph : The subgraph G1 := G[E1] is alled an edge-

indued subgraph of G if V1 is the subset of V with the set of ends

E1.

Underlying simple graph : The spanning subgraph of G is obtained

by deleting all loop and redue all multiple edges single edges.

Spanning subgraph : Is a subgraph with idential vertie sets. H is a

spanning subgraph of H if V (H) = V (G).

Walk : A walk W in the graph G is a �nite non-null sequene of

alternating verties.

origin, terminus : lines starting with the vertie v0, alled the ori-
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gin, and ending with vertie vk, alled the terminus, thus W :=
v0 e1 v1 e2 . . . ek vk.

Ends : W is alled a trail if the edges are distint.

Path : If in addition the verties are distint, the walk is alled a path.

Closed walk : A walk is losed if it is of positive length and the origin

and terminus are idential.

Cyle : A yle is a losed walk whih has passes through distint

verties.

Conneted graph : Two subgraphs G[Va] and G[Vb] are onneted if

there exists at least one vertie having ends in eah of the sets Va and

Vb. Otherwise the graph is alled disonneted and the two subgraphs

G[Va] and G[Vb] are alled omponents of G.

A

B D

C E

a

d

c e

b

h

walk : A-b-C-c-B-d-D-d-B-a-A-b-C

trail: A-b-C-c-B-d-D-e-E-g-B

path: A-a-B-d-D-e-E-f-C

closed walk: A-a-B-d-D-e-E-g-B-c-C-b-A

g

Figure F.5: A general walk and speial walks: trail, path, losed walk and

yle

figures/P3_A_06__GraphTheory/GraphWalkTrailPath.eps
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A

B D

C E

a
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c e
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h
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C E

a

c e

b

g

Figure F.6: Conneted and disonneted graphs, omponents

figures/P3_A_06__GraphTheory/GraphConnectedDisconnected.eps
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Elements of Statistis

G.1 Probabilty

G.1.1 Axiomati De�nition

De�nition - Event Spae E : An event spae is alled a probability

spae or a probability �eld if every set of observed events A has a probability

P (A)

De�nition - Probability Axioms :

1. Probability is a real number ∈ [0, 1]

2. Impossible implies P (∅) := 0 and

ertain implies P (E) := 1

3. For disjunt, mutually exlusive events A and B:
P (A+B) := P (A) + P (B)

4. For non-mutually exlusive events A and B:
P (A+B) := P (A) + P (B)− P (AB)

De�nition - Conditional Probability : The onditional probability of

A given B, that is event B has already ourred and P (B) 6= 0, is

P (A|B) =
P (AB)

P (B)

De�nition - Random Variable : a funtion of an event spae.

Probability of a random variable to assume a value between a and b is given
by

P (x ∈ [a, b]) :=

∫ b

0
p(x) dx−

∫ a

0
p(x) dx ,

where p(x) is the probability density funtion haraterising the ontinuous

random variable x. If the random variable is disrete, the integral is replaed

by orresponding summations.

283
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G.1.2 Bayes' Theorem

Theorem G.1.1 (Bayes' Theorem). Let {Ai} be a disjunt set of observed

events and B an observed event, then for eah j:

P (Aj |B) =
P (AjB)

P (B)

=
P (Aj)P (B|Aj)

∑n
1 P (Ai)P (B|Ai))

(G.1)

The theorem is often used with Aj denoting a statement about an unknown

phenomenon, whilst B presents the known information about the proess.

P (Aj) is denoted as prior probability, P (Aj |B) as posterior probability and
P (B|Aj) as likelihood.

G.1.3 Distribution Measures

De�nition - Modus : the maximum of the probability distribution

funtion.

De�nition - Median : loation where the umulative distribution fun-

tion is 1/2. The most important measures are the mean

x̄ := E [xi]

:=
∑

i

xi p(xi) x :: disrete

x̄ := E [x]

:=

∫ +∞

−∞
x p(x)dx x :: ontinuous

and the variane

var (x) := E
[

(xi −E [xi])
2
]

The entral moments are de�ned as

µk := E
[

(xi −E [xi])
k
]

:=
∑

i

(xi − x̄)k p(xi) x :: disrete

µk := E
[

(x−E [x])k
]
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:=

∫ +∞

−∞
(x− x̄)k p(x) dx x :: ontinuous

The moments are de�ned as

µ′
k := E

[

(xi −E [xi])
k
]

:=
∑

i

xki p(xi) x :: disrete

µ′
k := E

[

(x−E [x])k
]

:=

∫ +∞

−∞
xk p(x) dx x :: ontinuous

The seond entral moment is the variane. The third entral moment is

alled skewness and the fourth is alled kurtiosis.

G.1.3.1 Behaviour of Moments

Let x, y, z ∈ E three random variables on the same probability spae and

a, b, c, d arbitrary onstants.

E [a x+ b] := aE [x] + b

E [x+ y] := E [x] +E [y]

E [x y] := E [x] E [y] if x and y are unorrelated

var (x) := E
[

(x−E [x])2
]

:= E
[
x2
]
− (E [x])2

≥ 0

= 0 for x := onst

var (a x+ b) := a2 var (x)

var (x+ y) := var (x) + var (y)

if x and y are independent

(cov) (x, y) := E [(x−E [x]) (y −E [y])]

:= E [(x y − xE [y]−E [x] y +E [x] E [y])]

:= E [x y]−E [x] E [y]

ρ (x, y) :=
(cov) (x, y)

√

var (x) var (y)
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(cov) (x, y)2 ≤ var (x) var (y)

= 1 if x and y on straight line

= 0 if x and y are independent

(cov) (a x+ b, c y + d) := a c (cov) (x, y)

(cov) (x+ y, z) := (cov) (x, z) + (cov) (y, z)

G.1.3.2 Some Follow-Ups

Given xi have all the same expetation value:

E [x̄] := E

[

1

n

n∑

i:=1

xi

]

Given x and y are independent

var (x− y) := var (x) + var (y)

Given xi are unorrelated and have the same mean and the same variane

σ2

var (x̄) := var

(

1

n

n∑

i:=1

xi

)

,

:=

(
1

n

)2

n var (xi) ,

:=
1

n
σ2 .

Also

E [x] := E [E [x|y]]
var (x) := E [var (x|y)] + var (E [x|y])

G.2 Most Common Distribution Funtions

G.2.1 Binomial Distribution

Number of suesses in n independent events with probability p:

P (x = k) :=

(
n

k

)

pk (1− p)n−k , k := 0, 1, . . . , n

E [x] := n p

var (x) := n p (1− p) = n p q
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G.2.2 Poisson Distribution

Number of rare events with the expetation of λ:

P (x = k) := e−λ λk

k!
k := 0, 1, 2, . . . , n

E [x] := λ

var (x) := λ

Poisson distribution is the limit of the binomial distribution with

p → 0, n → ∞, n p → λ.

G.2.3 Normal Distribution

Idealised distribution of measurement errors and approximation for many

other distributions. The probability distribution of the standard normal

distribution for x ∈ (−∞,+∞) := N(0, 1) is given by:

p(x) :=
1√
2πσ

e
1
2

(x−µ)2

σ2

E [x] := µ

var (x) := σ2

G.2.4 Exponential Distribution

Desribes proesses without memory.

p(x) :=

{
1
µ e

− x
µ x ≥ 0

0 else

E [x] := µ

var (x) := σ2

G.2.5 Uniform Distribution

Mostly used as initial ondition in reursive proesses and random number

generation whih thereafter are transformed.

p(x) :=

{
1

b−a a < x < b

0 else
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E [x] :=
a+ b

2

var (x) :=
b− a

12

G.3 Essential Statistis

G.3.1 Chi-Square Distribution

Distribution of the sum of squares of ν independent, standard-normal-

distributed random variables xi ∼ N(0, 1):

∑

i:=1

ν x2i ∼ χ2
ν

E [x] := ν

var (x) := 2 ν

� The distribution is ontinuous in (0,∞)g.

� For ν := 2 it is the exponential distribution with µ := 2

� Approahes the normal distribution for large ν.

� ν :: integer.

G.3.2 Student t Distribution

Distribution of the standardized arithmeti average (x̄ − µ)/σx̄ over n :=
ν + 1 indebendent normally distributed xi, where the σx̄ is the empirial

standard deviation of the average:

σ2
x̄ :=

n∑

i:=1

(xi − x̄)2

n (n− 1)

More general: Let x and y be independent, x ∼ N(0, 1) and y ∼ χ2
ν then:

x
√

y
ν

∼ tν

� The distribution is ontinuous in (0,∞).

� Symmetrial around 0.



G.3. ESSENTIAL STATISTICS 289

� Bell-shaped

� Longer tails than the normal distribution

� Approahes the normal distribution for large ν.

� ν :: integer.

Mostly used to test an average or to ompare two averages.

G.3.3 F-Distribution

Distribution of the quotients of two independent estimates of the same vari-

ane starting with a normally distributed variable. More generally: Let x
and y be independent and x ∼ χ2

νx and y ∼ χ2
νy then:

x/νx
y/νy

∼ Fνx,νy

� The distribution is ontinuous in (0,∞).

