

# Coastal Infrastructure and Climate Change Adaption

A new interdisciplinary area of research at NTNU?

### **Background**

#### Norwegian Coast

- Essential for Norway's economy
- Perhaps a growing role?
- Unique world-wide

Socio-economic structure has made funding challenging

Political level needs to understand the importance

Climate change may enhance challenges

IV faculty at NTNU revises its strategy

Coastal infrastructure becomes a Priority area





#### Goals

Establish an interdisciplinary centre at NTNU and identify:

- Societal challenges
- Internal competence
- Industry needs

Reach to a Political level

Ensure relevant laboratory facilities at NTNU



### Includes the following

Harbours and Fairways

Fish farming

Renewable energy (Offshore Wind, tidal, ...)

Roads, Railways and Fjord-crossings

Houses and other buildings on coastline

**Arctic Coastal Technology** 



### Interdisciplinary topic – need to address:

Hydro-dynamics and waves

Structural dynamics

Avalanches and land slides (above and below water)

Pollution in soil and in sea

Sustainability

Durability and concrete/materials

Risk, reliability and adaptivity

Maintenance planning

Ice and Permafrost



#### Combine Practical use and High level research





### **Active groups at NTNU**

Marine Civil Engineering

Structural Dynamics

Geotechnics

Marine Structures

Marine Systems

RAMS

Remote Sensing and sensors

Road and railway engineering

**Industrial Ecology** 





#### What next?

#### Identify a leader group NTNU and Industry?

#### Form sub-groups responsible for

- Applications
  - Harbours and Fairways
  - Fish farming
  - Renewable energy (Offshore Wind, tidal, ...)
  - Roads, Railways and Fjord-crossings
  - Houses and other buildings on coastline
  - Arctic Coastal Technology

#### Disciplines

- Hydro-dynamics and waves
- Structural dynamics
- Avalanches and land slides (above and below water)
- Pollution in soil and in sea
- Sustainability
- Durability and concrete/materials
- Risk, reliability and adaptivity
- Maintenance planning
- Ice and Permafrost



### Form groups and sub-groups?

|                                                    | Harbours      | Fairways | Renewable | Roads, Fjord-<br>crossing | Fish farms | Houses | Autonomous ships etc. | Arctic |
|----------------------------------------------------|---------------|----------|-----------|---------------------------|------------|--------|-----------------------|--------|
| Hydrodynamics and waves                            | MB, Msy,<br>B | MB,MSy   | MB,MSt,GT | MB, SD,<br>MSt,GT         | MS, MB,    | MB, GT | MSt                   | MB     |
| Structural dynamics                                |               |          |           |                           |            |        |                       |        |
| Avalanches                                         |               |          |           |                           |            |        |                       |        |
| Satellites                                         |               |          |           |                           |            |        |                       |        |
| Logistics                                          |               |          |           |                           |            |        |                       |        |
| Risk, reliability,<br>regularity and<br>durability |               |          |           |                           |            |        |                       |        |
| Environment, pollutions                            |               |          |           |                           |            |        |                       |        |
| Ice and permafrost                                 |               |          |           |                           |            |        |                       |        |

MB – Marine civil Engineering, B – Concrete, MSy – Marine systems, MSt – Marine Structure GT – Geotechnics, SD – Structural dynamics,



### **Arctic Coastal Technology**

Waves, permafrost and ice

#### Ice free season

- Wave loads
- Coastal erosion

#### Ice season

- Landfast ice
- Drift ice



#### Little and uncertain data

#### Have little data

Sea ice, soil properties, bathymetry, ...

Climate change makes prediction even more challenging Climate change enhances coastal erosion rates

- Less sea ice → more waves
- Higher air temperatures → thawing permafrost



#### Ice action in Harbours and on Coasts

More complicated than Offshore Structures
Similar challenges as ice action on bridges
Identify possible scenarios
Small fetch limits driving force

- Evaluate probability of ice crushing
- Thermal expansion
- Limit force
- Vertical and horizontal forces
- **++**



## Thank you!

