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Chapter 1

Laws of motion

1.1 Newton’s laws

Newton’s first law

Newton’s laws of motion hold in special refence frames called inertial frames. By definition,
our meter sticks and clocks are located in an inertial frame if we observe that Newton’s first
law holds:

A body remains at rest, or moves in a straight line at constant speed, unless acted
upon by a net outside force.

The first law may be regarded as a special case of the second law: if there is no net force,
there is also no acceleration.

In a terrestrial laboratory at rest on the ground we observe that bodies tend to fall to
the ground. This does not necessarily mean that the laboratory is not an inertial frame,
since we explain the observed downwards acceleration as the effect of an outside force, the
gravitational pull of the Earth. We may compensate this force by pulling or pushing in the
opposite direction, but we can not eliminate it, without removing the whole Earth, or putting
our laboratory in free fall. Nevertheless, when due account is taken of the gravitational force,
our laboratory on the ground is a reasonably good inertial frame.

It is not a perfect inertial frame, however, because of the rotation of the Earth. If we
want to use Newton’s law of motion in the laboratory as if it were an inertial frame, we may
have to introduce two extra forces, the centrifugal force and the Coriolis force, in addition to
the gravitational force from the Earth, to account for the observed deviations from straight
line motion. The centrifugal and Coriolis forces are not accepted as forces in Newton’s sense
of the word, because they do not satisfy Newton’s third law. They are called fictitious forces,
and a reference frame in which fictitious forces appear is not an inertial frame.

We obtain a more nearly perfect inertial frame by doing experiments in free fall, for
example inside a space station orbiting the Earth, making sure that the space station does
not rotate. Even in this laboratory we might have to take into account residual gravitational
forces, so called tidal forces, if we do extremely precise experiments. They are due to the
fact that the gravitational field of the Earth is not perfectly homogeneous: there is a tiny
variation in the size and direction of the gravitational force, even over the small distance from
one point to another inside a space station.
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Newton’s second law

Newton’s second law is the equation of motion for a point-like particle,

F = ma . (1.1)

Here m is the mass (the inertial mass) of the particle, and F is the force acting on it. Let
r = r(t) denote the time dependent position of the particle, then v = ṙ = dr/dt is the
velocity, and a = v̇ = r̈ is the acceleration. Each dot over a symbol denotes a differentiation
with respect to the time t.

Note that Newton’s second law is a vector equation, it consists of three separate equations,
one for each of the x, y, z components,

Fx = max = mẍ , Fy = may = mÿ , Fz = maz = mz̈ . (1.2)

Newton’s third law

Newton’s third law is the law of action and reaction:

Whenever one body exerts a force on a second body, the second body exerts an
equal and opposite force on the first body.

If the force on the second body from the first one is F 21, and the force on the first body
from the second one is F 12, Newton’s third law is the relation

F 12 = −F 21 . (1.3)

An important point which is not always clearly stated is that all forces observed in nature
are two-body forces. If there are more than two bodies present, then the force between two of
them does not depend on the presence of the others, and the force on one body is the sum of
the two-body forces from all the others. Hence, Newton’s third law implies that the sum of
all internal forces in a physical system, i.e. all the forces between the particles in the system,
is zero.

Fictitious forces

It is sometimes convenient to work in an accelerated coordinate system, for example following
the rotation of the Earth. Then we are no longer in an inertial system, and we have to
modify Newton’s second law by including what we call non-Newtonian, or fictitious, forces.
A fictitious force has no reaction force of equal magnitude and opposite direction.

The fictitious forces in a rotating coordinate system are the centrifugal and Coriolis forces.
Let Ω be a vector along the rotation axis, for example the rotation axis of the Earth, such
that Ω = |Ω| is the angular velocity (rotation angle divided by time). Also let r0 be a point
on the rotation axis, for example the centre of mass of the Earth. Assume that a pointlike
particle of mass m is located at the position r and moving with the velocity v. Then the
centrifugal force is

F cf = −mΩ× (Ω× (r − r0)) . (1.4)
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The Coriolis force,

FC = −2mΩ× v , (1.5)

is proportional to the velocity. These expressions are derived in Appendix B.
Introducing the Coriolis force is one possible way to explain the observation made by

Foucault in 1851, that when a pendulum oscillates during several hours, its plane of oscillation
rotates. The oscillation plane of a pendulum on the North Pole would be fixed relative to the
distant stars, so that relative to the Earth it would rotate by 360 degrees during 24 hours (or
more precisely 23 hours and 56 minutes, which is the period of rotation of the Earth relative
to the fixed stars).

Einstein based his general theory of relativity on the postulate that the fictitious forces
present in non-inertial reference frames are in principle no different from the more “re-
spectable” gravitational force. Thus, the special status of inertial frames is to some degree a
matter of convention. In the general theory of relativity physical laws have to be formulated
mathematically in such a way that they have the same mathematical form in all reference
frames, not only in inertial frames.

Newton’s law of universal gravitation

The gravitational force on a pointlike particle of mass m1 from another pointlike particle of
mass m2 is

F 12 = − Gm1m2

|r1 − r2|3
(r1 − r2) . (1.6)

Here G = 6.6726× 10−11 m3 kg−1 s−2 is Newton’s gravitational constant.
This law agrees with Newton’s third law, since it predicts that the force on the second

particle from the first one is

F 21 = − Gm2m1

|r2 − r1|3
(r2 − r1) = −F 12 . (1.7)

The gravitational force is a central force, that is, its direction is precisely towards the
attracting particle. The absolute value (the size) of the gravitational force between the two
point masses is

F = |F 12| = |F 21| =
Gm1m2

|r1 − r2|3
|r1 − r2| =

Gm1m2

|r1 − r2|2
. (1.8)

It is proportional to each of the two masses, and it is inversely proportional to the square of
the distance between the masses, in other words, it is an “inverse square” law.

According to Newton’s law of gravitation the gravitational force acts instantaneously over
a finite distance. This is a fundamental flaw in the theory, which Newton himself recognized.
The problem became even more serious after Einstein developed the special theory of relativ-
ity, which postulates that nothing, at least no signal transmitting information, can propagate
with a speed larger than the vacuum speed of light. Einstein replaced Newton’s theory with
a new gravitational theory, the general theory of relativity, in order to repair this basic flaw.
We will say very little here about Einstein’s gravitational theory.
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1.2 Momentum and kinetic energy

Introducing the momentum

p = mv , (1.9)

and using that the mass m is constant, we may write Newton’s second law in the following
way,

dp
dt

= F . (1.10)

That is, the force F acting during the infinitesimal time interval dt changes the momentum
by the infinitesimal amount

dp = F dt . (1.11)

When the time dependent force F = F (t) acts during a finite time interval from t1 to t2, the
momentum changes from p1 to p2, where

p2 − p1 =
∫ p2

p1

dp =
∫ t2

t1
F dt . (1.12)

A force acting on a moving particle performs a work, and as a result the energy of the
particle increases by an amount equal to the work. The energy is increased by a positive work
of an external force, and reduced by a negative work.

When the force F acts during an infinitesimal displacement dr, it performs an infinitesimal
work dW equal to the scalar product of the force and the displacement,

dW = F · dr = Fx dx+ Fy dy + Fz dz . (1.13)

Introducing the velocity v = dr/dt, we may write the displacement as dr = v dt. During a
finite time interval from t1 to t2, when the particle moves from r1 to r2, the work is

W =
∫ r2

r1

F · dr =
∫ t2

t1
F · v dt . (1.14)

If F is the total force (the vector sum of all forces) on the particle, then F = ma, by Newton’s
second law, and hence the work is

W =
∫ t2

t1
ma · v dt =

∫ t2

t1
m

dv
dt
· v dt =

1
2
mv · v

∣∣∣∣t2
t1

. (1.15)

We define the kinetic energy of the particle as

EK =
1
2
mv · v =

1
2
mv2 =

1
2
mv2 =

1
2
m(v 2

x + v 2
y + v 2

z ) . (1.16)

With this definition, the change in the kinetic energy of the particle equals the work performed
by the total force.

In particular, for a free particle, which is not acted upon by any force, the mass m and
the velocity v are both constants of motion. To be more precise, each of the three velocity
components vx, vy, vz is a constant of motion. It follows that both the momentum and the
kinetic energy of a free particle are constants of motion.
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1.3 Relativistic momentum and energy

The above expressions for momentum and energy are valid for a non-relativistic particle. We
say that a particle is relativistic when the absolute value of its velocity, v = |v|, approaches
the speed of light, c = 299 792 458 m/s, which is the absolute speed limit.

The formulation of Newton’s second law in terms of momentum, Equation (1.10), has
the advantage that it is valid even for relativistic particles, after we modify the definition of
momentum. The definition valid for relativistic as well as for non-relativistic particles, is

p =
mv√
1− v2

c2

= mv

(
1 +

v2

2c2
+ · · ·

)
. (1.17)

Expanding to lowest order in the ratio v/c, we get back the non-relativistic definition p = mv.
One rather common interpretation of the formula for the relativistic momentum is that

p = m′v, and that the mass m′ depends on the velocity,

m′ =
m√

1− v2

c2

. (1.18)

Then m is called the rest mass (the mass of the particle at rest). This is of course a possible
definition, but it is not recommended, because it seems (to some people, like me) more
confusing than useful to distinguish between “rest mass” and “mass in motion”.

The relativistic version of Newton’s second law is very well tested experimentally. For
example, it was used for computing the orbits of electrons in the electric and magnetic fields
inside the LEP accelerator (“Large Electron Positron collider”, now closed down) at CERN,
outside Geneva. The electrons in LEP reached a velocity of 0.999 999 999 995 c, which means
that in one second they would lose 5 mm on a photon.

The above non-relativistic expression for the kinetic energy EK may be derived in the
following way, which leads to the relativistic expression for energy when we introduce the
relativistic momentum. By Newton’s second law, we have that

F · v =
dp
dt
· v =

d
dt

(p · v)− p · dv
dt

. (1.19)

This formula holds both with the non-relativistic and the relativistic formula for the momen-
tum. With the non-relativistic formula we have that

p · dv
dt

= mv · dv
dt

= v · dp
dt

= v · F = F · v , (1.20)

and hence, as before,

F · v =
1
2

d
dt

(p · v) =
d
dt

(
1
2
mv2

)
. (1.21)

With the relativistic formula we have that

p · dv
dt

=
m√

1− v2

c2

(
v · dv

dt

)
= −mc2 d

dt

√
1− v2

c2
, (1.22)
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and hence,

F · v =
d
dt

p · v +mc2

√
1− v2

c2

 =
dE
dt

, (1.23)

when we introduce the famous relativistic formula for the energy E,

E = p · v +mc2

√
1− v2

c2
=

mv2√
1− v2

c2

+mc2

√
1− v2

c2
=

mc2√
1− v2

c2

. (1.24)

Expansion in powers of the ratio v/c gives that

E = mc2

(
1 +

v2

2c2
+ · · ·

)
= mc2 +

1
2
mv2 +

3
8
mv4

c2
+ · · · . (1.25)

The kinetic energy is the energy E minus the rest energy mc2,

EK = E −mc2 =
1
2
mv2 + · · · . (1.26)

Thus, the formula for the kinetic energy EK is different in the non-relativistic and the rela-
tivistic cases, but the formula for the work takes the same form,

W =
∫ t2

t1
F · v dt = EK(t2)− EK(t1) . (1.27)

A useful formula relating relativistic energy and momentum is the following,

E2 = m2c4 + p2c2 . (1.28)

It holds even for particles of zero mass, when m = 0 we get the simple relation

E = |p| c . (1.29)

Photons, the quanta of the quantized electromagnetic field, are the only known particles
of mass zero. In the future, there will presumably be a quantum theory of gravitation, with
field quanta, gravitons, that will also have mass zero. The neutrinos are other particles having
masses close to, but not exactly equal to zero.



Chapter 2

The one-particle Kepler problem

We want to study the motion of particles interacting by gravitation, and it is natural to start
with one single particle in a gravitational field. The one-particle problem may be thought
of as the limiting case of the two-particle problem when there are two pointlike masses, one
small mass m and one large mass M . We write m << M to tell that m is much smaller than
M . This is a good approximation to the physical problem of one planet, for example the
Earth, moving around the Sun.

Later on, we will see that the general two-particle problem may be reduced to this special
one-particle problem, even when the two masses are comparable. The deeper reason that the
reduction is possible, is that the total momentum is conserved.

We assume that only the small mass m is moving, while the large mass M is lying at rest
all the time. This assumption is consistent with the laws of motion, since the forces on the
two masses are equal and opposite, and therefore the large mass will have a much smaller
acceleration.

It is natural to choose a coordinate system having its origin at the position of the stationary
mass. Thus, when r = r(t) is the position of the small mass m at time t, and r = |r|, the
gravitational force on this particle is

F = −GMm

r3
r . (2.1)

In combination with Newton’s second law,

F = ma = m
d2r

dt2
, (2.2)

this gives the following equation of motion, which is a second order ordinary differential
equation,

d2r

dt2
= −GM

r3
r . (2.3)

We see that the small mass m cancels out of the equation of motion: the motion of a
small mass m in the gravitational field from a very much larger mass M is independent of
m. This is a non-trivial result. In fact, the role of the mass m in Equation (2.1) is that the
gravitational force is proportional to it. This type of mass may be called gravitational mass,
or heavy mass, it is the mass we feel when we hold a stone in our hand. The mass m in

7



CHAPTER 2. THE ONE-PARTICLE KEPLER PROBLEM 8

Equation (2.2) plays a very different role, it determines how hard it is to change the state of
motion of the particle. This type of mass is called inertial mass, it is the mass we feel at the
moment when we throw the same stone.

