Offshore wind

Research and possible student projects and opportunities

Michael Muskulus

Department of Civil and Environmental Engineering Norwegian University of Science and Technology 7491 Trondheim, Norway

Marin Byggteknikkdagen NTNU/PIANC April 27, 2017

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Faculty of Engineering

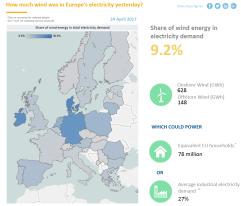
Department of Civil and Environmental Engineering

Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Why wind energy?

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > シタの


M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Offshore windResearch and possible student projects and opportunities

DAILY WIND POWER NUMBERS

* Elaborated on the electricity demand of an average EU/28 household in 2015. Eurostate ** Elaborated on the industrial electricity consumption of each EU28 country in 2015, Eurostatis

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Wind energy in Norway?

Characteristics

- An important source of electricity (highly efficient as well)
- Carbon-friendly? (e.g. 500 tons CO2 during construction 500 MWh equivalent)

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Э

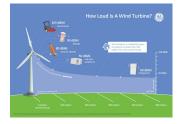
SQC

・ロト ・回ト ・ヨト ・ヨト

Why offshore wind energy?

Wind energy in Norway?

Long tradition in Norway


• Fridtjof Nansen 1888 on board the Fram

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

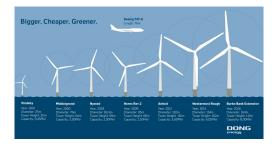
Why offshore wind energy?

Issues with onshore wind energy

- Public acceptance (e.g. noise)
- Transportation can be challenging

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities


Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

3

5900

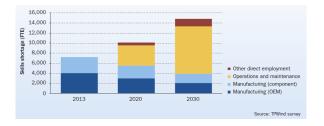
・ロト ・四ト ・ヨト ・ヨト

Why offshore wind energy?

Wind turbines are growing in size

- Economies of scale: turbines are still growing...
- ... but larger turbines exhibit different dynamics than smaller ones

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

5900

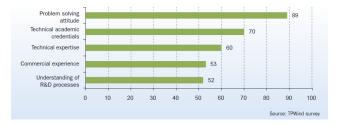
イロト イポト イヨト イヨト 三日

Why study wind energy?

The skill shortage in Europe

- A lot of qualified personnel is probably needed in the (future) wind industry
- The EU estimates ca. 1 Million people working in wind energy in 2020
- Worries about finding these people...

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

E

イロト イヨト イヨト イヨト

Why study wind energy?

What skills are employers looking for?

- Most important: Problem solving
- Between practical, technical and industry knowledge: Technical expertise!

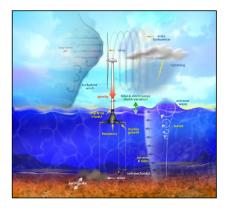
M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

500

æ

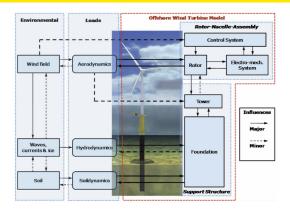

イロト イポト イヨト イヨト

M. Muskulus (michael.muskulus@ntnu.no)

< □ ▶ < ⊡ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃
 Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Offshore windResearch and possible student projects and opportunities


Environmental loads

- Behaviour of the wind turbine system governed by response to external loads
- Load simulations assess response in these different environmental conditions

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Aeroy-hydro-servo-elastic simulations needed

- Simulations have to be done in the time domain (because of nonlinearities)
- Many simple components
- Tight coupling leads to a complex system