� Approahes the normal distribution for large νx and νy with a mean

of 1 and a variane of 2/νx + 2/νy.

� νx, νy :: integer.

Most ommon use: Variane analysis.
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H

Optimisation � An Introdution

H.1 General Problem

min
x∈Rn

F (x)

subjet to: ci(x) = 0, i := 1, 2, . . . , e

ci(x) ≥ 0, i := e+ 1, . . . ,m

Feasible point z: satis�es all onstraints.

Feasible region: R := {zi|∀i}

Infeasible problem: R := 0

Optimal point: x∗

δ- Neighbourhood of x: N(x, δ)

De�nition - loal minimum : The point x∗
is a loal minimum of the

general onstraint optimisation problem if ∃δ > 0 suh that:

1. F (x) is de�ned on N(x∗, δ) and

2. F (x∗) < F (y) ∀y ∈ N(x∗, δ),y 6= x∗

The funtion F (x) is smooth and at least twie-ontinuously di�erentiable.

H.2 Unonstraint Optimisation

H.2.1 One-Dimensional

The problem redues to:

291
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min
x∈R1

f(x)

De�nition - Neessary onditions :

1.

∂ f(x)
∂ x

∣
∣
∣
x∗

:= fx(x
∗) := 0

2.

∂2 f(x)
∂ x2

∣
∣
∣
x∗

:= fxx(x
∗) ≥ 0

To proof the above onditions expand the funtion f(x) in a Taylor series

about the optimal point:

f(x∗ + ǫ) := f(x∗) +
1

2
ǫ2 fxx(x

∗) . (H.1)

H.3 Surfae searh methods

The optimal point is haraterised by the �rst derivative to be zero. Thus

if one has the derivative for the objetive funtion as an algebrai expres-

sion, the searh for the optimal solution redues to �nding the zero for the

funtion, being the derivative of the objetive funtion with respet to the

parameters. So one requires a root solver for this problem.

In the ase one does not want or an alulate the derivative, one an use a

searh method: Starting from an initial position, one moves the estimate in

the diretion of the optimum, whih in ase of a maximum is to move uphill,

whilst in the minimisation problem one would move downhill. This implies

a gradient searh, in that one moves permanently towards an optimum.

The literature reports a number of proedures to �nd optimal points on a

hyper-surfae. We shall restrit ourself to a few simple ones that illustrate

the main ideas.

H.3.1 One-dimensional algorithm of Davies, Swann & Campey

The idea of the approah is to sequentially redue the interval within the

maximum is loated. Two searh algorithms are used sequentially. And next

a quadrati model is used to iteratively redue the interval until the on-

vergene riterion is reahed. Figure H.1 depits the 1-dimensional searh

for an optimum in a �rst stage: reduing the searh interval.

So �rst we do a searh to braket the maximum into a loser interval. The

searh begins on one side moving in the positive diretion using the initial
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℄

bc

1 2 3 4 6

bc
bc

bc

bc

bc12
3
4

5

5

6

y

x

Figure H.1: A simple searh method

step size. If in the �rst step one �nds a derease in the y-value, one starts

again, but in the opposite diretion. The next step is done in the same

diretion but double the size. The proedure is ontinued until the y-value

dereases. At that point one halves the urrent step size and moves that

one bak. The last 4 points are equally spaed. We hoose the one with

the largest y-value and the immediate two neighbours, namely the one to

the left and the one to the right. In the ase, where the the �rst step gives

a derease and the step in the opposite diretion also gives a derease, one

has already found the three values.

Given the three values, a paraboli model is �tted providing an estimate for

the maximum.we alulate the y value at the maximum. From these four

values we selet again the highest and the one to the left and the one to the

right, thereby reduing the interval.

Again a paraboli model is �tted and the loation of the maximum is al-

ulated by di�erentiation.

The proedure is repeated until two onseutive evaluation of the loation

of the maximum meets the onversion riterion.

The method an be re�ned by using ubi models.

H.3.2 Multi-dimensional searh: gradient method

If one wants to get to the top of the mountain, one walks uphill. This is

essentially the gradient searh:

1. we start from an arbitrary point and �nd the gradient, for example,

by using a loal design of experiments, whih orresponds to �nding

an approximate gradient using a loal perturbation in all diretions.

2. we move along the gradient until the slope levels out, thus beomes

zero in this diretion.

3. we �nd the gradient at this loation, thus return to point 1

4. break the loop one no progress is made indiating that we are on the

top of the mountain.
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Note that this proedure always moves orthogonal to the ontour one is on.

Thus if the mountain has a irular footprint and is regular all the way to

the top, thus has a irular ontours, then one moves diretly to the top. If

however, the shape of the ontours are distorted, say oval, then one moves

to the top on a zigzag path. Saling of the axis hanges the shape of the

hill!

H.3.3 Multi-dimensional searh: Newton's method

The alternative to the searh would be to solve the algebrai optimisation

problem using di�erentiation and a root searh method,or if the funtion is

omplex to use a Taylor approximation to the seond-order term yielding

Newton's method:

y′(x1 + h) := y′(x1) + y′′ h (H.2)

where the prime indiates the derivative and the double prime the seond-

order derivative. At the maximum, the derivative is zero, thus

h ≈ −
(

y′′
)−1

y′
(H.3)

and

xn+1 := xn −
(

y′′
)−1

y′(xn) (H.4)

This method is not dependent on the saling, but has also the zigzag be-

haviour in omplex surfaes mainly when the urvature hanges drastially

as a funtion of the diretion, like this is the ase for the Rosenbrok fun-

tion or anything that looks like a banana.

H.3.4 Multi-dimensional searh: Davidon's method

This method ombines the steepest asent and the Newton method, one of

the best gradient methods. The hange in the diretion is determined by

the the produt Hy′
. For the Newton method, the matrix H is the inverse

of the Hessian, whilst the Davidon's method starts with a unity matrix and

adjust it during the searh.

The reursive searh is de�ned by:

xn+1 := xn − λH
n
y′

n
(H.5)

The variable λ is being determined by a searh of the minimum in the

given diretion H
n
y′

n
, as desribed in H.3.1 thus a one-variable searh
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is exeuted. At the end of eah step, the new searh diretion is being

omputed:

H
n+1

:= H
n
+B

n
+C

n
(H.6)

B
n
:= ∆xn∆xT

n

(

∆xT
n ∆y′

n

)−1
(H.7)

C
n
:= −H

n
∆y′

n
∆yT

n
H

n

(

∆y′T
n
H

n
∆y′

n

)−1
(H.8)

∆xn := xn+1 − xn (H.9)

∆y′
n
:= y′

n+1
− y′

n
(H.10)

(H.11)

The matrixH onverges over time to the inverse of the Hessian, thus

(

y′′
)−1

H.3.5 Multi-dimensional searh: Other methods

The literature reports a large number of di�erent methods. Of partiular

interest are those methods that do not require information about the deriva-

tives, that is �rst order: the slope and seond order: the urvature. These

methods generate new searh diretions based on a linear ombination of

the present searh diretion and their results. The atalogue of suh meth-

ods inludes the Rosenbrok method and the often applied Powell method.

Both an be found implemented in optimisation pakages.
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b

Figure H.2: DIY round-hill limbing

b

Figure H.3: DIY oval-hill limbing



I

Seletive Examples

I.1 Temperature Sensor

I.1.1 Problem setup

Observing the temperature in a proess is a ommon thing to do. For this

purpose, one introdues a temperature sensor, alled a thermometer. If

the desired observation is the temperature of a �uid, one introdues the

thermometer into the �uid. If it is a solid, one �stiks� it onto the surfae or

drills a whole, if this is an option and insert it there. With solids it is also

quite ommon to use a heat-ondutive paste. Certainly in these modern

times, one may not use a thermometer that requires physial ontat, but

one may use a infrared sensor. Here we shall have a look at the thermometer-

in-�uid ase.

So we insert a sensor into the �uid and measure the temperature of the

�uid,but is it really the temperature of the �uid we are measuring? Two

quite di�erent issues: First is that we measure some physial quantity that

is a funtion of the temperature, whih is the reason the term �obeserving�

of the temperature was used. (ii) The reading is providing the state infor-

mation of the objet �sensor� and not the objet ��uid�. The temperature

in the sensor must not be the same as in the �uid if the �uid is hanging

the temperature relative to the sensor So we have to onsider the transport

of energy in the form of heat into the sensor and the apaity e�et of the

sensor. In reality, there is a third main thing to be onsidered, namely

the heat ondution in the sensor's onstrution towards the outside of the

proess, suh as physial support and wiring. Here we shall fous only on

the seond aspet, namely the e�et of the heat transport �uid-sensor and

the apaity e�et of the sensor devie itself.

I.1.2 A simple model

For the purpose of this example, we assume a very simple abstration, whih

is motivated by the fat that we are interested in the sensor dynamis.