It was one of Newton’s great discoveries that these two types of mass are proportional, so
that he was able to define them to be the same, by introducing the proportionality constant
G in the formula for the gravitational force. He tested this prediction of his theory in the
gravitational field of the Earth by comparing the oscillation periods of two pendulums of
identical length and shape, made of different substances and having different masses. His
experiment was a null experiment, there should be no difference if his hypothesis was correct,
and indeed he observed no difference.

The right hand side of Equation (2.3) is what we call the gravitational field, or equivalently,
the acceleration of gravity, due to the point mass M placed at the origin. It is a vector field,

g = g(r) = −GM
r3

r . (2.4)

In general, the procedure for measuring a gravitational field is to measure the force on
a so called test particle, which is supposed to be pointlike, and to have a sufficiently small
mass m, so that it has a negligible influence on the motion of the masses giving rise to the
gravitational field. It follows from Newton’s law of universal gravitation that the gravitational
force F on such a test particle is proportional to its mass m, therefore it is natural to define
the gravitational field at a given point as the gravitational force divided by the mass,

g =
F

m
. (2.5)

The acceleration a of the test mass is given by Newton’s second law, F = ma, thus we see
that g = a. The gravitational field at the given point is simply the acceleration of any test
mass placed there.

All particles of sufficiently small mass are subject to the same acceleration in a
gravitational field.

2.1 Circular motion

We will now demonstrate that circular motion in any plane through the origin, with any given
constant radius r, and a constant angular velocity ω depending on r, is a possible solution of
the equation of motion. We choose our coordinate system with the z axis orthogonal to the
plane, so that the orbital plane is the (x, y) plane. Thus, the position at time t will be

r(t) = x(t) i+ y(t) j = r cos(ωt) i+ r sin(ωt) j , (2.6)

if we choose the zero point of time in such a way that r(t) = r i at t = 0. Differentiating
once with respect to time we get the velocity v, and differentiating once more we get the
acceleration a,

v = ṙ = −ωr cos(ωt) i+ ωr cos(ωt) j ,
a = v̇ = −ω2r cos(ωt) i− ω2r sin(ωt) j = −ω2 r . (2.7)
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Now Newton’s second law F = ma takes the form

−GMm

r3
r = −mω2 r . (2.8)

We see that this equation of motion is solved if we take

ω2 =
GM

r3
. (2.9)

This relation is one form of Kepler’s third law, valid in the special case of circular motion.
The period P of the orbit is the time interval for which

ωP = 2π . (2.10)

Thus we get Kepler’s third law in its usual form, as a relation between the period P and the
semimajor axis of an ellipse, in this particular case the radius r of a circle,

P 2 =
4π2

ω2
=

4π2

GM
r3 . (2.11)

2.2 Conservation of energy

The gravitational field of the point mass M ,

g = −GM
r3

r , (2.12)

is a vector field which is minus the gradient of a scalar field φ, called the gravitational potential.
To see this, we compute first the gradient of the distance to the origin, which is the scalar

function

r =
√
x2 + y2 + z2 . (2.13)

We have that

∂r

∂x
=

1
2
√
x2 + y2 + z2

2x =
x

r
, (2.14)

with similar results for ∂r/∂y and ∂r∂z. Hence,

∇r = i
∂r

∂x
+ j

∂r

∂y
+ k

∂r

∂z
= i

x

r
+ j

y

r
+ k

z

r
=
r

r
= er . (2.15)

At any given point, er is the unit vector pointing away from the origin. Using the chain rule,
we get that

∂

∂x

(
1
r

)
=
∂r

∂x

∂

∂r

(
1
r

)
= −x

r

1
r2

= − x
r3
. (2.16)

This is the x component of the vector equation

∇
(

1
r

)
= − r

r3
. (2.17)
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It follows that

g = −∇φ (2.18)

when we define the gravitational potential from the point mass M at the origin as

φ = −GM
r

. (2.19)

It follows further that the gravitational force on the small mass m is

F = mg = −m∇φ = −∇V , (2.20)

when we define the potential energy of the mass m in the gravitational field as

V = mφ = −GMm

r
. (2.21)

The motivation for introducing the potential energy V is that the sum of the kinetic and
potential energy, the total mechanical energy

E = EK + V =
1
2
mv2 − GMm

r
, (2.22)

is a constant of motion.
To prove this, we have to prove that the time derivative of E vanishes,

Ė = ĖK + V̇ = 0 . (2.23)

(We write Ė = dE/dt for the time derivative of E, and so on.) We calculate

ĖK =
1
2
m(v̇ · v + v · v̇) = mv̇ · v = ma · v = F · v = −GMm

r3
r · v , (2.24)

and

V̇ =
GMm

r2
ṙ =

GMm

r2

r · v
r

, (2.25)

which proves Equation (2.23). In the calculation of V̇ we may use the following shortcut to
show that ṙ = r · v/r. We differentiate both sides of the identity r2 = r · r, this gives that

2rṙ = ṙ · r + r · ṙ = 2r · ṙ = 2r · v . (2.26)

We may also calculate Ė in the following way, which gives the same result, but shows
even more clearly what is really going on. Here we use Newton’s second law in the form
ma = −∇V , and we use the chain rule to calculate V̇ ,

Ė = ĖK + V̇ = mv̇ · v + (∇V ) · ṙ = (ma+∇V ) · v = 0 . (2.27)

We see that we have proved a very general result: the total (mechanical) energy E =
EK + V is a conserved quantity (a constant of motion) whenever the force field F is minus
the gradient of a potential energy function V , that is, when Newton’s second law holds in the
form ma = −∇V , and the potential energy function has no explicit time dependence, that
is, we have that V = V (r) and not V = V (r, t). We have proved this result here for one
particle, but it is easily generalized to any number of particles.
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2.3 Conservation of angular momentum

We define the angular momentum of the particle as

L = r × p = r × (mv) . (2.28)

It is easy to show that the angular momentum of a point particle is a constant of motion
when the particle is moving in a central force field, that is, when the force F always points
along r. We just compute the time derivative of L and find that it vanishes,

dL
dt

=
dr
dt
× p+ r × dp

dt
= v × p+ r × F = 0 + 0 = 0 . (2.29)

The conservation law for the vector L is actually a combination of three conservation laws,
one for each of the three components

Lx = ypz − zpy = m(yvz − zvy) ,
Ly = zpx − xpz = m(zvx − xvz) , (2.30)
Lz = xpy − ypx = m(xvy − yvx) .

Note that

L = m
r × dr

dt
. (2.31)

The length |r × dr| of the infinitesimal vector r × dr can be interpreted geometrically as
an area, it is twice the area swept out by the radius vector r during the infinitesimal time
interval dt. This shows that Kepler’s second law is a consequence of the conservation law for
angular momentum.

2.4 The general Kepler orbit

In order to find the general solution of the equation of motion for our one-particle problem,
we use the conservation laws for energy and angular momentum. We assume that L 6= 0,
because if L = 0, it means that the velocity v is along the radius vector r, so that the particle
is going to hit the point mass at the origin. A planet with zero angular momentum would
crash into the Sun.

Reduction to two dimensions

Since r · L = r · (r × p) = 0, and since L is a constant vector, we conclude that the
particle moves all the time in the plane which goes through the origin and is orthogonal to L.
Therefore we choose an (x, y, z) coordinate system with its z axis along L. In this coordinate
system, the particle moves in the (x, y) plane, it has always z = 0, and its angular momentum
components are Lx = Ly = 0, Lz = L = |L| > 0.

The position of the particle at time t is

r = x i+ y j = r cosϕ i+ r sinϕ j = r er . (2.32)
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The Cartesian coordinates (x, y) and the polar coordinates (r, ϕ) are all time dependent:
x = x(t), y = y(t), r = r(t), and ϕ = ϕ(t). We introduce the unit vector in the direction
along r,

er = cosϕ i+ sinϕ j , (2.33)

which is also time dependent, since ϕ = ϕ(t). The unit vector orthogonal to er, in the same
plane, is

eϕ = − sinϕ i+ cosϕ j . (2.34)

As usual we denote time derivatives by dots,

ṙ =
dr
dt

, ϕ̇ =
dϕ
dt

. (2.35)

We have that

ėr = −(sinϕ)ϕ̇ i+ (cosϕ)ϕ̇ j = ϕ̇ eϕ . (2.36)

With this notation the velocity is

v = ṙ = ṙ er + r ėr = ṙ er + rϕ̇ eϕ . (2.37)

Since er and eϕ are orthogonal unit vectors, we have that

v · v = ṙ2 + r2ϕ̇2 , (2.38)

and the energy is

E =
1
2
m(ṙ2 + r2ϕ̇2)− GMm

r
. (2.39)

Since

er × er = 0 , er × eϕ = k , (2.40)

the angular momentum is

L = m(r × v) = mr2ϕ̇k . (2.41)

And since we have chosen our coordinate system in such a way that L = Lz k = Lk, where
L = |L|, we have that

L = mr2ϕ̇ . (2.42)

Reduction to one dimension

Instead of using Newton’s second law directly, we use the conservation laws for the energy
E and the angular momentum L. A conservation law is a partial solution of the equation of
motion (sometimes even a complete solution), we say that it is a first integral of the equation
of motion.
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First we use the conservation law for angular momentum to express the time derivative
of the polar angle ϕ in the following way,

ϕ̇ =
L

mr2
. (2.43)

Next we eliminate ϕ̇ in the conservation law for energy, to obtain the equation

E =
1
2
mṙ2 +

L2

2mr2
− GMm

r
. (2.44)

Remember that E, L, G, M , and m are constants.
This is precisely the equation of motion for a particle in one dimension, having an “effective

potential energy”

V1d = V1d(r) =
L2

2mr2
− GMm

r
. (2.45)

In addition to the gravitational potential energy V = −GMm/r, inversely proportional to r,
there appears the so called “centrifugal potential energy” L2/(2mr2), inversely proportional
to r2.

We see that V1d → 0 as r →∞, that V1d < 0 for r > L2/(2GMm2), and that V1d → +∞
as r → 0. For a given angular momentum L the one dimensional potential energy V1d has a
minimum value at a distance r = r0 which is the solution of the equation

dV1d

dr
= − L2

mr3
+
GMm

r2
= 0 . (2.46)

Thus,

r0 =
L2

GMm2
. (2.47)

At the distance r = r0 the gravitational potential energy is

V0 = V (r0) = −GMm

r0
= −G

2M2m3

L2
. (2.48)

Adding the centrifugal energy we get the minimum value of V1d,

V1d0 = V1d(r0) =
L2

2mr 2
0

− GMm

r0
=

L2

2mr0

GMm2

L2
− GMm

r0
= −GMm

2r0
=
V0

2
. (2.49)

The special case of circular motion

Since the one dimensional kinetic energy (1/2)mṙ2 is never negative, V1d0 = V0/2 is also the
lower limit to the total energy E, given the angular momentum L. For any given value of
the energy E (with E ≥ V0/2) the distance to the origin, r, has a positive lower limit. If
E < 0 there is also an upper limit for r, which means that the particle is bound and can
never escape to infinity.

Clearly r = r0 = constant is a solution of the equation of motion such that the particle
moves in a circle. In this circular orbit the total energy is

E0 = V1d0 =
V0

2
. (2.50)
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This is an interesting result. In a circular orbit the total energy E is constant, and is
exactly half of the potential energy V , which is also constant,

E = EK + V =
V

2
. (2.51)

Another formulation of the same result is that the kinetic energy EK is half the absolute
value of the potential energy,

EK = E − V = −V
2

=
|V |
2

. (2.52)

It is actually a special case of a much more general result, called the virial theorem, which
we will prove later.

The general motion

Equation (2.44) is a first order ordinary differential equation for r as a function of t, it is
separable and can therefore be solved explicitly.

However, we get a simpler equation by means of two special tricks. The first trick is to
solve for r as a function of ϕ instead of t. By the chain rule for differentiation we get that

dr
dt

=
dr
dϕ

dϕ
dt

=
dr
dϕ

ϕ̇ =
dr
dϕ

L

mr2
. (2.53)

Hence the energy is

E =
L2

2m

(
1
r4

(
dr
dϕ

)2

+
1
r2

)
− GMm

r
. (2.54)

The second trick is to introduce a new variable

u =
1
r
. (2.55)

Since

du
dϕ

= − 1
r2

dr
dϕ

, (2.56)

the energy is

E =
L2

2m

((
du
dϕ

)2

+ u2

)
−GMmu . (2.57)

Instead of solving this equation directly, we differentiate it with respect to ϕ, and get that

0 =
L2

m

(
du
dϕ

d2u

dϕ2
+ u

du
dϕ

)
−GMm

du
dϕ

. (2.58)

To satisfy this equation we must have either du/dϕ = 0, which is once more the case of
circular motion, or else

0 =
d2u

dϕ2
+ u− GMm2

L2
. (2.59)
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The most general solution of the last equation is

u = u0 −A cos(ϕ− ϕ0) , (2.60)

where A and ϕ0 are arbitrary integration constants, and u0 is a constant which is not arbitrary,

u0 =
1
r0

=
GMm2

L2
. (2.61)

We may always choose A ≥ 0, since we get the same solution by switching the sign of
A while adding π to ϕ0. We should check explicitly that Equation (2.60) is a solution of
Equation (2.57), and we find that it is, when

E =
L2

2m

(
A2 + u 2

0

)
−GMmu0 =

L2

2m

(
A2 − u 2

0

)
. (2.62)

There are many other ways to write this expression for the energy, for example,

E =
L2

2m

(
A2 − 1

r 2
0

)
=
L2A2

2m
− GMm

2r0
. (2.63)

Equation (2.60) is the same as the equation

r =
1

u0 −A cos(ϕ− ϕ0)
=

r0

1− r0A cos(ϕ− ϕ0)
. (2.64)

We see that if 0 ≤ A < u0, or equivalently 0 ≤ r0A < 1, then r oscillates between a minimum
value, for cos(ϕ− ϕ0) = −1, and a maximum value, for cos(ϕ− ϕ0) = 1,

rmin =
r0

1 + r0A
, rmax =

r0

1− r0A
. (2.65)

This means that the particle is bound, and by Equation (2.62) the energy of a bound orbit is
negative, E < 0.