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
1) Power production	1.1	NTM V _{in} < V _{hub} < V _{out} RNA	NSS $H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$	COD, UNI	NCM	MSL	For extrapolation of extreme loads on the RNA	U	N (1,25)
	1.2	NTM $V_{in} < V_{hub} < V_{out}$	NSS Joint prob. distribution of H _s , T _p , V _{hub}	COD, MUL	No currents	NWLR or ≥ MSL		F	
	1.3	ETM V _{in} < V _{hub} < V _{out}	NSS $H_s = E[H_s V_{hub}]$	COD, UNI	NCM	MSL		U	N
	1.4	ECD $V_{hub} = V_r - 2 \text{ m/s}, V_r$, $V_r + 2 \text{ m/s}$	NSS (or NWH) $H_{\rm g} = E[H_{\rm g} V_{\rm hub}]$	MIS, wind direction change	NCM	MSL		U	N
	1.5	EWS V _{in} < V _{hub} < V _{out}	NSS (or NWH) $H_{g} = E[H_{g} V_{hub}]$	COD, UNI	NCM	MSL		U	N
	1.6a	NTM V _{in} < V _{hub} < V _{out}	SSS H _s = H _{s.SSS}	COD, UNI	NCM	NWLR		U	N
	1.6b	NTM V _{in} < V _{hub} < V _{out}	SWH H = H _{SWH}	COD, UNI	NCM	NWLR		U	N

Many loadcases need to be assessed

- Fatigue loads need to be assessed for the design lifetime (e.g. 25-30 years)
- Ultimate loads need to be estimated (e.g. 50 year return period) from responses

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

590

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 -

Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
4) Normal shut down	4.1	NWP	NSS (or NWH)	COD, UNI	No currents	NWLR or ≥ MSL		F	
		Vin < Vhub < Vout	$H_{\rm g} = E[H_{\rm g} V_{\rm hub}]$						
	4.2	EOG	NSS (or NWH)	COD, UNI	NCM	MSL		U	N
		Vhub = V, ± 2m/s and Vout	$H_s = E[H_s V_{hub}]$						
5) Emergency shut down	5.1	NTM	NSS	COD, UNI	NCM	MSL		U	N
		$V_{hub} = V_r \pm 2m/s$ and V_{out}	$H_s = E[H_s V_{hub}]$	Cherriel				1.1	
6) Parked (standing still or idling)	6.1a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	EWLR		U	N
		$V_{hub} = k_1 V_{ref}$	$H_{s} = k_{2} H_{s50}$	100 A. 100 A. 10		Press and the			
	6.1b	EWM Steady wind model	RWH	MIS, MUL	ECM	EWLR	Second Second	U	N
		$V(z_{hub}) = V_{a50}$	H = H _{red50}				and the second second	- S.	
	6.1c	RWM Steady wind model	EWH	MIS, MUL	ECM	EWLR		U	N
	121	V(z _{hub}) = V _{red50}	$H = H_{50}$	a set the		SHOW NO.	and the second s		
	6.2a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	EWLR	Loss of electrical network	U	A
		V _{hub} = k ₁ V _{ref}	$H_{\rm s}=k_2\;H_{\rm s50}$						
	6.2b	EWM Steady wind model	RWH	MIS, MUL	ECM	EWLR	Loss of electrical network	U	A
		V(z _{hub}) = V _{e50}	$H = H_{red50}$						
	6.3a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	NWLR	Extreme yaw	U	N
		$V_{hub} = k_1 V_1$	$H_a = k_2 H_{a1}$			0.02	misalignment		
	6.3b	EWM Steady wind model	RWH	MIS, MUL	ECM	NWLR	Extreme yaw	U	N
		V(z _{hub}) = V _{e1}	$H = H_{red1}$				misalignment		
	6.4	NTM V _{hub} < 0.7 V _{ref}	NSS Joint prob. distribution of H _s , T _p , V _{hub}	COD, MUL	No currents	NWLR or ≥ MSL		F	

Many loadcases need to be assessed

- Many variabels need to be varied (e.g. directionality)
- Loadcase table typically with 1700+ entries

M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology

Offshore windResearch and possible student projects and opportunities

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Support stucture concepts

Issues

- Different concepts result in different challenges
- Not always clear which concept is best for a given site
- Still new ideas possible... (also re-evaluation due to turbine size growth)

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

5900

3

イロト イポト イヨト イヨト

DEMONSTRATION

Creating the software experience engineers deserve!