Thus let us assume we have a temperature sensor in a liquid and let us de�ne

the task of modelling the joint system of �uid and temperature sensor, then

we may want to take the view of the temperature sensor to be of uniform

297
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temperature, thus we lump the material that makes up the sensor itself

into a simple lumped system of uniform with the intensive properties being

uniform within the system. Further let us assume that the �uid in whih

the sensor is immersed an be viewed as onsisting of a bulk with uniform

temperature and a uniform �uid �lm around it that ats as the heat-transfer

system between the bulk of the �uid and the sensor. Pitorially, this maps

into the following graph: The part if interest is the sensor, thus we model the

SE
ŵS|E

q̂E|S

Figure I.1: A simple abstration of a temperature sensor in a �uid environ-

ment

sensor dynamis having already assumed that it an be seen as an internally

fast system:

dES

d t
:= q̂E|S − ŵS|E .

The heat �ow model approximates the behaviour of the �lm by:

q̂E|S := −kE|S AE|S (T S − TE) , (I.1)

kE|S, AE|S := given .

and the system volume work term, representing the hange of the volume

by:

ŵS|E := pS
dVS

d t
.

At this point it is appropriate to make some simpli�ations and assumptions

that a�et the energy balane. The �rst simpli�ation is assoiated with

the fat that the sensor is not moving about, that is, its kineti energy KS

and potential energy PS is zero:

dKS

d t
:= 0 ,

d PS

d t
:= 0 .

Assuming onstant pressure also seems an appropriate thing to do. Intro-

duing the enthalpy:

H := U + p V ,
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and observing that

dH

d t
:=

dU

d t
+

d p

d t
V + p

dV

d t
,

the energy balane redues to:

dHS

d t
:= q̂E|S . (I.2)

To omplete the model we have to provide the link between the temperature

of the system and the respetive fundamental state, namely the enthalpy in

this ase:

H :=

∫ T

Tr

∂ H

∂ T
dT ,

:=

∫ T

Tr

Cp(T ) dT .

Assuming we know the heat apaity as a funtion of time as a produt of

the known volume, known, onstant density and the spei� heat apaity

in the form of a polynomial with the known parameters {ai}:

Cp(T ) := V ρ cp(T ) ,

cp(T ) :=
∑

i

ai T
i ,

ai, V, ρ := given ,

the model is ompletely spei�ed and proper. The dynamis of the sensor

are driven by the temperature of the environment, a funtion of the given

onditions and parameters.

To solve the problem the enthalpy-temperature relation must be solved for

the temperature, whih is probably the most di�ult task, as the heat

apaity may be given as a polynomial. One one has the temperature, one

an ompute the heat transfer and onsequently the time derivative of the

enthalpy from the onservation law.

I.1.3 Putting it into state spae notation

The whole idea is to draw the attention to the mathematial problem by

onsidering the nature of the di�erent variables in the ontext of system

theory. The state then is denoted by an x, the inputs u are the e�ort

variables or �ows or any quantity that diretly relates to this information.

The outputs are the observation of the state, diretly or indiretly of the
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systems involved. Thus in our ase, the state is �rst the energy, whih then

is simpli�ed to internal energy beause of fat that the system is stationary

in the geometrial spae. The next transformation takes advantage of the

pressure to be onstant, leading to enthalpy being the state.

I.1.3.1 Enthalpy as state

For simpliity reasons we also assume that the spei� heat apaity is

onstant, thus not a funtion of the temperature. By substituting the linear

heat transfer law I.1 into the enthalpy balane I.2 we get:

ḢS = −kE|S AE|S (T S − TE)

Next we need to provide an algebrai link between the enthalpy and the

temperature measured relative to a referene temperature Tr:

Hs := ρS VS

∫ Ts

Tr

(cp(ξ))S dξ

Assuming the cp to be onstant then we an readily solve the above integral
equation for the upper limit:

TS :=
1

(ρ V cp)S
HS + Tr

Substitution yields:

ḢS = −kE|S AE|S

(
1

(ρV cp)S
HS + Tr − TE

)

If we fator out the fration with the heat apaity,

ḢS = −kE|S AE|S
(ρV cp)S

(
HS + (ρV cp)S (Tr − TE)

)

= −kE|S AE|S
(ρV cp)S

(
HS − (ρV cp)S (TE − Tr)

)

The last term is an enthalpy in terms of the sensor, but with the environment

temperature as variable. Remembering that, we an write:

ḢS = −
kE|S AE|S
(ρV cp)S

(HS −HW )

= − 1

τE|S
(HS −HW )
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where in the seond equation de�ned the time onstant:

τE|S :=
(ρV cp)S
kE|S AE|S

With the mass not hanging, the state is the enthalpy of the sensor: x := H.

The input is the enthalpy of the sensor, but omputed at the environment

temperature: u := HW := (ρV cp)S (Tr − TE). In this notation we get:

ẋS = −ΘS (xS − uS)

I.1.3.2 Temperature as state

Most people would though not be interested in the enthalpy, but in the

temperature, whih is not at all surprising: After all that was the purpose

of the sensor. In fat the enthalpy representation looks a little strange

to most of us. The hange requires a state variable transformation to be

exeuted on the di�erential equation I.2. This is ahieved by alulating

the time derivative of the enthalpy as a funtion of the temperature:

d

d t
Hs :=

d

d t

(

ρS VS

∫ Ts

Tr

(cp(ξ))S dξ

)

:= ρS VS
d

d t

∫ Ts

Tr

(cp(ξ))S dξ

:= ρS VS

(
dTs cp(TS)S

d t
− dTr cp(Tr)S

d t
+

∫ Ts

Tr

d

d t
(cp(ξ))S dξ

)

with the third relation being the result of applying the Leibnitz rule B.1.

With cp being onstant and the referene temperature being onstant, this

simpli�es to

d

d t
Hs := ρS VS Ṫs (cp)S

Substitution yields:

ρS VS Ṫs (cp)S = −kE|S AE|S (T S − TE)

and

Ṫs = −
kE|S AE|S
ρS VS (cp)S

(T S − TE)
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= − 1

τE|S
(T S − TE)

Using the new de�nition using systems notation, xS := TS and uS := TE

the same equation as above is obtained in this ase.

ẋS = −ΘS (xS − uS)

The time onstant has not hanged, but the state and the input: this is

now in the state spae of the temperature of the sensor and the input is the

temperature of the environment.

I.1.3.3 Extensive or intensive state

For the normal onsumer the temperature as state and the environment

temperature as input looks more familiar and to some extent more logial,

though if we onsider the numeris, it has also the e�et that any error ri-

teria that is applied to the numerial proedure will be on the temperature

and not the enthalpy. The error in the temperature may have quite a signif-

iant di�erent e�et than the error in the enthalpy. In this ontext it should

be onsidered that it is the enthalpy that is onserved and heks should be

done on the onserved quantity to hek that the solution is onform with

the basi priniple. This an be ahieved by adding an output equation

to the enthalpy representation, whih omputes the temperature from the

enthalpy. It also requires an additional step at the beginning as it is the

initial enthalpy to be omputed from the initial temperature. So slightly

more ompliated in the implementation this approah has two advantages:

� No manual substitution is neessary. The sequene of the fundamental

equations is merely inverted, thus ompute �rst the temperature from

the state enthalpy, then the heat �ow and then the right-hand-side of

the balane equation beomes available.

� The onservation priniple is heked numerially.
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I.2 Example: Mihaelis Menten kinetis

The reative system being the subjet of analysis is given by:

E + S
kf
⇋
kb

C
kp→ E + P

in whih an enzyme (E) and a substrate (S) reat to an intermediate (C),

an ativated substrate produing in a seond step a produt (P) releasing

thereby the enzyme again.

The original work of Mihaelis-Menten makes the assumption that the in-

termediate is in a pseudo-steady state, thus formation and the onsumption

of the intermediate is fast. From the four kineti equations:

E1 :: ċS = −kf cE cS + kb cC

E2 :: ċE = −kf cE cS + kb cC + kp cC

E3 :: ċC = kf cE cS − kb cC − kp cC

E4 :: ċP = kp cC

The seond equation is not needed as a simple balane over the enzyme

speies gives:

E′
2 :: cE = coE − cC

as what is not present as enzyme is present in the form of C, whih is the

ativated substrate. Or, whih is essentially the same E2 + E3 = 0

The original work assumes that the �rst stage is a fast equilibrium, make-

ing the left-hand-side of E1 to be zero. Solving the set {E1, E
′
2, E4} for

cC , cE , ċP one gets the simpli�ed reation law:

ċP = kp c
o
E

cS
kb
kf

+ cS
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I.3 Evaporating Water from a Glass

I.3.1 Problem Desription

zW

zE

0

Figure I.2:

A half full

glass of water

in a room

with uniform

onditions

We assume a idealised situation, in that a glass with on-

stant diameter is half �lled with water. The gas phase of

the water up to the glass' top is stagnant and water is dif-

fusing through this stagnant phase into open spae above

the glass. Latter is assumed to be uniform and not a�eted

by the evaporating water. The room is not saturated with

water and the water ontent is known. You may in gen-

eral assume to know all material desription, inluding the

parameters to be known. The vapour pressure of water in

the gas phase of the room is onstant and known.