In the case of a planet orbiting the Sun, the point of minimum distance is called perihelion,
and the point of maximum distance is called aphelion. Assuming that the orbit is an ellipse,
the semi-major axis of the ellipse must be

a =
rmin + rmax

2
=

u0

u 2
0 −A2

. (2.66)

The special case A = 0 is the same circular solution that we found earlier,

r =
1
u0

= r0 =
L2

GMm2
. (2.67)

The integration constant ϕ0 is an angle which determines the orientation of the orbit in
the (x, y) plane. From now on we will assume that ϕ0 = 0, this means simply that we choose
suitable coordinate axes in the plane. Since x = r cosϕ, our solution (2.60) with ϕ0 = 0 may
be written as

r − r0Ax = r0 . (2.68)
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We will verify now that this is the equation of an ellipse when 0 < r0A < 1.
Let us derive the equation for an ellipse with one focus at the origin and the other focus

at y = 0, x = 2ea, where a is the semi-major axis and e the eccentricity of the ellipse. The
definition of an ellipse is that the sum of the distances to the two foci is constant, and the
constant is equal to 2a, twice the semi-major axis. That is, a point (x, y) on the ellipse
satisfies the equation

r +
√

(x− 2ea)2 + y2 = 2a , (2.69)

with r =
√
x2 + y2, or √

x2 − 4eax+ 4e2a2 + y2 = 2a− r . (2.70)

Squaring this equation, then subtracting the identity x2 + y2 = r2 and dividing by 4a, gives
that

r − ex = (1− e2)a . (2.71)

We see that the orbit we found, Equation (2.68), with 0 ≤ A < u0, is an ellipse with
eccentricity

e = r0A =
L2A

GMm2
(2.72)

and semi-major axis

a =
r0

1− e2
=

r0

1− (r0A)2
=

u0

u 2
0 −A2

. (2.73)

The energy and period of an elliptical orbit

The energy may now be written as a function of a alone,

E =
L2

2m

(
A2 − u 2

0

)
= − L

2

2m
u0

a
= −GMm

2a
=
V (a)

2
. (2.74)

Here V (a) = −GMm/a is the potential energy at the distance a.
Incidentally, V (a)/2 is equal to half the time average 〈V 〉 of the potential energy in the

elliptical orbit. That the energy in a bound orbit is half of the time average of the potential
energy, is again an example of the virial theorem.

The period of the elliptical orbit is

P =
∫ P

0
dt =

∫ P

0

mr2

L

dϕ
dt

dt =
m

L

∫ 2π

0
r2 dϕ =

2mA
L

, (2.75)

where A is the area of the ellipse. The integral equals 2A because the infinitesimal quantity
r2 dϕ is twice the area of an infinitesimal triangle, and all the infinitesimal triangles together
make up the ellipse.

An ellipse with semi-major axis a and semi-minor axis b = a
√

1− e2 may be regarded as
a circle of radius a which has been squeezed in one direction by a factor b/a. Therefore the
area of the ellipse is

A = πab = πa2
√

1− e2 . (2.76)
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It follows that

P 2 =
4π2m2a4(1− e2)

L2
=

4π2m2a3r0

L2
=

4π2a3

GM
, (2.77)

and this is Kepler’s third law.

The average potential energy

The time average of the potential energy of the particle in an elliptical orbit is

〈V 〉 =
1
P

∫ P

0

(
−GMm

r

)
dt = − 1

P

∫ P

0

GMm

r

mr2

L

dϕ
dt

dt = − 1
P

∫ 2π

0

GMm

r

mr2

L
dϕ

= −GMm2

PL

∫ 2π

0
r dϕ = −2GMm2

PL

∫ π

0
r dϕ = −2GMm2

PL

∫ π

0

dϕ
u0 −A cosϕ

. (2.78)

The standard trick for solving integrals like this is to introduce a new variable w = tan(ϕ/2).
This gives that

dw =
1

cos2 ϕ
2

dϕ
2

= (1 + w2)
dϕ
2
, (2.79)

and

cosϕ = 2 cos2 ϕ

2
− 1 =

2
1 + w2

− 1 =
1− w2

1 + w2
, (2.80)

Hence, ∫ π

0

dϕ
u0 −A cosϕ

=
∫ ∞

0

1(
u0 −A 1−w2

1+w2

) 2 dw
1 + w2

= 2
∫ ∞

0

dw
u0 −A+ (u0 +A)w2

=
2

u0 −A

√
u0 −A
u0 +A

∫ ∞
0

dx
1 + x2

=
π√

u 2
0 −A2

, (2.81)

where we have introduced the second new variable

x = w

√
u0 +A

u0 −A
. (2.82)

Thus,

〈V 〉 = − 2πGMm2

PL
√
u 2

0 −A2
= −2πGMm2√a

PL
√
u0

= −2πGMm2√a
2πm

√
a3

= −GMm

a
. (2.83)

2.5 The virial theorem for one particle

The virial theorem for one small pointlike mass m in the gravitational field of a large pointlike
mass M at rest at the origin is proved by computing the quantity

U = r · p = r · (mv) , (2.84)
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which is the time derivative of the moment of inertia, defined as

I =
1
2
mr2 =

1
2
m(x2 + y2 + z2) . (2.85)

Note that I is the moment of inertia about the origin, which is a point, and not about an
axis. The moment of inertia about the z axis, for example, is defined as

Iz =
1
2
m(x2 + y2) . (2.86)

First we compute the time derivative of U ,

U̇ = Ï = ṙ · p+ r · ṗ = v · p+ r · F = v · p− r · (∇V ) = 2EK + V . (2.87)

Here EK = (1/2)mv2 = (1/2)p ·v is the kinetic energy, and the quantity r ·F = −r · (∇V ) is
called the virial, hence the name of the theorem. Because the potential energy is of the form
V = −GMm/r, we have that

r · (∇V ) = r ·
(
GMm

r3
r

)
=
GMm

r3
r · r =

GMm

r
= −V . (2.88)

The relation r · (∇V ) = −V may be derived not only by direct calculation, as we just did,
but also by the following very general argument. We observe that the gravitational potential
energy

V (r) = V (x, y, z) = −GMm

r
= − GMm√

x2 + y2 + z2
(2.89)

is a homogeneous function of degree −1 of its arguments x, y, z. That is, if we scale all three
arguments by a common factor λ > 0, we have that

V (λr) = V (λx, λy, λz) = −GMm

λr
= λ−1 V (r) . (2.90)

Taking λ = 1 + ε, where ε is infinitesimal, we get first that, to first order in ε,

V (λr) = V (x+ εx, y + εy, z + εz)

= V (x, y, z) + εx
∂V (x, y, z)

∂x
+ εy

∂V (x, y, z)
∂y

+ εz
∂V (x, y, z)

∂z
(2.91)

= V (r) + ε r · ∇V (r) . (2.92)

And second, because V is a homogeneous function of degree −1,

V (λr) = (1 + ε)−1 V (r) = (1− ε)V (r) . (2.93)

Comparing these two expressions, we conclude that r · ∇V = −V .
The second step in deriving the virial theorem is to take the time average of the equation

U̇ = 2EK + V , by integrating over a time interval from t1 to t2 and dividing by t2 − t1.
Denoting the time average by brackets 〈 〉 we get that

U(t2)− U(t1)
t2 − t1

= 2〈EK〉+ 〈V 〉 . (2.94)
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The left hand side of this equation vanishes in the case where we have a periodic orbit,
and we integrate over one or more complete periods. More generally, it vanishes in the limit
of an infinitely long time interval, if the system is bound, so that neither the position vector r
nor the momentum vector p go to infinity. Note that if we do not want r to go to infinity, it
is essential that we choose carefully our inertial system, in fact we have to choose a reference
system in which the particle does not move far away.

The virial theorem, which we have now proved for one particle, is the statement that in a
system which is gravitationally bound, the time average (over a long time interval) of twice
the kinetic energy plus the potential energy is zero,

2〈EK〉+ 〈V 〉 = 0 . (2.95)

Since the total energy E = EK + V is constant, it follows that

E = 〈E〉 = 〈EK〉+ 〈V 〉 = −〈EK〉 =
〈V 〉
2

. (2.96)

We will see that the virial theorem holds for a system consisting of any number of particles,
when the whole system is gravitationally bound, and gravitation is the dominating interaction.
It has many applications in astrophysics, for example in understanding the stability of a star,
or in measuring the total mass of a star cluster or a cluster of galaxies.



Chapter 3

The two-particle problem

Now that we have solved the gravitational one-particle problem, which is the special two-
particle problem with very unequal masses, it turns out to be easy to solve the general
two-particle problem with arbitrary masses, by reducing it to the one-particle case. Thus, we
assume now that there are two pointlike masses m1 and m2, which we allow to be comparable.

3.1 The relative motion

The time dependent positions of the two particles are r1 and r2. It is convenient to introduce
the relative position, which we define as

r = r1 − r2 . (3.1)

The gravitational force on particle 1 from particle 2 is

F 12 = − Gm1m2

|r1 − r2|3
(r1 − r2) = −Gm1m2

r3
r , (3.2)

and the force on particle 2 from particle 1 is

F 21 = − Gm2m1

|r2 − r1|3
(r2 − r1) =

Gm2m1

r3
r = −F 12 . (3.3)

We asume that there are no other forces acting on the particles. Then Newton’s second
law applied to each of them gives that

F 12 = m1a1 = m1
d2r1

dt2
, F 21 = m2a2 = m2

d2r2

dt2
. (3.4)

These equations of motion are second order ordinary differential equations, one vector equa-
tion for each of the particles,

d2r1

dt2
= −Gm2

r3
r ,

d2r2

dt2
=
Gm1

r3
r . (3.5)

By subtracting them we get immediately an equation of motion for the relative position,

d2r

dt2
=

d2r1

dt2
− d2r2

dt2
= −G(m1 +m2)

r3
r = −GM

r3
r , (3.6)

20
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where we have introduced the total mass

M = m1 +m2 . (3.7)

We have chosen our notation in such a clever way that the equation we obtain is formally
exactly the same as the one-particle equation we solved above. Thus, we know already how
to solve it.

3.2 The centre of mass and conservation of momentum

By definition, the centre of mass of the two particles has the position

R =
m1r1 +m2r2

m1 +m2
=
m1r1 +m2r2

M
. (3.8)

It moves with the velocity

V =
dR
dt

=
m1v1 +m2v2

M
. (3.9)

The total momentum, which we define as

P = p1 + p2 = m1v1 +m2v2 = MV , (3.10)

is conserved, as usual, because of Newton’s second and third laws,

dP
dt

=
dp1

dt
+

dp2

dt
= F 12 + F 21 = 0 . (3.11)

The conservation of total momentum means that the centre of mass moves with a constant
velocity.

3.3 The reduced mass

Knowing the centre of mass position R and the relative position r is the same as knowing
the two particle positions r1 and r2. In fact, we find easily that

r1 = R+
m2

M
r , r2 = R− m1

M
r . (3.12)

The same relations hold for the velocities, as we find by taking the time derivatives,

v1 = V +
m2

M
v , v2 = V − m1

M
v . (3.13)

We may now compute the total kinetic energy,

EK =
1
2
m1v

2
1 +

1
2
m2v

2
2 =

1
2

(m1 +m2)V 2 +
1
2
m1m

2
2 +m 2

1 m2

M2
v2

=
1
2
MV 2 +

1
2
mv2 , (3.14)

where we have introduced the reduced mass

m =
m1m

2
2 +m 2

1 m2

M2
=
m1m2

M
=

m1m2

m1 +m2
. (3.15)
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The definition may also be written as

1
m

=
1
m1

+
1
m2

. (3.16)

Note that 2m is the harmonic mean of the two masses, since

1
2m

=
1
2

(
1
m1

+
1
m2

)
. (3.17)

Note also that m1m2 = Mm. Hence, the gravitational force between the two particles is
given by the same expression in terms of either pair of masses, either m1,m2 or M,m,

F = F 12 = −F 21 = −Gm1m2

r3
r = −GMm

r3
r . (3.18)

In summary, what we have done is to separate the two-particle problem into two indepen-
dent one-particle problems. One for the centre of mass R, which moves as a free paricle of
mass M . And one for the relative position r, which moves as a particle of mass m, subject
to the force F .

3.4 Conservation of energy

Our separation of the two-particle problem into two independent one-particle problems implies
that the total mechanical energy

E = EK + V =
1
2
m1v

2
1 +

1
2
m2v

2
2 −

Gm1m2

r
(3.19)

is conserved. We have in fact seen that we may rewrite it as

E =
1
2
MV 2 +

1
2
mv2 − GMm

r
= Ecm + Erel , (3.20)

where Ecm is the energy of the centre of mass motion, and Erel is the energy of the relative
motion,

Ecm =
1
2
MV 2 , Erel =

1
2
mv2 − GMm

r
. (3.21)

We know already that these two energies are separately conserved. However, we will now also
prove directly that the energy of the two-particle system is conserved.