・ ロ ト ・ 日 ト ・ 王 ト ・ 王 ・ クへぐ

M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Offshore windResearch and possible student projects and opportunities

Current research

Advanced Wind Energy Systems Operation and Maintenance Expertise

ABYSS Advanced BeYond Shallow waterS – Optimal design of offshore wind turbine

support structures

Norwegian Research Centre for Offshore Wind Technology

San

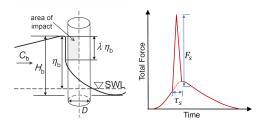
1

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

・ロト ・回ト ・ヨト ・ヨト


M. Muskulus (michael.muskulus@ntnu.no)

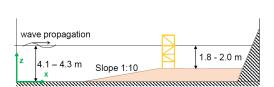
< □ ▶ < ⊡ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃
 Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Offshore windResearch and possible student projects and opportunities

The problem

- Plunging breakers can lead to very large impact (slamming) forces
- Risk for installations in shallow waters
- How often do such extreme events occur?
- How large are the forces?


M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

æ

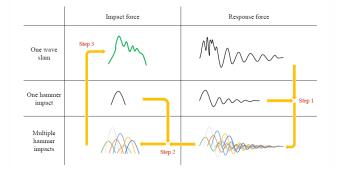
イロト イポト イヨト イヨト

Offshore windResearch and possible student projects and opportunities

The WaveSlam project

- Experimental campaign at Forschungszentrum Küste (Hannover) 2013
- Scaled jacket with force transducers

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

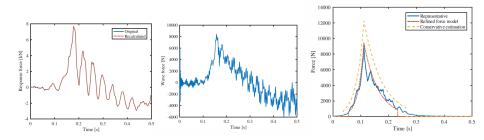
Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

500

E

イロト イヨト イヨト イヨト

Force estimation


- Uses linearity of the system
- Hammer tests used as substitute for impulse-response functions
- Least-squares solution

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Results

- Accurate force reconstruction possible
- Novel force model recently proposed

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

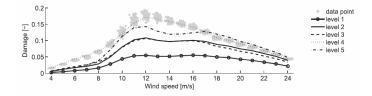
Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Ð

500

イロト イヨト イヨト イヨト

Simplified fatigue load assessment


M. Muskulus (michael.muskulus@ntnu.no)

< □ ▶ < ⊡ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃
 Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

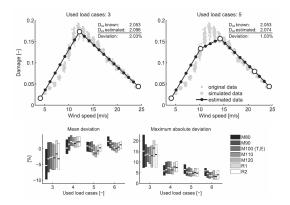
Offshore windResearch and possible student projects and opportunities

Simplified fatigue load assessment

The problem

- Fatigue assessment of wind turbines amounts to 1700+ loadcases (60 min duration)
- Damage needs to be assessed in each joint of the structure
- Simulations typically slower than realtime
- Can we reduce the number of analyses?

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

3

イロト イヨト イヨト イヨト

Simplified fatigue load assessment

Piecewise-linear regression (Zwick et al. 2015)

- Idea: parameterize shape of damage curve
- Here for mean wind speed, but possible for other parameters as well
- Accuracy of 5 percent for 4 of 21 loadcases

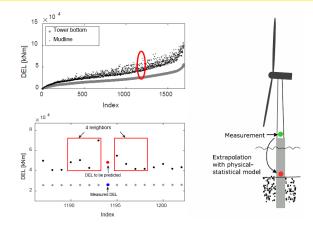
M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology

Offshore windResearch and possible student projects and opportunities

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Remaining useful life


M. Muskulus (michael.muskulus@ntnu.no)

< □ ▶ < ⊡ ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃
 Norwegian University of Science and Technology

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Offshore windResearch and possible student projects and opportunities

Extrapolating loads

How to extrapolate fatigue damage from measurements at a different location?)

- Tower bottom damage equivalent loads (DELs) measured
- Mudline DEL predicted by nearest-neighbour regression

M. Muskulus (michael.muskulus@ntnu.no)

Norwegian University of Science and Technology

Offshore windResearch and possible student projects and opportunities

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Extrapolating loads

			_		0.15	· · · · · · · · · · · · · · · · · · ·
Case	Method	Variance Ratio DEL [-]	Ratio DEL _L [-]	Ratio Damage [-]	王 0.1	NB=1
Dealers	М	0.07	1.02	1.08	count	
Design	W	0.06	1.00	0.99	COL	
Design	М	0.01	0.99	0.97	0.05	
with v _w bin	W	0.01	1.00	0.99	Normalize	_41111116
E-t-rd-d	М	0.02	1.03	1.09	Lo	
Extended	W	0.02	0.99	0.97	2 0	
Extended	М	0.05	0.98	0.94		0.8 1 1.2
with v_w bin	W	0.08	0.99	0.97	N	I-DEL predicted/calculated [-]