Develop a di�erential model whih an be used to om-

pute on how long it takes to evaporate all the water from

the glass. The temperature in the glass may be assumed

to be onstant and equivalent to the temperature in the

room. One may also assume that all physial parameters

are known. Note that the di�usion proess is muh, muh

faster than the redution of the water level. Thus look

at two time sales one in whih the di�usion takes plae,

with the level of the glass to be onstant and then the long

time sale in whih the level hanges. The �rst step will

generate the transfer law for the seond part.

I.3.2 Solution

The dynamis of the proess has at least three di�erent

time sales:

� The fastest is the time in whih the di�usion pro�le is being estab-

lished

� The seond is the time sale in whih the di�usion is fast ompared to

the hange of the volume of the water in the glass. The justi�ation

for this assumption is that the volume of the evaporated water is in 3

order of magnitudes larger in terms of the volume.

� The third is the slowest one in whih the level of the water in the glass

hanges.
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W

D

E

z

Figure I.3: A possible topology: the water is a single lump (W), whih at

the small time sale behaves like a reservoir whilst the gas phase (D) is seen

as one-dimensionally distributed onneting to the room being modelled as

a reservoir (E)

The Di�usion Equation Drawing up either an integral balane or a shell

balane, the di�usion law is obtained. Taking the hemial potential as the

driving fore one obtains Fik's seond law in omplex form. The �normal�

derivation would use the omposition as the driving fore, whih an be

seen as the linearised version of the transport with the hemial potential

as the driving fore. Sine we have really only one speies to worry about,

even though air is di�using in ounter urrent to replae the water having

moved, the salar version of the di�usion equation is su�ient.

Thus one gets:

∂ c(z, t)

∂ t
:= c

∂2 µ

∂ z2
. (I.3)

Getting the Transfer Law: the Short Time Sale On the seond

level one assumes that the level of the water is onstant, whilst the di�usion

is fast. Premultiplying the di�usion equation with the inverse of di�usion

matrix and letting the individual di�usion oe�ient to go to in�nity:
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lim
c→∞

c−1 ∂ c(z, t)

∂ t
:=

∂2 µ

∂ z2
, (I.4)

whih puts eliminates the state of the di�usion system.

D

E

n̂W |E

W

Figure I.4: On the

long time sale the dif-

fusion is seen as event-

dynami system, so it

is redued to a pure

resistane, whilst the

water level is now de-

reasing

The pro�le of the driving fore along the length is

thus a linear funtion:

µ(z) := a z + b . (I.5)

The two parameters a, b an be readily obtained

from the boundary onditions. On the water side,

the air is saturated with water damp, whilst on the

top end the vapour pressure of water is �xed by the

reservoir. Let the saturation pressure be p∗ then it

an be obtained from the equilibrium ondition at

the surfae:

µW := µD(zW ) , (I.6)

µo
W +RT ln 1 := µo

D(zW ) +RT lnxG(zW ) .
(I.7)

Where the fat that the water is the only speies

in the water lump has been onsidered. With pB
being the known barometri pressure and

x∗G(zW ) :=
p∗W
pB

, (I.8)

the saturation vapour pressure an be alulated from the known temper-

ature and the known standard hemial potentials µo
W , µo

D(zW ). The slope
a is:

a :=
x∗G − xE
zW − zE

. (I.9)

The �ow through the di�usion system is of interest:

n̂W |E := −k
∂ µ(z)

∂ z
, (I.10)

:= −k a , (I.11)

:= −k
x∗G − xE
zW − zE

. (I.12)

Now all is ready for the next bigger time sale:
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Finally the Water is Evaporating The rest is simple now. The mass

balane for the water lump is drawn up:

ṅW := −n̂W |E , (I.13)

The �ow is as we found:

n̂W |E := −k
x∗G − xE
zW − zE

. (I.14)

W

D

E

n̂W |E

Figure I.5: Finally

on the very long time

sale, the volume of

the water body is

hanging, thus the

level is dropping

Whih must be supplemented with the mapping

between the level and the mass:

VW :=
nW

ρW
, (I.15)

:= AW zW . (I.16)

This set of equations is to be solved for the se-

ondary state variable in question, namely zW :

zW :=
nW

AW ρW
. (I.17)

The rest of the variables are known: k, zE , xE ,
µo
L, µ

o
G, R, T . Thus the resulting set of equations is

well de�ned if one in addition spei�es the initial

onditions, the problem an be integrated, atually

in this ase analytially.
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I.4 The Mixing Plant

I.4.1 Problem formulation

The mixing plant onsists of four vessels: two feed tanks feeding the one

mixing tank in the entre, whih ejets the produt to the storage tank.

a

b



d

V̂a|c V̂b|c

V̂c|d

n̂a|c n̂b|c

n̂c|d

a

b



d

Figure I.6: A quite ommon mixing plant: two feed tanks, a mixing tank

and a produt tank

Generate a �text book� representation by transforming the omponent mass

balanes into the onentration & volume spae.

I.4.2 Solution

I.4.2.1 Behaviour: Component Mass Balanes

The model of a tank with several inputs and outputs is desribed as an

ideally-stirred tank reator. The energy balane for the system is not of

interest, as no exhange of energy ours. Thus it is only the omponent

mass balanes to be established. The omponent mass balanes are a set of

ordinary di�erential equations in the omponent mass, whih for this task
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we shall transform into di�erential equations in the onentration and the

volume. Assuming that there is no reation taking plae in any of the tanks,

the omponent mass balanes for an arbitrary system S are:

dnS

d t
=
∑

∀m
αS,m n̂m + ñS

With the αS,m ∈ {−1, 0,+1} giving the referene diretion, n̂m the mass

�ow m and ñS the reation dependent transformation rate. The system

index S ∈ [a, b, c, d] and the mass �ow index m ∈ [a|c, b|c, c|d].

I.4.2.2 Transfer

There is no transfer law given, but it is assumed that the volumetri �ow

is known, thus the transfer is given by:

n̂m := km V̂m cm ,

km :: ontrolled, thus known ,

V̂m :: known .

The km has been introdued merely to demonstrate on where the ontroller

would be onneted. In this ase, the volumetri �ow rate would be the

maximum available and this variable would be adjusted by the ontroller

between 0 and 1.

The onentration is the one from the tank the �uid is oming from. Mostly

people assume that it may only possibly ome from one tank at all time,

that is, the �ow diretion never hanges. This may or may not be a valid

assumption. Here it seems though reasonable. If this is not the ase, then

the onentration swithes as the volumetri �ow hanges sign!

I.4.2.3 Reation

There is no reation in the tank, thus

ñS := 0 .

I.4.2.4 State variable transformations

In this setion, all variables exept the fundamental state, whih are the

onserved quantities, are to be linked bak to the fundamental state and

known quantities suh as the volumetri �ow rate and the density. For the

notation, we use s as a generi index for �system� meaning that the equations



310 APPENDIX I. SELECTIVE EXAMPLES

really apply to any of them, namely the two feed tanks, the mixing tank

and the produt tank.

The transfer introdues the onentration. Conentration is de�ned by :

cS :=
nS

VS
,

Introduing volume, whih is a funtion of the omponent mass, the basi

state:

VS := ρ−1
S mS ,

ρS :: onst .

The density is assumed onstant and known. The total massmS is obtained

as salar produt of the moleular mass vetor λ and the molar masses in

the system:

mS := λT nS ,

whih ompletes the set of equations.

I.4.2.5 Manipulations

Sine we want the di�erential equations in terms of the onentrations, we

start with the variable transformation de�ning the onentration:

ċ := V −1
S ṅS − V −2

S V̇S n ,

:= V −1
S

(

ṅS − V −1
S V̇S n

)

,

:= V −1
S

(

ṅS − V̇S c
)

,

whih is a di�erential equation in the desired new state c, but also V̇S Thus

in the next step is to di�erentiate the equation de�ning the volume. We

also use the assumption that the density is onstant in the whole of the

plant.

V̇S := ρ−1 ṁS ,

:= ρ−1 λT ṅS ,

:= ρ−1 λT

(
∑

∀m
αS,m n̂m

)

,

:=
∑

∀m
αS,m ρ−1 λT n̂m ,
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:=
∑

∀m
αS,m km V̂m ,

For the hange in the omposition one �nds:

ċ := V −1
S

(
∑

∀m
αS,m n̂m −

(
∑

∀m
αS,m V̂m

)

cS

)

,

:= V −1
S

(
∑

∀m
αS,m km V̂m cm −

(
∑

∀m
αS,m km V̂m

)

cS

)

,

:= V −1
S

(
∑

∀m
αS,m km V̂m (cm − cS)

)

.

The result is now in generi form and an be applied to any of the tanks.

In the ase of no in�ow, whih represents any of the two feed tanks, the

onentration hange beomes zero, as expeted, as the �ow onentration

cm == cS .