The two-particle potential energy

V = V (r1, r2) = V (r) = −GMm

r
(3.22)

gives the force on each of the two particles. To see how, first recall that

r = |r1 − r2| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 . (3.23)

We now define the gradient operator (nabla operator) with respect to the coordinates of
particle 1 as

∇1 = i
∂

∂x1
+ j

∂

∂y1
+ k

∂

∂z1
, (3.24)
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and similarly for particle 2. We have for example that
∂r

∂x1
=

1
2r

2(x1 − x2) =
x1 − x2

r
,

∂r

∂x2
=

1
2r

2(x2 − x1) = −x1 − x2

r
, (3.25)

and so on, for all the partial derivatives. It follows that

∇1 r =
r1 − r2

r
=
r

r
= er ,

∇2 r =
r2 − r1

r
= −r

r
= −er . (3.26)

In this way we find that the force on each of the two particles may be written as a negative
gradient of the same potential energy,

F 12 = −GM
r3

r = −∇1V , F 21 =
GM

r3
r = −∇2V . (3.27)

The proof of energy conservation is essentially the same as in the one-particle case, again
we have to prove that the time derivative of E vanishes. We have that

Ė = ĖK + V̇ = m1a1 · v1 +m2a2 · v2 + (∇1V ) · v1 + (∇2V ) · v2

= (m1a1 +∇1V ) · v1 + (m2a2 +∇2V ) · v2 = 0 + 0 = 0 . (3.28)

Hopefully it should now be reasonably clear how to generalize the law of conservation of
mechanical energy to the case of more than two particles.

3.5 Conservation of angular momentum

The total angular momentum is the sum of the angular momenta of the two particles,

L = L1 +L2 = r1 × p1 + r2 × p2 = r1 × (m1v1) + r2 × (m2v2) . (3.29)

The proof that it is conserved is straightforward, we show directly that its time derivative
vanishes,

L̇ = ṙ1 × p1 + r1 × ṗ1 + ṙ2 × p2 + r2 × ṗ2 = 0 + r1 × F 12 + 0 + r2 × F 21

= (r1 − r2)× F 12 = 0 . (3.30)

We use Newton’s second law, that ṗ1 = F 12 and ṗ2 = F 21, Newton’s third law, that F 21 =
−F 12, and the fact that, by Newton’s law of gravitation, the force is a vector pointing along
the vector r = r1 − r2.

It is a rather natural guess that we may also split the total angular momentum as a sum
of the angular momentum of the centre of mass, defined as

Lcm = R× (MV ) , (3.31)

and the relative angular momentum, defined as

Lrel = r × (mv) . (3.32)

The proof that L = Lcm +Lrel is left as an exercise.
This decomposition leads to a second proof that L is conserved. In fact, we know that

Lcm is conserved, because it is the angular momentum of a free particle. And we also know,
from our study of the one-particle problem, that Lrel is conserved.
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3.6 The virial theorem for two particles

Generalizing from the case of one particle, we introduce the moment of inertia

I =
1
2

(m1r
2

1 +m2r
2

2 ) , (3.33)

and its time derivative,

U = İ = r1 · p1 + r2 · p2 . (3.34)

The time derivative of U in turn is

U̇ = v1 · p1 + r1 · F 12 + v2 · p2 + r2 · F 21

= m1v
2

1 − r1 · (∇1V ) +m2v
2

2 − r2 · (∇2V ) = 2EK + V . (3.35)

Here EK is the sum of the kinetic energies of the two particles, r1 · F 12 + r2 · F 21 is the two
particle virial, and V = −GMm/r is the potential energy. We have that

r1 · (∇1V ) + r2 · (∇2V ) = (r1 − r2) ·
(
GMm

r3
r

)
=
GMm

r
= −V . (3.36)

Again, the relation

r1 · (∇1V ) + r2 · (∇2V ) = −V (3.37)

follows from the general property of the potential energy

V (r1, r2) = −GMm

r
= − GMm√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
(3.38)

that it is a homogeneous function of degree −1. Scaling all six arguments x1, y1, z1, x2, y2, z2

by a common factor λ > 0 gives that

V (λr1, λr2) = −GMm

λr
= λ−1 V (r) . (3.39)

Taking λ = 1 + ε, where ε is infinitesimal, gives that

V (λr1, λr2) = V (r1, r2) + ε r1 · ∇1V (r1, r2) + ε r2 · ∇2V (r1, r2) , (3.40)

and that

V (λr1, λr2) = (1 + ε)−1 V (r1, r2) = (1− ε)V (r1, r2) . (3.41)

Comparison of these two expressions gives Equation (3.37), which we wanted to prove.
The remaining part of the derivation of the virial theorem is the same as in the one-particle

case. We take the time average of the equation U̇ = 2EK + V , and get that
U(t2)− U(t1)

t2 − t1
= 2〈EK〉+ 〈V 〉 . (3.42)

Again the left hand side of this equation vanishes if it includes one or more complete periods
of a periodic orbit, or if the system is bound and we take the limit of an infinitely long time
interval. We have to use the centre of mass reference system, in which the centre of mass is
at rest. Then we have that

2〈EK〉+ 〈V 〉 = 0 . (3.43)

And, because the total energy E = EK + V is constant,

E = 〈EK〉+ 〈V 〉 = −〈EK〉 =
〈V 〉
2

. (3.44)



Chapter 4

The many-particle problem

The gravitational many-particle problem can not be solved explicitly in a similar way as the
two-particle problem. But we may formulate the problem, and prove useful general results,
such as the conservation of energy and angular momentum, and the virial theorem.

4.1 The equations of motion

We assume now that there are N pointlike masses m1,m2, . . . ,mN acting on each other
by gravitational forces. Their time dependent positions are r1, r2, . . . , rN . Consider one of
the particles, say particle number i. The total force acting upon it, F i, is the sum of the
gravitational forces from all the other particles,

F i =
N∑
j=1
j 6=i

F ij =
N∑
j=1
j 6=i

(
− Gmimj

|ri − rj |3
(ri − rj)

)
. (4.1)

We assume that there are no forces apart from the gravitational forces, then Newton’s second
law applied to particle i gives that

d2ri
dt2

=
F i

mi
=

N∑
j=1
j 6=i

(
− Gmj

|ri − rj |3
(ri − rj)

)
. (4.2)

4.2 The centre of mass and conservation of momentum

By definition, the position of the centre of mass of the N particles is

R =
∑N
i=1miri∑N
i=1mi

=
1
M

N∑
i=1

miri , (4.3)

where M is the sum of all the masses. The centre of mass moves with the velocity

V =
dR
dt

=
1
M

N∑
i=1

mivi =
P

M
, (4.4)
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where P is the total momentum,

P =
N∑
i=1

pi =
N∑
i=1

mivi . (4.5)

The total momentum is conserved also in the many-particle case, because of Newton’s second
and third laws,

dP
dt

=
N∑
i=1

dpi
dt

=
N∑
i=1

F i = 0 . (4.6)

The sum of all forces must vanish, as a consequence of Newton’s third law. Here is a more
formal proof. We have that

N∑
i=1

F i =
N∑
i=1

N∑
j=1
j 6=i

F ij . (4.7)

There are various ways to manipulate this double sum. First let us interchange the order of
the summations, it gives that

N∑
i=1

F i =
N∑
j=1

N∑
i=1
i 6=j

F ij . (4.8)

Then we rename the summation indices, this is allowed, because the value of a sum does not
depend on the name of the summation index. Interchanging the names i and j we get that

N∑
i=1

F i =
N∑
i=1

N∑
j=1
j 6=i

F ji . (4.9)

It follows that
N∑
i=1

F i =
1
2

N∑
i=1

N∑
j=1
j 6=i

(F ij + F ji) = 0 , (4.10)

where the last equality follows from Newton’s third law.
The conservation of total momentum means that the centre of mass moves with a constant

velocity.

4.3 Conservation of energy

The gravitational force F i on particle i from all the other particles may be obtained as a
negative gradient, F i = −∇iV , of a total potential energy V . The correct definition of V
should be clear from our study of the two-particle system. In fact, the potential energy of
one pair of particles, say the particles number i and j, is the same as before,

Vij = Vij(ri, rj) = − Gmimj

|ri − rj |
. (4.11)
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And the total potential energy is a sum over all the particle pairs,

V = V (r1, r2, . . . , rN ) =
N−1∑
i=1

N∑
j=i+1

Vij =
N−1∑
i=1

N∑
j=i+1

(
− Gmimj

|ri − rj |

)
. (4.12)

The proof that F i = −∇iV is left as an exercise, it is essentially a repetition of what we did
in the two-particle case.

Obviously, the total kinetic energy is the sum of the kinetic energies of all the particles,

EK =
N∑
i=1

1
2
miv

2
i . (4.13)

And the total energy is

E = EK + V =
N∑
i=1

1
2
miv

2
i −

N−1∑
i=1

N∑
j=i+1

Gmimj

|ri − rj |
. (4.14)

To prove that it is conserved, we have to show that its time derivative vanishes, that Ė = 0.
In a similar way as in the two-particle case, we have that

Ė = ĖK + V̇ =
N∑
i=1

(miv̇i · vi + (∇iV ) · ṙi) =
N∑
i=1

(miai +∇iV ) · vi = 0 . (4.15)

4.4 Conservation of angular momentum

The total angular momentum is the sum of the angular momenta of the N particles,

L =
N∑
i=1

Li =
N∑
i=1

ri × pi . (4.16)

It is conserved, since its time derivative vanishes. In fact, we have that

L̇ =
N∑
i=1

(ṙi × pi + ri × ṗi) =
N∑
i=1

ri × F i =
N∑
i=1

ri ×
N∑
j=1
j 6=i

F ij =
N∑
i=1

N∑
j=1
j 6=i

ri × F ij . (4.17)

Newton’s third law implies that

F ij = −F ji =
1
2

(F ij − F ji) , (4.18)

and hence,

L̇ =
1
2

N∑
i=1

N∑
j=1
j 6=i

(ri × F ij − ri × F ji) . (4.19)

By the old trick of changing the order of summations and the names of summation variables
we get that

N∑
i=1

N∑
j=1
j 6=i

ri × F ji =
N∑
j=1

N∑
i=1
i 6=j

ri × F ji =
N∑
i=1

N∑
j=1
j 6=i

rj × F ij , (4.20)
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and hence,

L̇ =
1
2

N∑
i=1

N∑
j=1
j 6=i

(ri − rj)× F ij = 0 . (4.21)

To get the last equality we use that the two-body force F ij is central, that is, it points along
the vector ri − rj .

Also in the N -particle case we may split the total angular momentum as

L = Lcm +Lrel , (4.22)

defining the angular momentum of the centre of mass as

Lcm = R× P = R× (MV ) , (4.23)

and then defining the relative angular momentum as

Lrel = L−Lcm =
N∑
i=1

(ri −R)× pi . (4.24)

We see from this formula that Lrel is the angular momentum relative to the centre of mass.
In the absence of external forces, Lcm is conserved, because it is the angular momentum of a
free particle. Since the total angular momentum L is conserved, it follows that the relative
angular momentum Lrel is conserved.

4.5 The virial theorem for N particles

The N -particle moment of inertia is defined by the obvious generalization as

I =
N∑
i=1

mir
2
i . (4.25)

We compute its first and second time derivatives,

U = İ =
N∑
i=1

ri · pi , (4.26)

and

U̇ =
N∑
i=1

(vi · pi + ri · F i) =
N∑
i=1

(
miv

2
i − ri · (∇iV )

)
= 2EK + V . (4.27)

Here EK is the sum of the kinetic energies of the N particles,
∑
i ri · F i is the N particle

virial, and V is the total potential energy, as defined in Equation (4.12).
Like before, in the one- and two-particle cases, the relation

N∑
i=1

ri · (∇iV ) = −V (4.28)
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may be proved directly, or we may use that the potential energy V is a homogeneous function
of degree −1,

V (λr1, λr2, . . . , λrN ) = λ−1 V (r, r2, . . . , rN ) . (4.29)

Taking λ = 1 + ε, where ε is infinitesimal, gives that

V (λr1, λr2, . . . , λrN ) = V (r, r2, . . . , rN ) + ε
N∑
i=1

ri · ∇iV (r, r2, . . . , rN ) , (4.30)

and that

V (λr1, λr2, . . . , λrN ) = (1− ε)V (r, r2, . . . , rN ) . (4.31)

Comparison of these two expressions gives Equation (4.28).
Exactly as before, we conclude that if we take the time average over one or more complete

periods of a periodic motion, or if the system is bound and we take the limit of an infinitely
long time interval, then

2〈EK〉+ 〈V 〉 = 0 . (4.32)

It is understood that we use the centre of mass reference system, in which the centre of mass is
at rest and does not wander off to infinity. Because the total energy E = EK +V is constant,
we have that

E = 〈EK〉+ 〈V 〉 = −〈EK〉 =
〈V 〉
2

. (4.33)

If we want to test the virial theorem by observing a cluster of galaxies, for example, we
should really observe and average over millions of years, or even hundreds of millions of years.
Since that is impossible, we simply assume that the kinetic and potential energies we observe
now, at a random moment in the history of the galaxy cluster, are reasonable estimates for
the averages that go into the virial theorem.