Accuracy of this simple method

- Fatigue damage predicted within 1 percent for design cases
- Prediction within 3 percent for cases with different turbulence intensity (extended)

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Э

500

・ロト ・回ト ・ヨト ・ヨト

Research skills and topics

What do these research projects have in common?

- Good understanding of structural dynamics necessary
- Computationally expensive
- Need to consider and understand uncertainties (probability, risk)
- Need basic knowledge of statistics
- Typically novel, custom-made solutions (programming!)
- Applying state of the art data analysis (machine learning, time series analysis, Bayesian decision theory)
- Trying to reduce the cost of energy

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

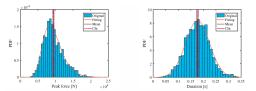
San

1

イロト イポト イヨト イヨト

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities


Norwegian University of Science and Technology

200

Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

<ロト (四) (三) (三) (三) (三)

Project: Improving breaking wave models

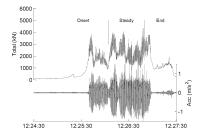
Description

- On-going analysis of the data from the Waveslam project
- Can we predict the slamming force for a given seastate?

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017


500

æ

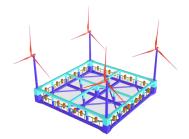
イロト イヨト イヨト

Project: Ice loads on offshore wind turbines

Description

- Pori 1: First Finnish offshore wind farm in Gulf of Bothnia (2010-)
- Possibility of very high fatigue damage due to frequency lock-in ice interaction
- Can we predict the risk for such extreme events?

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

3

イロト イヨト イヨト イヨト

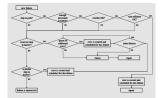
Project: Multi-rotor floater

Description

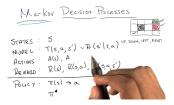
- How to design a floating multi-rotor wind turbine?
- Especially, how does the presence of multiple turbines influence the fatigue damage?
- And what about the design of the mooring system?

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities


Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

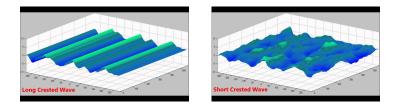
5900


1

イロト イポト イヨト イヨト

Project: Strategies for maintenance optimization under uncertainty

Description


- Work with an existing simulation model for the operational phase of a wind farm
- Implement and test new strategies: how should repairs be scheduled?

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

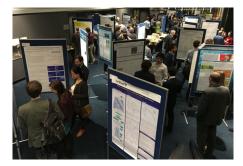
Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

Project: Influence of directional wave spreading

Description

- Load simulations typically use long-crested waves... but real waves are short-crested
- What are the implications for the design of offshore wind turbines?

M. Muskulus (michael.muskulus@ntnu.no)


Offshore windResearch and possible student projects and opportunities

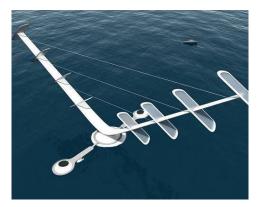
Norwegian University of Science and Technology Marin Byggteknikkdagen NTNU/PIANC, April 27, 2017

200

イロト イポト イヨト イヨト 三日

Yearly conference

EERA Deep Sea Offshore Wind R&D Conference (DeepWind)


- Students with interesting results can attend the conference
- Contributions published in Energy Procedia / IOP Conference series
- More information: https://www.sintef.no/projectweb/eera-deepwind2017/

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

Outlook

Questions?

M. Muskulus (michael.muskulus@ntnu.no)

Offshore windResearch and possible student projects and opportunities

 Image: Heat State
 Image: Heat State
 Image: Heat State
 Image: Heat State
 Image: Heat State

 Norwegian
 University of Science and Technology

 Marin
 Byggteknikkdagen
 NTNU/PIANC, April 27, 2017