The ratio V −1
S V̂m are the time onstants with respet to the various �ows

in and out the system S.

Thus the omplete model reads:

dVa

d t
= −ka|c V̂a|c ,

d ca
d t

= 0 ,

d Vb

d t
= −kb|c V̂b|c ,

d cb
d t

= 0 ,

d Vc

d t
= ka|c V̂a|c + kb|c V̂b|c − kc|d V̂c|d ,

d cc
d t

= V −1
c

(

ka|c V̂a|c (ca − cc) + kb|c V̂b|c (cb − cc)
)

,

d Vd

d t
= kc|d V̂c|d ,

d cd
d t

= V −1
d

(

kc|d V̂c|d (cc − cd)
)

.

One of the key assumptions in the derivation is that the density is onstant.

It is left to the reader to derive the equations for the situation where the

density is a funtion of the mole fration of the mixture.
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I.4.2.6 Systems Representation

We de�ne the following vetors:

� state vetor xS :=







VS

cS






, S ∈ {a, b, c, d}

� input vetor u :=











ka|c

kb|c

kc|d











� output vetor y
S
:= xS , S ∈ {a, b, c, d}

� onditions γ :=



















ca

cb

V̂a|c

V̂b|c

V̂c|d



















� parameters: there are no real parameters. The distintion between

parameters and onditions is though not quite sharp. We use the rule

that if it is a state that is known than it is a ondition.

Remains to use these de�nitions and rewrite the equations in this new no-
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tation: 






























ẋa

ẋa

ẋb

ẋb

ẋc

ẋc

ẋd

ẋd
































=
































−u1 γ3

0

−u2 γ4

0

u1 γ3 + u2 γ4 − u3 γ5

x−1
c (u1 γ3 (xa − xc) + u2 γ4 (xb − xc))

u3 γ5

x−1
d (u3 γ5 (xc − xd))
































. (I.18)

I.4.2.7 More omplex ase: variable density

The manipulations an be done slightly di�erently. Let us reall the equa-

tions �rst:

dnS

d t
=
∑

∀m
αS,m n̂m + ñS

n̂m := km V̂m cm ,

cS :=
nS

VS

VS :=
nS

ρS
,

nS := eT nS ,

ρ := ρ(n)

The objetive is to swith the state spae from n to c but as the latter is only

inluding intensive variables an extensive must be added, whih is V . So in
reognition of the latter and the struture of the above algebrai equations

we rearrange the algebrai equations slightly and di�erentiate yielding the

equation set:

ṅ := ċV + c V̇ → ċ

eT ṅ := ρ̇(n)V + ρ V̇ → V̇
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˙ρ(n) :=
∂ ρ

∂ nT
ṅ → ρ̇(n)

The last being trivial we get:

ċ := V −1
(

ṅ− c V̇
)

V̇ := ρ−1

(

eT ṅ− ∂ ρ

∂ nT
ṅV

)

:= ρ−1

(

eT ṅ− ∂ ρ

∂ nT
ṅ

)

:= ρ−1

(

eT − ∂ ρ

∂ nT

)

ṅ

substituting the right-hand-side of the omponent mass balanes gives the

desired result.

It is noteworthy that for a program the remaining substitutions must not be

done. Given the state c, V and the onditions and inputs, we �rst ompute

the left-hand-side of the omponent mass balane. This is then used to

ompute the hange in the density, the hange in the volume and �nally the

hange in the omposition, thereby ompleting the sheme.
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I.5 Marinading a Steak

Di�usion proesses are quite ommon in nature. Atually they are present

almost always when solids meet gases or liquids or gases meet liquids. Mari-

nading a steak is thus just a pratial example for a large lass of proesses.

We shall look at a very simple ase in whih we assume that the marinade

onsists essentially of water and salt with the salt di�using into the meat,

whih in tern is assumed to be essentially stationary water. The geometry

of the problem is simpli�ed in that the steak is assumed to have only two

ative surfaes, namely the two big ones, whilst we assume that the sides

are sealed with for example fat. In a �rst ase we plae the steak �at on

the �oor of a pan topping it up with marinade.

I.5.1 Step 0 Abstration

The proess is skethed quikly I.7

steak

marinade

Figure I.7: A steak laying �at in a pan

However, depending on the time sale we hoose the abstration ould look

quite di�erently.

In the �rst ase (I.8) we look at a relatively short time sale assuming that

the marinade is not hanging over time, thus the exhange with the steak

is negligible. A di�usion �lm is assumed to form on the surfae of the steak

whilst the di�usion really does not penetrate the steak signi�antly.

In seond ase (I.9) a larger time sale is onsidered where the marinade

omposition is still not hanging, but the �uid �lm is onsidered unimpor-

tant ompared to the mixing in the marinade. The steak is modelled as a

one-timensional di�usion medium.

In the third ase (I.10) the marinade onentration is onsidered to hange.
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marinade

r - coordinate

dM

dS

container bottomair space film

dF

steak

Figure I.8: Case 1: Topology assuming the marinade to be well mixed and

not hanging with time. The transfer system, being the �lm is 1D distributed

marinade

r - coordinate

dM

container bottomair space
film

dF dS

steak

Figure I.9: Case 2: Topology assuming the marinade to be well mixed and

not hanging with time. The �lm is assumed to be in steady state, whilst

the steak is modelled as a 1D distributed system

figures/P4_E_05__MarinadingASteak/SteakCase1.eps
figures/P4_E_05__MarinadingASteak/SteakCase2.eps
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marinade

r - coordinate

dS

container bottomair space steak

dM

Figure I.10: Case 3: Topology assuming the marinade to be well mixed but

now hanging with time. The steak is 1D distributed

r - coordinate

dS

container bottomair space

dM

steakmarinade

Figure I.11: Case 4: Topology assuming both, the marinade and the steak

to be 1D distributed

figures/P4_E_05__MarinadingASteak/SteakCase3.eps
figures/P4_E_05__MarinadingASteak/SteakCase4.eps
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In the fourth ase (I.11) one assumes that the marinade is not moving at

all but behaves like a one-timensional di�usion medium.

Below we shall disuss ase 3 and 4.

I.5.2 Step 1: Behaviour

We assume the steak to be of uniform thikness dS and the marinade being

of depth dM . The air spae is denoted by A and the ontainer bottom

C. Further, we introdue a o-ordinates system, whereby the problem is

onsidered one-dimensional. The o-ordinate is labelled with r see I.8, I.9,

I.10, I.11.

I.5.2.1 Case 3

Labelling the marinade with subsript M and the steak with S the be-

haviour for ase 3 is given by:

ṅM = −n̂M |S ,

∂ cS
∂ t

= K
S

∂2 µ
S

∂ r2
,

eq BC µ
M
(dM − dS − ǫ) = µ

S
(dM − dS + ǫ) ,

�ow BC n̂M |S(dM − dS − ǫ) = n̂M |S(dM − dS + ǫ) ,

�ow BC n̂S|C(dM ) = 0 .

The boundary onditions at as oupling equations. At the interfae to the

marinade, the boundary onditions re�et ontinuity in the hemial poten-

tial and the mass �ow, whilst on the other side of the steak the boundary

onditions merrely says that the �ow is zero.

I.5.2.2 Case 4

For ase 4, the well-mixed assumption for the marinade is replaed by a no

mixing, purely di�usion assumption:

∂ cM
∂ t

= K
M

∂2 µ
M

∂ r2
,

∂ cS
∂ t

= K
S

∂2 µ
S

∂ r2
,

eq BC µ
M
(dM − dS − ǫ) = µ

S
(dM − dS + ǫ) ,

�ow BC n̂M |S(dM − dS − ǫ) = n̂M |S(dM − dS + ǫ) ,
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�ow BC n̂A|M(0) = 0 ,

�ow BC n̂S|C(dM ) = 0 .

In both ases the initial onditions must be supplemented.

I.5.3 Step 2a: Transport

The transport equation is simply the gradient law in both media:

n̂M |S := −CA
∂ µ

∂ r
.

With the transport properties C and the boundary surfae A being given.

I.5.4 Step 3: Variable Transformation

The transport introdues the hemial potential. Thas what we require is a

mapping of the onserved state variables to the hemial potential. Using

the model:

µ := µo +RT lnx .

This introdues the mole frations, whih need to be the result of mapping

the omponent mass:

x := n−1 n .

And

n := eT n .

With eT := [1, 1, . . . , 1].

The distributed models require the onentration, so we add:

c := V −1 n ,

V := ρ−1 n .

Assuming the density ρ to be onstant and known ompletes the transfor-

mation de�ntions.

I.5.5 Step 4: Conditions

There is no reation taking plae and the temperature is assumed to be

onstant. With the hemial potentials at normal onditions being given,

the set of transformations is omplete.
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I.5.6 Step 6: Manipulations

The partial di�erential equations are being disretised in the spatial o-

ordinate using a 3-point approximation and using the index k for the points

on the regular grid of width ∆r (??). The disretisations for ase 4 is

introduing the indexing sheme 0,1,2,. . . , n, n+1,. . . , n+m with point

0 representing the outer surfae of the marinade (no �ow ondition), n

representing the boundary to the steak, and n+m the outer surfae of the

steak (no �ow ondition). Obviously for ase 3 this simpli�es by having n

= 0.