4.6 The central temperature of the Sun

The virial theorem has, for example, a direct application in understanding the stability of the
Sun. The material in the Sun is a gas, consisting mostly of free electrons, protons and helium
nuclei. It can be reasonably well described by the ideal gas law,

PV = NkBT , (4.34)

where P is the pressure, V the volume of the gas, N the number of gas particles, T the
temperature, and kB = 1.38 10−23 J/K is Boltzmann’s constant. The temperature and the
density vary of course much from the centre of the Sun and out to the surface, thus the
surface temperature of Ts = 5800 K is essentially zero compared to the central temperature
of Tc = 1.5 106 K. It is nevertheless meaningful to talk about an average temperature T ,
which will be just a little bit lower than the temperature at the centre, where most of the
mass is concentrated.
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The Sun is a very stable system, it has existed already some 4.5 109 years in essentially
the same state. This can happen because it is gravitationally bound, and there exists a
stable equilibrium between the gravitational force, directed inwards, and the pressure, directed
outwards. The pressure is essentially that of an ideal gas, which is entirely due to the kinetic
energy of the gas particles. The average kinetic energy of one particle is

Eav =
EK
N

=
3
2
kBT . (4.35)

When energy is radiated away from the surface of the Sun, the internal pressure is maintained
by conversion of nuclear energy into kinetic energy. The total gravitational potential energy
of the Sun is

V = −a
GM 2

�
R�

, (4.36)

where a is a numerical factor close to 1. In particular, a = 3/5 in the case of a spherical mass
distribution of uniform density. Clearly, a > 3/5 in the case of the Sun, since there is a strong
concentration of the mass towards the centre.

The stability of the Sun means that the virial theorem 2EK + V = 0 applies, that is,

2NEav =
aGM 2

�
R�

. (4.37)

Here M� = 2.0 1030 kg is the mass and R� = 7.0 108 m the radius of the Sun. It seems a rea-
sonable guess to take the numerical factor a = 1. Thus, we estimate the average temperature
of the Sun to be

T =
aGM 2

�
3NkBR�

≈
GM 2

�
3NkBR�

=
GM�m

3kBR�
. (4.38)

The ratio M�/N = m is the average mass of the gas particles. The gas consists mainly of
hydrogen and helium, about 3/4 of the mass is hydrogen, and 1/4 is helium. This means
that, on the average, for every 12 free protons, each of mass mp = 1.67 10−27 kg, we have one
helium nucleus, of mass approximately 4mp, and 14 electrons, each of mass me = 9.1 10−31 kg,
altogether 27 particles. Since most of the matter in the Sun is completely ionized, most of
the electrons are free and not bound in atoms. It follows that the average particle mass is

m ≈ 16mp

27
. (4.39)

Hence,

T ≈ 16GM�mp

81kBR�
=

16 · 6.67 10−11 N m2 kg−2 2.0 1030 kg 1.67 10−27 kg
81 · 1.38 10−23 J/K 7.0 108 m

= 4.6 106 K . (4.40)

Remember that this is an estimate of the average temperature of the Sun, and the tem-
perature at the centre must be somewhat higher. It is actually about three times as high,
according to the “standard solar model”. But we see that the estimate we arrived at gives
a rather good idea about the central temperature of the Sun. It must be around ten million
kelvin, it must be, for example, higher than one million kelvin, and lower than one hundred
million kelvin.
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4.7 Gravitational stability of a gas cloud

Imagine a spherical gas cloud of radius R, containing N particles of average mass m, having
a uniform mass density ρ (mass per volume), and a uniform temperature T . The total mass
of the cloud is then

M = Nm =
4π
3
ρR3 . (4.41)

The total kinetic energy is

EK =
3
2
NkBT , (4.42)

and the total gravitational potential energy is

V = −3
5
GM2

R
. (4.43)

According to the virial theorem, the equation 2EK + V = 0, that is,

3NkBT −
3
5
GM2

R
= 0 , (4.44)

is a necessary condition for gravitational equilibrium of the cloud. We may write this equation
in several equivalent ways, for example,

kBT =
GM2

5NR
=
GMm

5R
=

4π
15

GmρR2 =

(
4πρM2

3

) 1
3 Gm

5
. (4.45)

We should remember that this is only a global equilibrium condition. In addition to the global
condition, there must hold everywhere a local equilibrium condition. In particular, it is also
necessary for equilibrium that the pressure increases towards the centre of the cloud in such
a way that it balances the gravitational attraction between all parts of the cloud. When the
pressure increases towards the centre, the density must also increase.

If equation (4.44) does not hold, then we know immediately that the cloud is not in
gravitational equilibrium. For example, if the temperature is too high for a given mass,
radius and density, then the kinetic energy is too large for equilibrium, and the cloud must
expand. If the temperature is too low, then the cloud must contract as a whole due to internal
gravitational forces, because the gas pressure is too low to resist the contraction. Thus, there
exists a critical temperature TJ , called the Jeans temperature, given by a formula similar to
equation (4.38),

TJ =
GMm

5kBR
=

4π
15kB

GmρR2 =

(
4πρM2

3

) 1
3 Gm

5kB
. (4.46)

The condition for instability against contraction, T < TJ , may be written in several equivalent
ways. For example, if the temperature T and density ρ are given, the instability condition is
that R > RJ , where RJ is a critical radius, the Jeans radius,

RJ =

√
15kBT
4πGρm

, (4.47)
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or equivalently that M > MJ , where MJ is the Jeans mass,

MJ =
4π
3
ρR 3

J =

√
3

4πρ

(
5kBT
Gm

)3

. (4.48)

If we take it for granted that the cloud is going to reach a state where it is in gravitational
equilibrium, an entirely different question is whether this equilibrium state will be stable or
unstable. The virial theorem indicates that it will be stable, by the following reasoning, which
is not a strict proof of stability. In order to investigate the stability, we have to ask what
happens if the system is perturbed just a little bit away from equilibrium.

We know that the total energy E is a constant of motion of the gas cloud, unless energy
is supplied to it or removed from it by interaction with the environment. One important
mechanism for removing energy is thermal radiation. However, it takes time to radiate away a
substantial amount of energy, perhaps a hundred thousand years for a gas cloud of stellar mass,
and on a shorter time scale the energy E is constant, to a good approximation. Hence, any
perturbation away from the equilibrium state which is physically realizable on a reasonably
short time scale must take the cloud into a state of the same total energy E. What need not
hold in the perturbed state is the virial theorem, thus we may have either 2EK + V > 0 or
2EK + V < 0.

If the perturbed state has

EK + E = 2EK + V > 0 , (4.49)

then this is a state where the kinetic energy EK is larger than in an equilibrium state of total
energy E. When the kinetic energy is too large for the cloud to be in gravitational equilibrium,
it will expand. As a result of the expansion, the potential energy, which is always negative,
increases towards zero, that is, it changes from V to V +∆V , with ∆V > 0. Since E = EK+V
is constant, the kinetic energy changes from EK to EK + ∆EK , where ∆EK = −∆V < 0.
Consequently, 2EK + V changes by the amount 2∆EK + ∆V = −∆V < 0, approaching the
equilibrium value of zero.

If, on the other hand, the perturbed state has

EK + E = 2EK + V < 0 , (4.50)

then it means that the kinetic energy EK is smaller than in an equilibrium state of energy
E, and the cloud will contract. As a result, the potential energy becomes more negative,
changing from V to V + ∆V , with ∆V < 0. Since E = EK + V is still constant, we have
that ∆EK = −∆V > 0, and 2EK + V changes by the amount 2∆EK + ∆V = −∆V > 0,
again approaching the equilibrium value of zero. This reasoning is a strong indication, if not
a complete proof, that the equilibrium condition 2EK + V = 0 is stable.

The equilibrium condition

2EK + V = 0 (4.51)

and the energy equation

E = EK + V (4.52)

together imply that

EK = −E , V = 2E . (4.53)
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Hence, as long as E is constant, the potential energy V must also be constant, which means
that the cloud can neither expand nor contract. The only way that the cloud is able to
contract slowly, on a longer time scale, while maintaining its gravitational equilibrium on
the shorter time scale, is that it slowly radiates away its energy E. The paradoxical result
when the negative energy E is reduced, is that the negative potential energy V = 2E is
also reduced, which means that the cloud contracts, and that the kinetic energy EK = −E
increases, which means that the average temperature increases. The only way to halt or
to reverse the contraction, at least temporarily, is to convert nuclear energy, or some other
nongravitational form of energy, into kinetic energy, as is done inside the Sun.

We see that a gas in gravitational equilibrium has the strange property that when it radi-
ates away energy, its temperature increases. In other words, it has a negative heat capacity.

This process, in which a cloud of gas slowly contracts under its own gravitation, radiating
away energy, and simultaneously being heated until the central temperature becomes high
enough that thermonuclear reactions can start, is how stars are born.



Chapter 5

Non-interacting particles in
quantum mechanics

5.1 One particle in a one dimensional box

The non-relativistic particle in a box is one of the standard problems in quantum mechanics.
The energy of the particle is only its kinetic energy

EK =
1
2
mv2 =

p2

2m
, (5.1)

where m is the mass, v the velocity, and p = mv the momentum of the particle.
The very simplest case is one particle in one dimension, with position x, confined to a

box of length L. An energy eigenstate of the particle is a solution of the time independent
Schrödinger equation (h = 2πh̄ is Planck’s constant)

− h̄2

2m
ψ′′(x) = E ψ(x) (5.2)

for 0 ≤ x ≤ L, with boundary conditions ψ(0) = ψ(L) = 0. The energy eigenfunctions are

ψ(x) = ψn(x) =
√

2
L

sin(kx) with k =
nπ

L
, n = 1, 2, 3, . . . , (5.3)

and the corresponding energy eigenvalues are

E = En =
h̄2k2

2m
=
n2π2h̄2

2mL2
=

n2h2

8mL2
. (5.4)

These wave functions are normalized such that∫ L
0

dx |ψn(x)|2 = 1 . (5.5)

Note that the energy eigenstates are not momentum eigenstates, since the wave function
sin(kx) is a superposition,

sin(kx) =
1
2i

(eikx − e−ikx) , (5.6)

34
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of two momentum eigenstates e±ikx having momentum eigenvalues p = ±h̄k = ±nh/L. This
corresponds to the classical picture that the particle is bouncing back and forth between the
boundaries x = 0 and x = L.

We see that if we pick a momentum interval −p1 to p1, with p1 = n1h/L > 0, then the
number of energy eigenstates with momentum p between −p1 and p1 is

N = n1 =
2p1L
h

. (5.7)

In this formula, 2p1 is the length of the momentum interval, and L is the length of the one
dimensional box. Hence, the number of states is

N =
W
h
, (5.8)

where W = 2p1L is the phase space volume (or phase space area in this case), equal to
the product of the volumes in momentum space and in ordinary space. Of course, a one
dimensional volume is a length, and a two dimensional volume is an area.

5.2 A three dimensional box

The generalization from one to three dimensions is straightforward. The three dimensional
time independent Schrödinger equation is

− h̄2

2m
∇2ψ(x, y, z) = E ψ(x, y, z) , (5.9)

for 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz, with boundary conditions ψ(x, y, z) = 0 for x = 0,
x = Lx, y = 0, y = Ly, z = 0, z = Lz. The solutions are

ψ(x, y, z) = ψnx,ny ,nz(x) =

√
8

LxLyLz
sin(kxx) sin(kyy) sin(kzz) , (5.10)

with

kj =
njπ

Lj
, nj = 1, 2, 3, . . . , j = x, y, z , (5.11)

and with the energy eigenvalues

E = Enx,ny ,nz =
h̄2(k 2

x + k 2
y + k 2

z )
2m

=
h2

8m

(
n 2
x

L 2
x

+
n 2
y

L 2
y

+
n 2
z

L 2
z

)
. (5.12)

Again, the energy eigenstates are not momentum eigenstates, in this case the wave function
is a superposition of 8 momentum eigenstates ei(±kxx±kyy±kzz) having momentum components
px = ±h̄kx, py = ±h̄ky, pz = ±h̄kz. Which is just what we would expect from the classical
picture that the particle is bouncing between the walls of the box.

We see that if we pick a rectangular box in momentum space, with

−p1 ≤ px ≤ p1 , −p2 ≤ py ≤ p2 , −p3 ≤ pz ≤ p3 , (5.13)



CHAPTER 5. NON-INTERACTING PARTICLES IN QUANTUM MECHANICS 36

and with

p1 =
n1h

Lx
, p2 =

n2h

Ly
, p3 =

n3h

Lz
, (5.14)

then the number of energy eigenstates with momentum inside the box is again proportional
to the phase space volume W,

N = n1n2n3 =
(2p1Lx)(2p2Ly)(2p3Lz)

h3
=
W
h3

. (5.15)

We may formulate our result in the following way. Let V = LxLyLz be the volume of
the box containing the particle. Then the number of states in an infinitesimal volume d3p in
momentum space is

dN =
V
h3

d3p . (5.16)

Spin degeneracy

So far we have not taken into account the spin of the particle. A three dimensional particle
may have spin s = 0, 1/2, 1, 3/2, . . ., and for a given momentum there are gs = 2s+1 different
spin states. The number of states including the spin degeneracy factor is

dN = gs
V
h3

d3p . (5.17)

Note that photons have spin s = 1 but a spin degeneracy factor of gs = 2 instead of
gs = 2s+ 1 = 3. In fact, a plane polarized photon of momentum p has a polarization vector
ε which is orthogonal to p, and there are only two such orthogonal directions. The fact that
gs = 2 for photons is related to the fact that photons have zero mass.

