

12 Industry Partners9 Research Partners2 Public Partners

Research Strategy

SAMCoT

www.ntnu.edu/samcot

Oden Arctic Technology Research Cruises: 2012, 2013 and 2015

Mantra: Full-scale Data if possible

SAMCoT

S

Centre for Research-based

Arctic Ocean 2016

SKT 2017

www.ntnu.edu/samcot

SAMCoT

S Centre for Research-based Innovation

Overview

SAMCoT

www.ntnu.edu/samcot

Overview

SAMCoT

S Centre for Research-based Innovation

Simulator for Arctic Marine Structures (SAMS)

www.ntnu.edu/samcot

Ice Features Driven by Waves

Glacial ice accelerated by waves may e.g. hit a vessel above the strengthened part of the hull.

Bow camera pointing forward (KV Svalbard; Fram Strait, March 2012)

www.ntnu.edu/samcot

Theoretical Basis

The building blocks of SAMS are illustrated in this figure, namely:

- the NDEM or multibody dynamics module,
- the fracture module, and
- the hydrodynamic module.

SAMCoT

Theoretical Basis – Fracture Module

www.ntnu.edu/samcot

Theoretical Basis — hydrodynamic module

Aside from the basic buoyancy of all bodies, the hydrodynamic forces, including the force due to the propeller flow, upon each individual ice floe and the structure are assigned explicitly, and ice drift simulations are possible given wind and/or current conditions.

The total hydrodynamic force on a rigid body is considered here as a combination of the so-called form drag and skin-friction drag.

$$\mathbf{F}_{h} = \sum_{k=1}^{M} \left[\rho_{w} C_{f} S^{k} \mid \mathbf{U}_{\parallel}^{k} \mid \mathbf{U}_{\parallel}^{k} - \left(\frac{1}{2} \rho_{w} C_{d} S^{k} \left[(\mathbf{U}^{k} \cdot \mathbf{n}^{k}) \right]^{2} \mathbf{n}^{k} \right) \right|_{(\mathbf{U}^{k} \cdot \mathbf{n}^{k}) < 0} \right]$$

Capabilities of SAMS

Current capabilities

- Self-propelled vessels
- Station keeping (DP)
- Station keeping on mooring
- Fixed structures
- Towing carriage
- Ice tank
- Coastal structures
- Ice drift due to wind and current
- Floe ice, level ice, rubble

Moored vessel in broken ice during a change in ice drift direction.

Simulation of the propeller wash of a ship in ice.

Current capabilities

- Self-propelled vessels
- Station keeping (DP)
- Station keeping on mooring
- Fixed structures
- Towing carriage
- Ice tank
- Coastal structures
- Ice drift due to wind and current
- Floe ice, level ice, rubble

Ship transit simulation

Current capabilities

- Self-propelled vessels
- Station keeping (DP)
- Station keeping on mooring
- Fixed structures
- Towing carriage
- Ice tank
- Coastal structures
- Ice drift due to wind and current
- Floe ice, level ice, rubble

Bending failure of ice against a structure with an upward-sloping waterline.

Current capabilities

- Self-propelled vessels
- Station keeping (DP)
- Station keeping on mooring
- Fixed structures
- Towing carriage
- Ice tank
- Coastal structures
- Ice drift due to wind and current
- Floe ice, level ice, rubble

Moored conical structure in level ice

Current capabilities

- Self-propelled vessels
- Station keeping (DP)
- Station keeping on mooring
- Fixed structures
- Towing carriage
- Ice tank
- Coastal structures
- Ice drift due to wind and current
- Floe ice, level ice, rubble

Multi-leg structure interacting with broken ice

Ship on Mooring in Broken Ice

3000 m

Current/ice velocity: 1 m/s

Linear) mooring properties:

- 100 kN/m surge/sway
- 0.1 damping coefficient

Ship on Mooring in Broken Ice

- ✓ Splitting and bending failure
- ✓ Good rubble clearing by ice-'knife'
- ✓ Rotation of structure due to ice loads

Figure 3. a) Blocks in the 23rd licencing round; b) an example of icebergs' (in black dots) drifting track (curvature lines) simulations and with rough locations of Blocks A and B from the 23rd licensing round.

T, C

50

-2

Formation process of glaciers and icebergs

(Løset et al., 2006)

Boundary Conditions

(Løset et al., 2006)

Barents Sea – Major iceberg sources

Franz Josef Land - A

Franz Josef Land, Location A, 19.06.2018. (Source: Sentinel 2, resolution 10 m).

Franz Josef Land - B

Franz Josef Land, Location B, 19.06.2018. (Source: Sentinel 2, resolution 10 m).

Nordaustfonna - C

Svalbard

Nordaustfonna - C

Location C, 24.08.2018. (Source: Sentinel 2, resolution 10 m).

spin-off Company

Arctic Iceberg Atlas

Abramov and Tunik, 1996

Iceberg Drift Equations

$$m \cdot (1 + C_m) \frac{d\mathbf{v}_i}{dt} = \mathbf{F}_a + \mathbf{F}_w + \mathbf{F}_c + \mathbf{F}_{wd} + \mathbf{F}_{si}$$

m - iceberg mass,

 C_m - added mass coefficient,

 \boldsymbol{V}_i -iceberg velocity,

 F_a , F_w - air and current form drag,

 F_c - Coriolis force,

 F_{wd} - mean wave drift force,

 F_{si} - forcing from sea ice.

Recent Projects with SAMS

Integrated Damage Assessment

SAMS simulations results are integrated with NLFEM analysis to perform local damage assessment in accordance to the 'shared energy approach'.

Figure 1: EXWAVE semi-submersible 1:50 scaled model.

Simulation results

Energy map scaled according to collision probability and collision velocity as a function of height.

Simulation results

Collision probability on structure sections

40

Critical impact scenarios

Scenario	Ice feature drift	Maximum	Collision energy	Impact location
	velocity (m/s)	load ¹ (MN)	(MJ)	
1	3.4	22.0	7.32	Corner of structure
				leg
2	3.4	29.7	7.25	Side of leg
3	3.4	28.3	7.30	Side of leg, near
				corner

(a): column corner with the stiffened deck
(b): column corner with the unstiffened transverse ring frame
(c): middle column corner (d): stiffened bulkhead
(e): cruciform (f, g): confined stiffened panel

An example collision case on the bulkhead

Collision resistance of ice and structure

- 1. Stronger points: bulkhead, intersection between bulkhead and the transverse frame
- 2. Shared energy: column front stiffened panel
- 3. Weak part: column corner

44

Recent Projects with SAMS

Havarí Northguíder, Hínlopen

Simulations

Advanced simulation set-up

More Simulation Scenarios

Ship listing 17°