For the internal points, we thus write:

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
k

:=
µ
k−1

− 2µ
k
+ µ

k+1

(∆ r)2
.

At the extreme points (0, dM ), the equation writes:

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
0

:=
µ
0
− 2µ

1
+ µ

2

(∆ r)2
,

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
n+m

:=
µ
n+m−2

− 2µ
n+m−1

+ µ
n+m

(∆ r)2
.

whih is supplemented with the no-�ow ondition:

n̂M |S(0) :=
µ
1
− µ

0

∆ r
:= 0 ,

n̂M |S(dM ) :=
µ
n+m

− µ
n+m−1

∆ r
:= 0 .

Alternatively, one an model the extreme boundary points slightly di�er-

ently by introduing the no �ow ondition indiretly. One introdues a

imaginary point outside the boundary and introdues the �ow ondition by

assuming symmetry at the boundary, thereby implying a zero �ow ondition

at the boundary:

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
0

:=
µ−1

− 2µ
0
+ µ

1

(∆ r)2
,

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
n+m

:=
µ
n+m−1

− 2µ
n+m

+ µ
n+m+1

(∆ r)2
,
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With the symmetry µ−1
= µ

1
and µ

n+m−1
= µ

n+m+1
the two expressions

simplify to:

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
0

:=
−2µ

0
+ 2µ

1

(∆ r)2
,

∂2 µ
M

∂ r2

∣
∣
∣
∣
∣
n+m

:=
2µ

n+m−1
− 2µ

n+m

(∆ r)2
,

I.5.6.1 Case 3

Observing that n := 0 for ase 3 we have the ordinary di�erential equation

desribing the behaviour of the tank representing the marinade:

ṅ0 := −C
S
A

µ
1
− µ

0

∆r
.

And the matrix equation for the steak:















ċ1

ċ2

.

.

.

ċm















:=



















−2S S

S −2S S

.

.

.

.

.

.

.

.

.

S −2S S

2S −2S





































µ
1

µ
2

.

.

.

µ
m−1

µ
m



















+



















µ
0

0

.

.

.

0

0



















,

,

with S := ∆r−2K
S
.

I.5.6.2 Case 4

For ase 4 we �rst have sort out the boundary between the two phases by

omputing the missing µ
n
from the boundary ondition:

−(∆rM )−1 C
M

(µ
n
− µ

n−1
) := −(∆rS)

−1 C
S
(µ

n+1
− µ

n
) .

with R := ∆rS
∆rM

C−1
S

C
M
. Whih gives:

µ
n
:=
(
R+ I

)−1
(

µ
n−1

+Rµ
n+1

)

.
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This then substituted into the expressions for the approximations for the

two points left and right the boundary:

∂2 µ

∂ r2

∣
∣
∣
∣
∣
n−1

:=
µ
n−2

− 2µ
n−1

+ µ
n

∆r2
,

:=
µ
n−2

− 2µ
n−1

+
(
R+ I

)−1
(

µ
n−1

+Rµ
n+1

)

∆r2
,

:=
µ
n−2

+
((

R+ I
)−1 − 2 I

)

µ
n−1

+
(
R+ I

)−1
Rµ

n+1

∆r2
,

and

∂2 µ

∂ r2

∣
∣
∣
∣
∣
n+1

:=
µ
n
− 2µ

n+1
+ µ

n+2

∆r2
,

:=

(
R+ I

)−1
(

µ
n−1

+Rµ
n+1

)

− 2µ
n+1

+ µ
n+2

∆r2
,

:=

(
R+ I

)−1
µ
n−1

+
((

R+ I
)−1

Rµ
n+1

− 2 I
)

µ
n+1

+ µ
n+2

∆r2
,

The equations an be olleted into a matrix representation:

ċ := Lµ ,
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with ċ :=




































ċ0

ċ1

.

.

.

ċn−2

ċn−1

ċn+1

ċn+2

.

.

.

ċn+m




































, and µ :=








































µ
0

µ
1

.

.

.

µ
n−2

µ
n−1

µ
n+1

µ
n+2

.

.

.

µ
m+n−1

µ
m+n








































,

L :=








































−2M 2M

M −2M M

.

.

.

.

.

.

.

.

.

M −2M M

M MQ
1

MQ
2

SQ
2

SQ
1

S

S −2S S

.

.

.

.

.

.

.

.

.

S −2S S

2S −2S








































.
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Where

M := ∆r−2
M K

M
,

S := ∆r−2
S K

S
,

Q
1
:=
(
R+ I

)−1 − 2 I ,

Q
2
:=
(
R+ I

)−1
R .

I.12 show some results from simulations.
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Figure I.12: Mesh plot for marinading steak problem

figures/P4_E_05__MarinadingASteak/steakplot.eps
figures/P4_E_05__MarinadingASteak/steakmeshplot.eps
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I.6 First-Order Single-Input-Single-Output System

Single-Input-Single-Output, appreviated with SISO, are systems that are

salar at both ends, so-to-speak, whih however does not imply that the

state is salar as well.

The {A,B,C,D} representation of a generi SISO LTI system is

ẋ := Ax+ bu

y := cT x+ du

The single input is mapped onto the state with the vetor b thereby taking

the r�le of the matrix B and the state is mapped onto the single output by

cT taking the r�le of the matrix C. The input ating diretly on the output

is ampli�ed with the salar d. The transfer funtion of the SISO is then:

g(s) := cT |I s−A|−1
adj

(
I s−A

)
b+ d

I.6.1 Salar-State Case

Making also the state salar yields the struturally simplest model one an

generate without eliminating one or the other system �matries�. The most

ommon additional simpli�ation is the ase where d is zero. The transfer

funtion then onsists of salar quantites only and reads:

g(s) := c (s − a)−1 b

:=
b c

−a

(

−1

a
s+ 1

)−1

For stable system the a < 0, thus the time onstant − 1
a and the steady-state

gain

b c
−a are positiv.

This �rst-order sytem is used in various appliations as a �rst approxima-

tion for a dynami behaviour. Applying it to the desription of a physial

proess requires �nding two parameters, namely the steady-state gain and

the time onstant. The identi�ation experiment must exite the system

su�iently dynami in order to �see� the behaviour of the plant. Probably

the most ommon approah, though not neessarily the best one, is to injet

a step and extrat the two parameters for the plant's input and the plant's

response, alled step response.

The �tting is most ommonly done manually, meaning on a graph showing

the step input and the plant's response. How one an �nd the two param-

eters from the response is easy to �nd from an analysis of the analytial

solution.



I.6. FIRST-ORDER SINGLE-INPUT-SINGLE-OUTPUT SYSTEM 327

The solution in the time domain is:

y(t) := c exp {a t}x(o) + c

∫ t

0
exp {a θ} b u(t− θ) dθ

With u(t) being a step, and assuming that the plant is at zero state initially,
the expression simpli�es to

y(t) :=
c b

a
exp {a θ}|t0 u0

y(t) :=
c b

a
(exp {a t} − 1) u0

For stable plants, that is a < 0 the steady state gain is thus:

k :=
c b

−a

:=
c b

|a|
The tangent at the start of the step response of magnitude u0 is:

c ẋ(t := 0) := c a x(0) + c b u0

:= c b u0

The two asymtodes (tangent at zero and the tangent to the steady state at

in�nity) to the step response are thus:

v(t) :=
c b

|a| u
0

w(t) := c b u0 t

and their intersetion t×:
c b

|a| u
0 := c b u0 t×

t× :=
1

|a|
whih is the time onstant τ . Interesting is also how far the proess has

ome after n times the time onstant:

y (n τ) :=
c b

a

(

exp

{

an
1

|a|

}

− 1

)

u0

:=
c b

|a| (1− exp {−n}) u0

For

n := 1 :: (1− exp {− 1}) = 0.63

:= 5 :: (1− exp {− 5}) = 0.99
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v(t)

τ := 1

|a|

c b u
o

|a|uo

u(t)

y(t)

t

w(t)

c b u0

86 %63 % 95 % 99 %98 %

2 τ 3 τ 4 τ 5 τ

Figure I.13: Properties of a salar �rst-order LTI-system

I.6.2 Impulse response

We have seen that the solution in the time domain is:

y(t) := c exp {a t}x(o) + c

∫ t

0
exp {a (t− θ)} b u(θ − 0) dθ

The impulse, a Dira delta funtion at time 0 is δ (t− 0) is a step to in�nity
and bak within zero time interval and starting with the system at its

natural equilibrium position, thus zero.