5.3 Bosons and fermions

Three dimensional particles are either bosons or fermions. The spin–statistics theorem is a
fundamental result in quantum field theory, stating that particles of integer spin are bosons,
and particles of half-integer spin are fermions. Thus, photons have spin 1 and are bosons,
whereas electrons, protons, neutrons and neutrinos all have spin 1/2 and are fermions.

When two identical particles in a physical system are bosons, then the many-particle wave
function must be symmetric under interchange of the arguments of the wave function referring
to these two particles (an argument of the wave function is typically a position together with
a spin component along some axis). When two identical particles are fermions, then the wave
function must be antisymmetric under interchange.

To compute a many-particle wave function is a difficult problem in general, and it does
not become easier because the wave function is required to be either symmetric or antisym-
metric under interchange of arguments. However, if the particles do not interact with each
other, the problem simplifies very much, because the many-particle problem reduces to just
a one-particle problem. To construct a many-particle energy eigenfunction we may simply
multiply together one-particle energy eigenfunctions, one for each particle, and symmetrize
or antisymmetrize afterwards. We get the many-particle energy eigenvalue as a sum of one-
particle energy eigenvalues. The assumption of non-interacting particles is often useful, not
only because it simplifies a problem, but also because it is a more or less good approximation
to reality.
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Equilibrium states

The properties of a system of non-interacting particles follow from the very simple rules
that one given one-particle state may be occupied by an arbitrary number n = 0, 1, 2, . . . of
identical bosons, but only by n = 0 or n = 1 fermion of one given species.

The rule that n = 0 or n = 1 for fermions is the Pauli exclusion principle.
An equilibrium state of a system of one single species of identical particles is characterized

by two parameters. One parameter is the temperature T . The other parameter is either the
number of particles, N , if this is fixed, or else the chemical potential µ for this particle species,
if N is not fixed. The chemical potential for non-interacting particles may be understood as
a zero level for the one-particle energy.

Non-interacting bosons

Given the temperature T and the chemical potential µ, the probablity of having n = 0, 1, 2, . . .
identical non-interacting bosons in a given one-particle quantum state of energy E is

Pn = e−
n(E−µ)
kT (1− e−

E−µ
kT ) = wn(1− w) , (5.18)

in terms of the Boltzmann factor

w = e−
E−µ
kT . (5.19)

Here k = kB is Boltzmann’s constant. The sum of these probabilities is
∞∑
n=0

Pn = (1− w) + (w − w2) + (w2 − w3) + · · ·+ (wn − wn+1) + · · · = 1 . (5.20)

The average number of particles in the one-particle state, the occupation number, is

f =
∞∑
n=0

nPn = (w − w2) + 2(w2 − w3) + · · ·+ n(wn − wn+1) + · · ·

=
∞∑
n=1

wn =
w

1− w
=

1

e
E−µ
kT − 1

. (5.21)

Non-interacting fermions

The occupation probabilities for fermions are given by the same Boltzmann factor w,

P0 =
1

1 + w
=

1

1 + e−
E−µ
kT

, P1 =
w

1 + w
=

1

e
E−µ
kT + 1

, (5.22)

with P0 + P1 = 1. We see that P0 = P1 = 1/2 for E = µ, whereas P0 < 1/2 < P1 for E < µ
and P1 < 1/2 < P0 for E > µ.

The average number of particles in the state, the occupation number or occupation frac-
tion, is

f =
1∑

n=0

nPn = P1 =
w

1 + w
=

1

e
E−µ
kT + 1

. (5.23)

The zero temperature limit is particularly simple. Then the occupation fraction is f = 1
for E < µ and f = 0 for E > µ. In other words, all one-particle states below the Fermi
energy EF = µ are occupied, and all states above the Fermi energy are empty.
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5.4 The photon gas

Photons are bosons that interact very little with each other, hence the above theory applies
directly to the photon gas. The electromagnetic field does not interact with itself, at least to
a first approximation, because Maxwell’s equations are linear in the electromagnetic field.

Another simplification is that µ = 0, the chemical potential of photons is zero. This
follows from the fact that photons are their own antiparticles, by an argument which we do
not present here.

Photons move with the speed of light, they are the most relativistic particles of all. But
this will not prevent us from using the above formula for the number N of one-particle states
in a volume V, which we derived for non-relativistic particles. The formula is indeed valid,
by another argument which we do not give here.

The energy of a photon of frequency ν is E = hν = pc, where p = |p|, and p is the photon
momentum. From the above results, we obtain the following formula for the number density
n of the photon gas, the number of photons per volume,

dn =
f dN
V

=
1

e
E
kT − 1

gs
h3

d3p =
2
h3

1

e
E
kT − 1

d3p . (5.24)

We introduce polar coordinates p, θϕ for the momentum p, and write

d3p = p2 dp d(cos θ) dϕ =
h3ν2

c3
dν dΩ . (5.25)

In this way we rewrite the number density of photons as

dn =
2ν2

c3

1

e
hν
kT − 1

dν dΩ . (5.26)

The energy density of the photon gas is

dε = E dn = hν dn =
2hν3

c3

1

e
hν
kT − 1

dν dΩ . (5.27)

The Stefan–Boltzmann radiation law

In order to derive the Stefan–Boltzmann law, we compute the total energy of the photons
crossing an area A in a time interval dt. Let the area be perpendicular to the z-axis, and con-
sider photons with frequency ν and velocity components vx = c sin θ cosϕ, vy = c sin θ sinϕ,
vz = c cos θ. These photons pass through the given area in the time interval from t to t+ dt
if at time t they are inside a certain volume of size

dV = Avz dt = Ac cos θ dt . (5.28)

The number of photons is dn dV, and their energy is dε dV. The energy flux F is the energy
per area and per time,

dF =
dε dV
A dt

=
2hν3

c3

1

e
hν
kT − 1

dν dΩ c cos θ . (5.29)
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The energy flux integrated over all angles, with the restriction that vz = c cos θ > 0, and
over all frequences, is

F =
∫ ∞

0
dν
∫ 1

0
d(cos θ)

∫ 2π

0
dϕ

2hν3

c3

1

e
hν
kT − 1

c cos θ =
∫ ∞

0
dν

2πhν3

c2

1

e
hν
kT − 1

. (5.30)

To compute the last integral, we change integration variable to

u =
hν

kT
, (5.31)

and get that

F =
2πh
c2

(
kT

h

)4 ∫ ∞
0

du
u3

eu − 1
. (5.32)

We may compute the integral as follows,∫ ∞
0

du
u3

eu − 1
=
∫ ∞

0
du

u3 e−u

1− e−u
=
∫ ∞

0
du u3

∞∑
k=1

e−ku =
∞∑
k=1

6
k4

=
π4

15
, (5.33)

and the following trick is useful,∫ ∞
0

du u3 e−ku =
(
− d

dk

)3 ∫ ∞
0

du e−ku =
(
− d

dk

)3 1
k

=
6
k4

. (5.34)

The final result is the Stefan–Boltzmann law for black body radiation. It gives the energy
flux radiated from a black surface of temperature T as

F = σT 4 , (5.35)

where σ is the Stefan–Boltzmann constant,

σ =
2π5k4

15h3c2
= 5.67 10−8 W/(m2 K4) . (5.36)

5.5 The non-relativistic degenerate fermion gas

In order to understand the behaviour of matter in compact stars, the simplified model of a
degenerate gas of non-interacting fermions is very useful. We neglect the interactions between
the particles, because this enables us to compute the equation of state analytically. As we have
seen, we obtain the quantized energy levels of the many-particle system simply by computing
the one-particle energies and adding them.

In neutron stars, and in the central regions of white dwarf stars, the electrons have rel-
ativistic energies, i.e. velocities close to c, the speed of light. The atomic nuclei, and the
neutrons and protons, are non-relativistic even in neutron stars. Here we will treat the non-
interacting degenerate electron gas non-relativistically, the relativistic degenerate electron gas
is outside our scope.

In a gas of non-interacting fermions, any quantum state of the one-particle system is either
empty or filled, the number of particles in the state is either zero or one. The fermion gas is
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said to become degenerate in the limit of zero temperature, T → 0, then all states up to a
given energy

EF =
p 2
F

2m
(5.37)

are filled, and all states above this energy are empty. Here EF = µ is the Fermi energy, or
chemical potential, and pF is called the Fermi momentum.

The number of energy levels below the Fermi energy EF is

NF = gs
W
h3

= gs
V
h3

4πp 3
F

3
, (5.38)

where W is the phase space volume, equal to the product of the volume V in ordinary space,
and the volume 4πp 3

F /3 of a sphere of radius pF in momentum space.
In this formula there is a spin degeneracy factor gs = 2s + 1. Thus, gs = 2 for electrons

and for neutrons, having s = 1/2. The factor of 2 appears because the spin component along
an arbitrary axis, often chosen to be the z axis, is either +h̄/2, this is called “spin up”, or
−h̄/2, called “spin down”.

Thus, the particle density in the degenerate electron gas, the number of electrons per
volume, is

n =
NF
V

=
8πp 3

F

3h3
=

8π(2mEF )
3
2

3h3
. (5.39)

This expression may also be written as an integral,

n =
8π
h3

∫ pF

0
p2 dp , (5.40)

meaning that the contribution to the particle density n from the particles with absolute value
of the momentum between p and p+ dp is

dn =
8π
h3

p2 dp . (5.41)

Since a particle with momentum in this interval has energy E = p2/(2m), we get the following
expression for the energy density,

ε =
8π
h3

∫ pF

0

p2

2m
p2 dp =

4πp 5
F

5h3m
=

3
5
EF n . (5.42)

This means that the average energy per particle is 3/5 of the Fermi energy.
The pressure P of the degenerate electron gas is minus the derivative of the energy E = εV

with respect to the volume V,

P = −dE
dV

= − dε
dV
V − ε . (5.43)

We let the volume change by dV while keeping the number of particles, N = nV, constant,
thus we have that

0 = dN = dnV + n dV , (5.44)
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or,

dV
V

= −dn
n
. (5.45)

Hence the pressure is

P = n
dε
dn
− ε . (5.46)

The energy density ε as a function of the number density n is

ε =
3
5
EF n =

3
5
p 2
F

2m
n =

3
10m

(
3h3n

8π

) 2
3

n =
3h2

40m

(
3
π

) 2
3

n
5
3 . (5.47)

Taking the logarithm, we get that

ln ε = constant +
5
3

lnn , (5.48)

and hence, by differentiation,

dε
ε

=
5
3

dn
n
. (5.49)

It follows that

n
dε
dn

=
5
3
ε , (5.50)

and the pressure is

P =
2
3
ε =

2
5
EF n =

h2

20m

(
3
π

) 2
3

n
5
3 = 2.337 10−38 N m3 n

5
3 . (5.51)

The numerical factor in this formula is obtained when the particle mass m is taken to be the
electron mass.

This relation should be compared to the familiar ideal gas law

PV = NkT , (5.52)

or, when we introduce the number density n = N/V,

P = nkT . (5.53)

This law predicts that the pressure goes to zero when the gas is cooled to zero temperature.
In reality the electron gas will become degenerate when the temperature is sufficiently low,
and the pressure can never be lower than the degeneration pressure given in equation (5.51).
In order to estimate the degeneration temperature Td, at which the gas becomes degenerate,
we set the ideal gas pressure nkTd equal to the degeneration pressure, and the temperature
we then get is

Td =
1
nk

h2

20m

(
3
π

) 2
3

n
5
3 =

h2

20mk

(
3n
π

) 2
3

= 1.693 10−15 K m2 n
2
3 . (5.54)
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Again, the numerical factor is obtained by taking m to be the electron mass.
The densities of matter that we encounter in everyday life are of the order of a few

thousand kg/m3. For every electron in such matter there is exactly one proton, to make the
total electric charge equal to zero, and approximately one neutron, thus the mass per electron
is close to two atomic mass units, 2u = 3.3 10−27 kg. Thus, the electron density, for a mass
density of 103 kg/m3, the density of water, is

n =
103 kg/m3

3.3 10−27 kg
= 3.0 1029 m−3 . (5.55)

For this electron density the degeneration temperature is 76 000 K. Clearly the solid and
liquid matter surrounding us is degenerate.

However, the air we breath is much thinner, its density is about 1000 times smaller,
implying that the degeneration temperature should be 100 times smaller, only 760 K. This
is still a rather high degeneration temperature, in contradiction to the fact that air is not at
all a degenerate gas. On the contrary, its equation of state is well represented by the ideal
gas law. We have to admit that it is too crude an approximation to treat air as a gas of free
electrons. In fact the electrons are not free, they are bound in atoms, and so it is a better
approximation to insert in equation (5.54) the atomic mass rather than the electron mass.

At the centre of the Sun, the mass density is 160 times the density of water, and then the
degeneration temperature for the electron gas is 2.3 106 K. Since the central temperature of
the Sun is around 15 106 K, the gas there is not quite degenerate.



Chapter 6

Compact stars: white dwarfs and
neutron stars

White dwarfs and neutron stars are extreme objects, where the matter densities, gravitational
fields, magnetic fields, and everything else are extreme. It may seem strange, therefore, that
the structure of a white dwarf is rather easy to understand theoretically, at lest on a basic level.
The conditions inside and around a neutron star are much more extreme and complicated,
and by no means understood in every detail.

The surfaces of many white dwarfs and most neutron stars are hot in comparison with
ordinary stars. Nevertheless, all such compact stars are cold, in a certain sense, and may
even be treated as objects of zero temperature. The reason is that the matter density is so
high that the average kinetic energy of the particles is much higher than the thermal energy
kBT (as usual, kB is Boltzmann’s constant and T is the temperature). Matter under such
conditions is said to be degenerate.