The solution then looks like:

y(t) := c

∫ t

0
exp {a (t− θ)} b δ(θ − 0) dθ

The Dira delta funtion is only di�erent from 0 at the time the event

ours, thus at time 0. The integral then redues to:

y(t) := c

∫ +ǫ

−ǫ
exp {a (t− θ)} b δ(θ − 0) dθ

:= c b exp {a t}

figures/P4_E_06__First_order_LTIS/FirstOrderSISOStepResponse.eps
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Nomenlature

Ê total energy �ow. 106, 107, 123

Ĥ enthalpy �ow. 29, 114

K̂ �ow of kineti energy. 108, 124

P̂ �ow of potential energy. 108, 124

Û �ow of internal energy. 109, 124

V̂ volume �ow. 69, 109, 124�127,

129, 130, 164

Φ̂ �ow of extensive quantity. 35, 36,

54, 57, 69, 70, 181�183

ϕ̂ �ow of extensive quantity. 67, 68,

103

ϕ̂ �ux of normed extensive quantity.

58, 59

m̂ mass �ow in kg/s. 25�28, 43, 84

n̂ �ow of molar mass. 80, 81

n̂ �ow of molar mass. 28

q̂ heat �ow. 29, 30, 65, 66, 69, 106,

107, 109, 114, 119, 140

ŵ work �ow. 106�109

ŵV
�owof volume work. 123, 124

ŵf
�ow of frition work. 123�126

Γ system matrix input. 225, 226

C oe�ient matrix. 87�90, 92

F inidene matrix of the direted

graph of the network � network

matrix. 36, 60, 61, 70, 79�81,

103, 106, 162, 165, 186�189

Fm
mass-network matrix - the in-

idene matrix of the direted

graph for the onneted mass

network. 43, 47, 50, 106�112,

114

Fn
molar mass-network matrix - the

inidene matrix of the direted

graph for the onneted molar

mass network. 47

Fq
heat-�ow-network matrix - the in-

idene matrix of the direted

graph for the onneted heat

�ow network. 50, 106, 107, 109�

112, 114

Fw
work-�ow-network matrix - the

inidene matrix of the direted

graph for the onneted work-

�ow network. 50, 106�109

K diagonal matrix with reation on-

stants. 99�101

Kq
diagonal matrix with heat on-

dutivity parameters in the di-

agonal. 70

335
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N stoihiometri matrix. 90, 91, 97�

101, 103, 112, 164, 166, 170,

174, 175

P permutation matrix. 92, 93, 98,

100

S seletion matrix. 81, 99, 100, 186,

188, 189

φ̂ matrix of �uxes of extensive quan-

tities. 162, 163, 165

Ω left null spae matrix. 187, 188

Ω sample spae. 201, 202

Φ extensive quantity. 35, 36, 53, 54,

57�60, 165, 181, 183, 184, 252,

253

Φ fundamental matrix. 225, 226

ñ prodution rate of molar mass. 83,

84, 87, 97, 101, 164, 165

Ψ̄ estimator of the nominal model.

201�204, 212

Ψ estimator, a funtion of the data.

200, 201

Θ parameter. 183, 184, 215, 222�

224, 301, 302

0 null vetor. 87, 98, 188

X vetor of extensive quantities namely

volume and omponent mass ve-

tor. 156

Ê energy �ow vetor. 50, 106, 107

Ĥ vetor �ow of enthalpy. 110�112

K̂ vetor �ow of kineti energy. 108

P̂ vetor �ow of potential energy. 108

Û vetor �ow of internal energy. 109

Φ̂ vetor of extensive quantity �ow.

36, 55�57, 59�61, 70, 79, 102,

103, 162, 165, 186�188

ϕ̂ �ux of extensive quantity. 56, 57,

68, 102

φ̂ �ux vetor of extensive quantity.

59

m̂ vetor of mass �ows. 43

n̂ vetor of molar mass �ows. 56, 80,

81, 83, 84, 87, 112, 114, 164,

165

q̂ heat �ow vetor. 50, 106, 107,

109�112, 114

ŵ work �ow vetor. 50, 106�109

x̂ vetor of �ow of extensive state.

170, 174, 175

Φ vetor of extensive quantities. 36,

55, 60

ξ̃ vetor of prodution rate of extent

of reation. 112, 114, 164, 166,

170, 174, 175

Φ̃ prodution vetor of extensive quan-

tity. 102, 103

ϕ̃ prodution rate of extensive quan-

tity normed by volume. 102,

103

x̃ vetor of prodution of extensive

state. 170, 174, 175

Θ vetor of parameters. 172, 173,

175

λ vetor of moleular masses. 84,

111, 310
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ν vetor of stoihiometri oe�ients.

101, 102, 112

π vetor of e�ort variables. 57, 70

ϕ volume-normed extensive quantity

- thus a density. 55�57, 102,

103, 165

Φ̇ vetor of extensive quantity au-

mulation. 55, 60, 61, 70, 79,

102, 103, 186, 187

ṁ vetor of aumulation of mass.

43

ṅ vetor of aumulated molar mass.

47, 83, 84, 87, 97

ẋ vetor of time derivative extensive

state. 170, 174, 175

c onentration vetor. 96, 98�102,

164�166

cp vetor of spei� heat apaities.

113, 114

f vetor of fores. 122, 123, 129

h vetor of partial molar enthalpies.

112, 113

n vetor of molar mass in mol/s. 47,

56, 57, 63, 64, 80, 87, 98�100,

111�115, 156�158, 165, 166, 252,

253

n normal vetor. 55�57, 59, 162, 165

p vetor of properties. 170, 172�175

r vetor of spatial o-ordinates. 55,

57, 59, 67, 68, 102, 103, 134,

162, 163, 165

s vetor of state variable transforms.

172, 173, 175

v veloity vetor. 55�57, 122, 129

x vetor of extensive states = pri-

mary state. 170, 172, 173, 175�

177

α on�dene level. 208, 210, 211,

215

α heat di�usivity. 120

α referene o-ordinate indexed with

system and �ow. 35, 36, 43, 60,

106�109, 114, 162, 170, 174, 175

▽ gradient. 122, 123, 128, 129, 133,

142

• pure. 113, 114

χ2
hi square distribution. 210

K̇ aumulation of kineti energy. 124

Ṗ aumulation of potential energy.

124

Φ̇ aumulation of extensive quan-

tity. 35, 36, 70, 181�184, 188

µ hemial potential. 64, 69, 94, 134,

141, 142, 157, 158, 305�307

µ dynami visosity. 122, 129, 130

µ̂ estimate of the entre of the distri-

bution (median, mean, mode).

216�218

µ moment of a distribution. 284, 285

µ vetor of hemial potential. 318�

323

ν stoihiometri oe�ient. 93, 96,

101, 102

ϕ intensive property. 252, 253
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π e�ort variable. 35, 67�70, 103, 138,

163, 183, 184

ρ density. 26, 27, 120, 122, 124, 126,

128�130, 299�301, 307, 310, 313,

314

ρ "robusti�ation" funtion. 219, 220

σ standard deviation. 288

σ2
variane. 201, 206, 207, 210, 234,

235

⋆ optimal. 205, 206, 208, 212, 215

τ average ollision time. 65, 66

τ time onstant. 300, 301

τ time on the strehed time axis. 183,

184

root root of the expression in the

braket = 0. 98, 269

θ⋆ vetor of estimated parameters.

206�209, 211, 213

θ̄ vetor of parameters of the nomi-

nal model. 200�204, 212

θ vetor of parameter. 194, 199�201,

204�206, 208, 212�215, 221, 223,

224, 231�234

ξ̃ rate of extent of reation. 96�101

ε sale � the inverse of the strething

fator in time saling. 181�184

κ mole fration. 133, 134, 142

ϕ̇ time derivative of the saled ex-

tensive property. 181, 182

ϕ extensive quantity per volume - a

density. 59

ϕ saled extensive property. 181

0 null matrix. 187

0 null vetor. 202, 225

A area. 27, 119, 129, 130, 164, 307

A list of atoms. 88

A(q) system polynom in shift oper-

ator q. 220�224

ai oe�ient of A-polynomial. 220,

221, 223, 224

B(q) input polynom in shift opera-

tor q. 220�224

bi oe�ient of B-polynomial. 220,

221, 223, 224

b parameter's bias term. 212

C ondutivity tensor. 67

C ondutivity matrix. 57, 68, 163

C olumn seleting matrix. 186, 187

C(q) ouput polynom in shift opera-

tor q. 213, 221�224

C system matrix ouput. 225, 226

ci oe�ient C-polynomial. 221, 223,

224

c onentration. 84, 85, 87, 96, 99,

100, 133, 134, 141, 142

c ondutivity. 67, 103

c ondutivity vetor. 68
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cV valve onstant - a harateristi

of the valve. 127

r orrelation. 206

cp spei� heat apaity at onstant

pressure. 30, 66, 111�114, 120,

300, 301

C onditions. 194

R orrelation matrix. 206

(cov) ovariane funtion. 285, 286

cov ovariane funtion. 206

D harateristi dimension. 128�130

D mass di�usivity. 129, 130, 133,

134, 142

D di�usivity. 152, 153

D input / output data. 194

D norming matrix. 232�234

D(q) D-polynomial in q. 213, 223

di oe�ient of D polynomial. 224

d diameter. 66

diag diagonal matrix of vetor. 231�

233

Ė aumulation of total energy. 106,

107, 140

E total energy. 50, 106, 123, 124

e(k) error at time k. 220�223

e spei� energy. 65, 66

EA ativation energy. 97

Λ diagonal matrix with eigenvalues

in the diagonal. 208

V matrix of eigenvetors. 208

e error. 215, 219, 220

e vetor of errors. 205, 208�214, 226

E expetation operator. 201�204, 210�

213, 222, 284�288

F F-distribution. 208, 211, 215

F list of streams. 36

F matrix with rows being the vetor

of nonlinear funtions of the in-

put. 204�209, 211�213, 232,

233, 235

F (q) F-polynom in shift operator q.

223, 224

fi oe�ient of F-polynomial. 224

f Dary frition fator. 129, 130

f fore. 123�125, 128

f funtion - nonlinear. 214, 215

G matrix of transfer funtions. 198

g gravitation onstant. 124, 126

g nonlinear funtion. 96, 99, 101,

102

Ḣ aumulation of enthalpy. 109,

110, 114, 119

H enthalpy. 29, 109�111, 120, 252

h height. 27, 28, 124, 126
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h partial molar enthalpy. 29, 30, 111�

114

h step. 147�151

I identity matrix. 47, 202�204, 226,

233

I vetor of ones. 202

u vetor of inputs. 194, 198�201,

204, 207, 210, 213�215, 225, 226,

231, 232

W instrumental variable matrix. 213

J Jaobian matrix. 189

J objetive funtion. 194, 205, 208,

214, 215, 219

K Nernst distribution onstant. 142

K kineti energy. 106, 124

K Kalman gain matrix. 226

kq heat ondutivity. 119, 120

kM di�usivity of momentum. 129,

130

k transfer property : a fomr of on-

dutivity. 69, 70

k0 reation onstant. 97

kn mass �ow parameter. 69

kq heat �ow parameter. 30, 66, 69

kr reation �onstant�. 96, 97, 99�

102

kV volume �ow parameter. 69

kB Boltzmann onstant. 66

L length. 129, 130

M Fisher information matrix. 201�

204, 235

M model. 194, 200

M̄ nominal model. 200, 201

M set of models. 194

ṁ aumulation of mass. 43, 84

m index mass stream. 43

m stream index. 36

m mass in kg. 25�28, 43, 66, 111,

112, 124, 126

y vetor of seondary states. 170,

172�177, 189

m distribution median. 217

ne total degree of freedom. 210, 211

n molar mass. 28, 29, 65, 66, 80, 94,

100, 156�159

n number of data points. 204, 208�

211, 215�217, 234, 235

n number of experiments. 233, 234

n number of partiles. 65

f nonlinear vetor funtion f. 198,

199, 204, 207, 212

g nonlinear vetor funtion g. 212

k number of parameters. 199, 204,

208�211, 215
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O order of magnitude. 148

◦ Hadamard operator :: element by

element produt. 233

P potential energy. 106, 124

P probability distribution. 201

p pressure. 64, 66, 69, 109�114, 122�

130, 157�159, 253

p probability density. 201�204, 214

Q matrix of weights - positive de�-

nite. 205

q number of repeated experiments.

210, 211

q shift operator. 220�224, 226

R gas onstant. 97, 134, 141, 142,

158, 159

R row seleting matrix. 186, 187

Re Reynold number. 129, 130

r spatial o-ordinate. 147�153, 164

v random variable (noise). 206, 207

rx spatial o-ordinate x. 55, 58, 59

ry spatial o-ordinate y. 55, 58

rz spatial o-ordinate z. 55, 58

R real numbers. 199, 204, 239�241,

244, 255, 261, 291, 292

S system boundary. 55�57, 59, 60,

162, 165

S Entropy. 63, 64, 94, 156�158, 252,

253

S list of speies. 88

S design-of-experiment matrix. 232�

234

s entropy density. 158, 159

s estimated standard deviation. 208,

210, 211, 216, 219

s system index. 43, 50, 60, 61, 103,

106�109, 162, 165, 166

x̂ state vetor of model. 225, 226

x̄ state vetor of nominal model. 225,

226

T temperature. 30, 35, 64, 66, 69,

96, 97, 109, 111�114, 119�122,

134, 141, 142, 152, 153, 157�

159, 252, 253, 298, 300�302

t time in s. 25�29, 50, 54�59, 102,

103, 111, 112, 114, 120, 122�

124, 128, 129, 134, 152, 153,

164�166, 183

U̇ aumulation of internal energy.

107, 109, 110, 124

U internal energy. 63, 64, 94, 106,

156�158, 252, 253

U internal energy. 109, 110, 124

u internal energy density. 158, 159

u(k) input at time k. 220�224

u input. 199, 212, 232

u spei� internal energy. 66
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ū vetor of normed inputs. 231

V̇ aumulation of volume. 109, 110

V variane o-variane matrix. 201�

203, 235, 236

V volume. 26, 27, 43, 54�59, 63,

64, 94, 97�103, 109, 110, 112,

114, 119, 120, 156�159, 164�

166, 252, 253

v density volume. 158, 159

v veloity. 65, 66, 124, 126�130, 133,

164

v noise vetor v. 200, 201, 225, 226

var variane funtion. 206, 207, 235

var variane funtion. 284�288

R variane-ovariane of output noise.

225, 226

Q variane-ovariane matrix of in-

put noise. 225

w noise vetor w. 200, 225, 226

x spatial x-oordinate. 65, 66, 119,

120, 123�125, 138, 141

x state variable. 146�151, 153

x vetor of states. 198

ẋ vetor time deriviate of state. 188,

189

x̂ vetor of state �ow. 188, 189

x̃ vetor of prodution rates. 188,

189

x state vetor. 189

Y list of observed random variables.

216, 217

ŷ model output (salar). 204

ȳ output from nominal model. 212

ŷ output of model. 207, 212, 214,

215, 221�224, 231, 233

y(k) ouput at time k. 220�224

y output (salar). 199, 204, 215, 234,

235

y observed stohasti variable. 216�

218

ŷ vetor of model output. 194, 200,

204, 205, 212, 213, 223, 226,

232�234

ȳ vetor of outputs of the nominal

plant/model. 200�204, 212, 225,

226

y vetor of outputs. 194, 198, 204�

206, 208�211, 214

ẏ vetor of time derivate of seondary

state. 189

z̄ nominal omitted output. 212

z̄ output of the omitted additive part

of the model. 212



Terminology

1D one spatial dimensional. 15, 18,

21

2D two spatial dimensional. 15, 18,

21

3D three spatial dimensional. 15,

18, 21

AE algebrai equations. 9

behaviour usually input/output be-

haviour - given a su�ently ex-

iting input, the proess shows

a hange in the state, whih

in turn may be observed as an

output. 15, 20, 167

boundary the dual to system. 17

onserved maintains a balane over

time. 25

DAE di�erential algebrai equations.

9

disrete-event dynami things that

just happen in an instane in

the ontext of a given time sale.

5, 18

distributed not-uniform in the sense

that the intensive properties are

a funtion of the spatial oor-

dinate - in ontrast to lumped

systems. 9, 13, 15, 18

environment the part of the uni-

verse in whih the modelled sys-

tem is embedded and whih is

onstant, thus onsists of reser-

voirs. 14, 16�18, 20, 25, 26, 29,

30

extensive depends on the size, the

extent of the system - mass, en-

ergy, momentum, volume et..

25

granularity resolution of the model

in terms of relative volume size

of the simple apaities. 24

lumped uniform in the sense that

the intensive properties are not

a funtion of the spatial oordi-

nate - in ontrast to distributed

systems. 9, 13, 15, 18

ODE ordinary di�erential equation.

9

343
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PDAE partial di�erential algebrai

equations. 9

PDE partial di�erential equation. 9

plant often used synonym for sys-

tem being a proessing unit of

some kind, not neessarily in

the ontext of hemial or bi-

ologial operations. 14�21, 23

primitive system primitive in terms

of the most fundamental - lumped,

distributed, reservoir, boundary.

185, 188

proper model a omplete model that

has zeor degree of freedom when

de�ning initial and boundary

onditions and all parameters.

179

reservoir an in�nitely large apa-

ity with some given intensive

properties, thus all extensive quan-

tities are in�nite. 13

state the variable that forms the foun-

dation of the mathematial rep-

resentation. 167

steady-state the state does not hange,

thus is onstant in time. 7

system An entity ylily de�ned by

its boundary. 13�17, 20, 22,

25, 31, 167

time-sale de�nes a reange in terms

of time in whih one observes,

models, desribes the behaviour

of proess. 7

token an abstrat �thing� being present

in the nodes of the graph and

transferred by the ars - for phys-

ial systems tokens are usually

the onserved quantities. 20

universe all there is, in the ontext

of modelling this is redued to

all relevant parts of the uni-

verse. 17

variable An algebrai symbol that

takes a value when applied. 167
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