6.1 White dwarfs

The pressure keeping a white dwarf in hydrostatic equilibrium is supplied mainly by degen-
erate electrons. We may derive an approximate relation between the mass M and radius
R of a white dwarf by assuming uniform density. We also assume that the electrons are
non-relativistic. This model is of course oversimplified, but nevertheless gives some useful
insight.

In the approximation that the electrons form a non-interacting degenerate gas with Fermi
momentum pF , the electron density (the number of electrons per volume) is

ne =
8πp 3

F

3h3
. (6.1)

The total number of electrons, in the uniform density model, is

Ne = ne
4πR3

3
. (6.2)

It is believed that the atomic nuclei found in many white dwarfs are mostly 12C and 16O.
In that case there are the same number of both protons, neutrons and electrons, hence the
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mass per electron, disregarding nuclear binding energies, is mp +mn +me ≈ 2mp, so that the
total mass of the star is M = 2mpNe.

The virial theorem,

2EK + V = 0 . (6.3)

must hold even for a white dwarf. In this case the kinetic energy EK is mainly the kinetic
energy of the degenerate electrons, and since the average kinetic energy of one electron is 3/5
of the Fermi energy EF , we take

EK =
3
5
EFNe . (6.4)

The gravitational potential energy of a sphere of uniform density is

V = −3
5
GM2

R
. (6.5)

Hence, the virial theorem relates the Fermi energy to the mass and radius of the white dwarf,

EF =
5
3
EK
Ne

= −5
3

V

2Ne
=
GM2

2RNe
=
GMmp

R
. (6.6)

But the Fermi energy is also related to the electron density, as follows,

EF =
p 2
F

2me
=

1
2me

(
3neh3

8π

) 2
3

=
h2

8me

(
3ne
π

) 2
3

, (6.7)

and using the relation

ne =
3Ne

4πR3
=

3M
8πmpR3

, (6.8)

we get that

EF =
h2

32meR2

(
9M
π2mp

) 2
3

. (6.9)

Equating the two expressions for the Fermi energy, equations (6.6) and (6.9), we get the
following expression for the radius as a function of the mass,

R =
3h2

32πGme

(
3

πm 5
pM

) 1
3

. (6.10)

Since the volume of the white dwarf is V = 4πR3/3 we see that, in our oversimplified
model assuming constant density, the mass times volume is the same for all white dwarfs,

MV =

(
3h2

32πGme

)3
4
m 5
p

. (6.11)

Remember that we assumed here that the electrons are non-relativistic.
It turns out that in a white dwarf of one solar mass or more, the electrons start becoming

relativistic. Because the pressure of a relativistic degenerate electron gas increases more
slowly with density than does the pressure of a non-relativistic gas, there is an upper limit to
the mass a white dwarf can have without collapsing. This limit is the famous Chandrasekhar
mass of 1.4 times the solar mass.



Appendix A

Units, vectors, and other notation

A.1 Units

A general rule is that if a physical unit is the name of a person, then it is either written
abbreviated as a capital (or with the first letter in capital if the abbreviation has more than
one letter), or written in full with no capital. Examples: N = newton, J = joule, C = coulomb,
A = ampere. There is no plural “s” ending in unit names: 10 second, not 10 seconds; 6 newton,
not 6 newtons.

The unit of time, the second, s, is defined by the frequency of electromagnetic waves that
are in resonance with the hyperfine transition in cesium atoms. This resonance frequency is
by definition

ν0 = 9 192 631 770 s−1 = 9 192 631 770 Hz . (A.1)

This is a good operational definition, because it is possible to build an electric circuit oscillat-
ing with this frequenecy, and tune it very accurately to be in resonance with cesium atoms.
Then one measures time by counting oscillations.

The speed of light in vacuum,

c = 299 792 458 m/s . (A.2)

is exact because it defines the meter, m, as the unit of length.

A.2 Basic notation

This section is a summary of some standard notation.
Time is usually denoted by the symbol t.
A position in three dimensional space is specified by three coordinates (x, y, z), measured

along three orthogonal axes. The coordinates have the dimension of length.
Vectors are written here in boldface, but when writing by hand it is easier to use vector

arrows. Thus, A and ~A are two notations for the same vector. A vector in general may
have any number of components, but our vectors will usually have three components. The
components of the three dimensional vector A are called (Ax, Ay, Az).

The unit vectors along the three orthogonal (x, y, z) coordinate axes are called i, j, k, or
in handwriting ~i, ~j, ~k. In general, a vector A is a linear combination of the basis vectors,

A = Ax i+Ay j +Az k . (A.3)
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The point in space with coordinates (x, y, z) is represented as a position vector

r = x i+ y j + z k . (A.4)

If r is the time dependent position of a pointlike particle, r = r(t), then the first and
second time derivatives of the position are respectively the velocity v and the acceleration a,

v =
dr
dt

, a =
dv
dt

=
d2r

dt2
. (A.5)

It is often convenient to denote a time derivative by a dot, thus we write

v = ṙ , a = v̇ = r̈ . (A.6)

All of these equations are vector equations. The equation

v = vx i+ vy j + vz k = ṙ = ẋ i+ ẏ j + ż k , (A.7)

for example, consists of the three separate equations

vx = ẋ , vy = ẏ , vz = ż . (A.8)

Scalar and vector products of vectors

The scalar product (dot product, inner product) of two vectors A = Ax i + Ay j + Az k and
B = Bx i+By j +Bz k is defined as

A ·B = AxBx +AyBy +AzBz . (A.9)

The scalar product is symmetric, or commutative, A ·B = B ·A. The length of the vector
A is written as |A|, or A, and the length squared is

A2 = |A|2 = A2 = A ·A = A 2
x +A 2

y +A 2
z . (A.10)

Two vectors A and B are orthgonal if A ·B = 0. The vector A is a unit vector, or normal
vector, if it has unit length, |A| = 1. Two or more vectors are orthonormal if they are all
unit vectors, and if any two of them are orthogonal.

The vector product (cross product, outer product) of the same two vectors is defined as

A×B = (AyBz −AzBy) i+ (AzBx −AxBz) j + (AxBy −AyBx)k . (A.11)

The vector product is antisymmetric, or anticommutative, A×B = −B ×A. In particular,
the antisymmetry relation A×A = −A×A has the unique solution A×A = 0: the vector
product of a vector with itself vanishes.

Note that the vector product is not associative, unlike other products we are used to. For
example, i× (i× j) = i× k = −j 6= (i× i)× j = 0× j = 0. Thus we have in general that

A× (B ×C) 6= (A×B)×C . (A.12)

The scalar product is also not associative, for the simple reason that an expression like
A · (B ·C) is meaningless. The scalar product B ·C of the two vectors B and C is a scalar,
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not a vector, and a scalar product between a vector and a scalar, such as A · (B ·C), has no
meaning.

The triple product

A · (B ×C) = Ax(ByCz −BzCy) +Ay(BzCx −BxCz) +Az(BxCy −ByCx) (A.13)

is completely antisymmetric, for example, A · (B ×C) = −A · (C ×B), and

A · (B ×C) = (A×B) ·C = −(B ×A) ·C = −B · (A×C) . (A.14)

Hence, A · (B ×C) = 0 whenever two of the three vectors are either equal or proportional.
The triple product may also be defined as a determinant,

A · (B ×C) =

∣∣∣∣∣∣∣
Ax Bx Cx
Ay By Cy
Az Bz Cz

∣∣∣∣∣∣∣ . (A.15)

The geometric interpretation of the scalar product is that A ·B = AB cosα, where α is
the angle between the two vectors. The length of the vector product, in terms of the same
angle, is

|A×B| = AB sinα . (A.16)

This is the area of the parallelogram spanned by the two vectors, that is, with the two vectors
as two of its sides. The triple product is the (positive or negative) volume of the parallelepiped
spanned by the three vectors.

A.3 Scalar and vector fields

A scalar is either one number, or a physical quantity such that when it is measured, the result
will be one number times a physical unit. The important point is that a scalar has only one
component, as opposed to a vector, which has (usually) three components.

A scalar field φ is a function having a scalar value φ(x, y, z, t) = φ(r, t) at any given
position r at any given time t. Similarly, a vector field A is a function having a vector value
A(x, y, z, t) = A(r, t) at the position r at the time t. Very often, when we speak of a scalar
or a vector, we actually mean a scalar field or a vector field.

As an example from meteorology, the temperature distribution in the atmosphere is a
scalar field, whereas the distribution of wind velocities is a vector field.

A.4 Differentiation

If f = f(x) is a function of one variable x, then the derivative of f with respect to x is defined
as

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)
∆x

. (A.17)

We also write

f ′ =
df
dx

. (A.18)
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A third notation for differentiation is the dot for the time derivative, as introduced above.
We write differentiation with respect to x as d/dx when x is the only variable. If f =

f(x, y, z) is a function of the three variables x, y, z, then we write the partial differentiation
with respect to one variable x, for fixed values of y and z, as

∂f(x, y, z)
∂x

= lim
∆x→0

f(x+ ∆x, y, z)− f(x, y, z)
∆x

. (A.19)

The three partial derivatives of f with respect to x, y and z may be regarded as the compo-
nents of a vector, the gradient of f , defined as

∇f =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k . (A.20)

The gradient vector at one point is orthogonal to the level curve of f (the curve along which
f is constant) going through this point. It points in the direction in which f is increasing the
fastest, and its length is the rate of increase of f in this direction.

We may think of ∇ (called “nabla”, or “del”) as an operator,

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (A.21)

producing a vector field ∇f when it acts on a scalar field f .

The chain rule

Assume, for example, that f is a function of one variable x, which in turn is a function of t,
so that f is also a function of t. The chain rule tells us how to differentiate f = f(x(t)) with
respect to t,

df
dt

=
df
dx

dx
dt

. (A.22)

If g is a function of three variables x, y, x, all of which are functions of t, so that g is in the
end a function of the single variable t, then the t derivative of g = g(x(t), y(t), z(t)) is

dg
dt

=
∂g

∂x

dx
dt

+
∂g

∂y

dy
dt

+
∂g

∂z

dz
dt

. (A.23)

In this formula we write the time derivatives as d/dt, because we differentiate functions of one
single variable t, whereas we write the x derivative as ∂/∂x, because it applies to a function
depending not only on x, but also on two other variables y and z. The first kind of derivative,
applying to functions of one variable, is called a total derivative, and the second kind, applying
to functions of several variables, is called a partial derivative.

In vector notation we write the same formula as above, i.e. the chain rule for the function
g = g(r(t)), in the following way,

dg
dt

= (∇g) · dr
dt

=
dr
dt
· ∇g . (A.24)

If g is a function of the four variables x, y, z, t, and if all four of these are functions of a
fifth variable u, so that g = g(x(u), y(u), z(u), t(u)), then by the same chain rule as above we
have that

dg
du

=
∂g

∂x

dx
du

+
∂g

∂y

dy
du

+
∂g

∂z

dz
du

+
∂g

∂t

dt
du

=
dr
dt
· ∇g +

∂g

∂t

dt
du

. (A.25)
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In the specaial case t = u we will have that

dg
dt

=
∂g

∂x

dx
dt

+
∂g

∂y

dy
dt

+
∂g

∂z

dz
dt

+
∂g

∂t

dt
dt

=
dr
dt
· ∇g +

∂g

∂t
. (A.26)

In this case there is an important difference between the partial time derivative ∂g/∂t, which
applies to only the fourth argument of the function g = g(x, y, z, t), and the total time
derivative dg/dt, which applies also to the time dependence of the first three arguments
x, y, z.



Appendix B

The Coriolis and centrifugal forces

We will derive here the extra terms that appear in Newton’s second law if our coordinate
system is not inertial, but is rotating relative to an inertial system. Let e1, e2, e3 be unit
vectors in the rotating system, and let i, j,k be unit vectors in an inertial system with the
same origin.

For simplicity, we consider first the special case of rotation about the z-axis with angular
velocity Ω. It is useful to define the angular velocity as a vector along the rotation axis,

Ω = Ωk = Ωe3 . (B.1)

We take the unit vector e3 = k to be fixed relative to the inertial system, whereas the two
unit vectors e1 and e2 rotate,

e1 = cos(Ωt) i+ sin(Ωt) j ,
e2 = − sin(Ωt) i+ cos(Ωt) j . (B.2)

The position of a particle is given by coordinates x, y, z relative to the rotating coordinate
system, so that the position vector is

r = x e1 + y e2 + z e3 . (B.3)

By definition, the velocity and acceleration relative to the rotating coordinate system are

v = ẋ e1 + ẏ e2 + ż e3 (B.4)

and

a = ẍ e1 + ÿ e2 + z̈ e3 , (B.5)

with ẋ = dx/dt, ẍ = d2x/dt2, and so on.
In order to apply Newton’s second law we need the acceleration relative to the inertial

system. The velocity relative to the inertial system is

vis = ṙ = ẋ e1 + ẏ e2 + ż e3 + x ė1 + y ė2 + z ė3 = v + Ω× r , (B.6)

since

ė1 = −Ω sin(Ωt) i+ Ω cos(Ωt) j = Ωe2 = Ω× e1 ,

ė2 = −Ω cos(Ωt) i− Ω sin(Ωt) j = −Ωe1 = Ω× e2 , (B.7)
ė3 = 0 = Ω× e3 .
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In a similar way we find that

v̇ = ẍ e1 + ÿ e2 + z̈ e3 + ẋ ė1 + ẏ ė2 + ż ė3 = a+ Ω× v . (B.8)

The acceleration relative to the inertial system is

ais = v̇is = v̇ + Ω× ṙ = a+ 2 Ω× v + Ω× (Ω× r) . (B.9)

We have to remember the assumption we made that the rotation axis goes through the origin.
This implies that Ω× r0 = 0 for any r0 on the rotation axis, and hence

ais = a+ 2 Ω× v + Ω× (Ω× (r − r0)) . (B.10)

In this form the formula is generally valid for an arbitrary angular velocity Ω and a rotation
axis going through the point r0, which is also arbitrary.

Newton’s second law holds in the inertial system, it tells us that

F = mais . (B.11)

The force F is called Newtonian, because it determines the motion of the particle relative to
the inertial system. In terms of the acceleration a relative to the rotating system, Newton’s
second law takes the form

F = m (a+ 2 Ω× v + Ω× (Ω× (r − r0))) . (B.12)

Moving two terms from the right hand to the left hand side, we obtain the equation

F − 2mΩ× v −mΩ× (Ω× (r − r0))) = ma . (B.13)

The two extra terms in the equation of motion that appear when we use a rotating coordinate
system, are here interpreted as forces, called fictitious forces. They are both proportional to
the particle mass m. The velocity dependent term −2mΩ×v is called the Coriolis force. The
term −mΩ× (Ω× (r − r0))) is called the centrifugal force, it is proportional to the distance
from the rotation axis and is directed away from the axis.



Appendix C

Electromagnetism

C.1 Electromagnetic units

Unfortunately, we have to live with at least three different electromagnetic unit systems.
We use here the SI system, also called MKSA because it has the basic units meter, kilogram,
second and ampere. Many authors use instead the Gaussian or the Heaviside–Lorentz system.

In all three unit systems, Coulomb’s law for the force between two point charges q1 and
q2 at a distance r, in vacuum, is written as

F = k
q1q2

r
. (C.1)

In the MKSA system there is the proportionality constant

k =
1

4πε0
. (C.2)

In the Gaussian system we have simply

k = 1 , (C.3)

whereas in the Heaviside–Lorentz system we have

k =
1

4π
. (C.4)

Another main difference between the three unit systems is in the expression for the Lorentz
force, as described below.

C.2 The electromagnetic field

The electromagnetic field consists of the electric field

E = Ex i+ Ey j + Ez k (C.5)

and the magnetic flux density

B = Bx i+By j +Bz k . (C.6)
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We write E = E(r, t) and B = B(r, t), because the fields are functions of the position r and
the time t. E and B are vector fields, each with three components, Ex, Ey, Ez and Bx, By, Bz.

We may measure all the six field components, at least in principle, by measuring the force
on a pointlike electric charge q which is located at the position r at the time t, and is moving
with a velocity v. The force F acting on the point charge from the electromagnetic field is
called the Lorentz force, and is given in the MKSA system by the formula

F = q (E(r, t) + v ×B(r, t)) . (C.7)

Thus, the magnetic field acts on moving charges, but not on charges at rest.
We see from the formula for the Lorentz force that the fields E and B have different

dimensions in the MKSA unit system. In both the Gaussian and the Heaviside–Lorentz
system these two fields have the same dimension, and we have to compensate for that by
writing the Lorentz force as

F = q

(
E(r, t) +

1
c
v ×B(r, t)

)
. (C.8)

C.3 Maxwell’s equations

The sources of the electromagnetic field are the electric charge density and the electric current
density.

We will denote the electric charge density by ρ = ρ(r, t). It has the dimension of charge
per volume, and it depends on position and time. Hopefully, the confusion will not be too
large because we use the same symbol ρ elsewhere to denote mass density.

The electric current density, denoted by J = J(r, t), has the dimension of charge per area
and per time. It also depends on position and time. By definition, n · J(r, t) is the charge
passing through a given surface, per area and per time, at the position r and at the time t,
when n is the unit normal vector at that point on the surface.

The electromagnetic field is determined from its sources by Maxwell’s equations,

(I) ∇ ·B = 0 ,

(II) ∇×E +
∂B

∂t
= 0 ,

(III) ∇ ·D = ρ , (C.9)

(IV) ∇×H − ∂D

∂t
= J .

The field quantities going into Maxwell’s equations are the electric and magnetic fields E and
H, and the electric and magnetic flux densities D = ε0E and B = µ0H.

Both ε0 and µ0 are constants of nature that have defined values in the MKSA unit system.
ε0 is the permittivity of vacuum, and µ0 is the permeability of vacuum. The definition of µ0

defines the ampère, A, as the unit of electric current. The two constants are related by the
speed of light, defined to be c = 299 792 458 m/s, and their values are

µ0 = 4π 10−7 N/A2 ,

ε0 =
1

µ0c2
= 8.854 187 817 . . . 10−12 F/m . (C.10)
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The four Maxwell’s equations (I), (II), (III), and (IV) are actually eight equations, because
the equations (II) and (IV) are vector equations. A vector equation has three components,
hence it actually represents three equations, one equation for each vector component.

In the equations (III) and (IV) the electric charge density and electric current density
appear on the right hand sides as sources of the field. There are no such sources on the right
hand sides of the equations (I) and (II), they are source free equations, and the reason is that
magnetic charges have never been observed.

The electromagnetic scalar and vector potentials

We obtain the general solution of Maxwell’s equations (I) and (II) by introducing the scalar
potential Φ = Φ(r, t) and the vector potential A = A(r, t), and then writing

B = ∇×A ,

E = −∇Φ− ∂A

∂t
. (C.11)

C.4 Electromagnetic waves

One particular type of solutions of Maxwell’s equations, in a region where there are no free
electric charges acting as sources of the field, so that ρ = 0 and J = 0, are the plane wave
solutions, of the form

Φ(r, t) = 0 , A(r, t) = ε cos(ωt− κ · r + ϕ0) . (C.12)

A plane wave is characterized by an angular frequency ω, a wave vector, or wave number
vector, κ, and a polarization vector ε. In addition, we may introduce an arbitrary constant
phase angle ϕ0. The length of the wave vector, κ = |κ|, is called the wave number.

The period of oscillation of the plane wave is ∆t = 2π/ω, this is the time in which the
phase ωt− κ · r + ϕ0 increases by 2π, at a fixed position r. The frequency is

ν =
1

∆t
=

ω

2π
. (C.13)

The equation

ωt− κ · r + ϕ0 = constant (C.14)

defines a surface of constant phase, which at a given time t is a plane perpendicular to the
wave vector κ. The plane is moving in the direction of its unit normal vector

n =
κ

κ
, (C.15)

with a velocity ω/κ. The fact that the surfaces of constant phase are planes, is of course the
reason for the name plane wave. By definition, the phase changes by −2π if we go one wave
length λ along the normal vector n, that is, κ · (λn) = λκ = 2π, so that the wave length is

λ =
2π
κ
. (C.16)



APPENDIX C. ELECTROMAGNETISM 55

Maxwell’s equations impose restrictions on the quantities ω, κ and ε. Define

f = cos(ωt− κ · r + ϕ0) ,
f ′ = − sin(ωt− κ · r + ϕ0) , (C.17)
f ′′ = − cos(ωt− κ · r + ϕ0) = −f ,

so that A = εf . Since the gradient of f is ∇f = −κf ′, the magnetic flux density is

B = ∇×A = (∇f)× ε = (−κf ′)× ε = −κ× ε f ′ = κ× ε sin(ωt− κ · r + ϕ0) . (C.18)

The electric field is

E = −∇Φ− ∂A

∂t
= −ωε f ′ = ωε sin(ωt− κ · r + ϕ0) . (C.19)

Maxwell’s equation (III) with charge density ρ = 0 says that

0 = ∇ ·E = ∇ · (−ωε f ′) = −ω(∇f ′) · ε = −ω(−κf ′′) · ε = ω(κ · ε)f ′′ . (C.20)

It imposes the condition

κ · ε = 0 . (C.21)

That is, the polarization vector ε has to be orthogonal to the wave vector κ. We say that
plane electromagnetic waves are transversely polarized.

The other condition comes from Maxwell’s equation (IV) with current density J = 0,

∇×H − ∂D

∂t
= 0 . (C.22)

Multiplying with µ0 and using the relation µ0ε0 = 1/c2, we get the equation

∇×B − 1
c2

∂E

∂t
= 0 . (C.23)

Since B = −κ× ε f ′ and E = −ωε f ′, we get that

∇×B = −(∇f ′)× (κ× ε) = κ× (κ× ε) f ′′ = −κ2ε f ′′ , (C.24)

and

∂E

∂t
= −ω2ε f ′′ . (C.25)

We see that Maxwell’s equation (IV) holds if

ω = cκ . (C.26)
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Dispersion

The relation between the wave length and frequency, or equivalently between the wave num-
ber κ and angular frequency ω, is called the dispersion relation. The phase velocity of the
electromagnetic wave is equal to the speed of light,

ω

κ
= c , (C.27)

independent of the wave number. In other words, there is no dispersion.
The absence of dispersion is a property of electromagnetic waves in vacuum. However,

perfect vacuum exists nowhere, even in interstellar space there are some atoms floating around,
and the dispersion of radio waves travelling hundred of light years may be noticable. For
example, in the case of a pulsar with a period of around one millisecond, the dispersion may
smear out the pulses so much that when the signal arrives at the Earth, no pulses are observed
directly. To see the pulses, one has to Fourier transform the signal and apply corrections for
the different time delays of different frequencies.



Appendix D

English and Norwegian terminology

The Norwegian terminology is not always a straightforward translation from English (or vice
versa). Some of the less obvious translations are collected here.

English to Norwegian

angular momentum — dreieimpuls, impulsmoment.

angular resolution — vinkeloppløsning.

angular velocity — vinkelhastighet.

brightness or apparent brightness (of a star, unit W/m2) — lysstyrke; tilsynelatende
lysstyrke.

Circle, Arctic Circle, Antarctic Circle (66.5◦ north or south latitude) — polarsirkel,
nordlige polarsirkel, sørlige polarsirkel.

constellation — stjernebilde.

eclipse (solar e., lunar e.) — formørkelse (solf., m̊anef.).

equinox (vernal equinox, autumnal equinox) — jevndøgn (v̊arjevndøgn, høstjevn-
døgn).

fictitious force (non-Newtonian force, present in an accelerated reference frame, not
subject to Newton’s 3rd law) — fiktivkraft.

focal length, focal point (of a lens or a mirror) — brennvidde, brennpunkt (for en
linse eller et speil).

latitude and longitude — breddegrad og lengdegrad.

limb darkening (we see the Sun darkening towards the edge) — randfordunkling.

luminosity (of a star, unit W) — luminositet; absolutt lysstyrke.

magnitude (dimensionless measure of the brightness of a star) — størrelsesklasse.
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absolute magnitude (dimensionless measure of the luminosity) — absolutt størrelses-
klasse.

the main sequence (in a Hertzsprung–Russell (HR) diagram) — hovedserien.

mean free path — midlere fri veilengde.

momentum — impuls (bevegelsesmengde, massefart).

objective, eyepiece (of a telescope) — objektiv, okular (til et teleskop).

power (physical quantity, energy per time, unit W) — effekt.

right ascension and declination (celestial coordinates) — rektasensjon og deklinasjon.

Tropic; Tropic of Cancer; Tropic of Capricorn (23.5◦ north or south latitude) —
vendesirkel; nordlige vendesirkel, Krepsens vendesirkel; sørlige vendesirkel, Steinbukkens
vendesirkel.

Norwegian to English

breddegrad og lengdegrad — latitude and longitude.

brennvidde, brennpunkt (for en linse eller et speil) — focal length, focal point (of
a lens or a mirror).

dreieimpuls, impulsmoment — angular momentum.

effekt (fysisk størrelse, energi pr. tid, enhet W) — power.

fiktivkraft (ikke-Newtonsk kraft, opptrer i et akselerert referansesystem, oppfyller ikke
Newtons 3. lov) — fictitious force.

formørkelse (solf., m̊anef.) — eclipse (solar e., lunar e.).

hovedserien (i et Hertzsprung–Russell (HR) diagram) — the main sequence.

impuls (bevegelsesmengde, massefart) — momentum.

jevndøgn (v̊arjevndøgn, høstjevndøgn) — equinox (vernal equinox, autumnal equi-
nox).

luminositet eller absolutt lysstyrke (til en stjerne, enhet W) — luminosity.

lysstyrke eller tilsynelatende lysstyrke (til en stjerne, enhet W/m2) — brightness.

midlere fri veilengde — mean free path.

objektiv, okular (til et teleskop) — objective, eyepiece (of a telescope).

polarsirkel, nordlige polarsirkel, sørlige polarsirkel (66,5◦ nordlige eller sørlige
breddegrad) — Circle, Arctic Circle, Antarctic Circle.

randfordunkling (at solskiven ser mørkere ut nærmere kanten) — limb darkening.
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rektasensjon og deklinasjon (himmelkoordinater) — right ascension and declination.

stjernebilde — constellation.

størrelsesklasse (dimensjonsløst m̊al for lysstyrken til en stjerne) — magnitude.

absolutt størrelsesklasse (dimensjonsløst mål for luminositeten) — absolute magnitude.

vendesirkel; nordlige vendesirkel, Krepsens vendesirkel; sørlige vendesirkel,
Steinbukkens vendesirkel (23.5◦ nordlige eller sørlige breddegrad) — Tropic; Tropic
of Cancer; Tropic of Capricorn.

vinkelhastighet — angular velocity.

vinkeloppløsning — angular resolution.


