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Integration and Multiplication

Let f , g : [0,T]→ R two continuous functions.

What does it mean to define the integral∫ T

0
fr ġr dr

when f , g are not differentiable ?

Important example: g = B with (Bt)t≥0 a Brownian motion.

Starting point of the Rough Paths theory (Terry Lyons, Massimiliano
Gubinelli).

Example of a more general problem: given a distribution (ġ) and a
non-smooth function ( f ), how can we define their product? Namely a
distribution f ġ.
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Local approximation

If g is of class C1, then we define

It :=

∫ t

0
fr ġr dr, t ∈ [0,T].

Then we have I0 = 0 and for 0 ≤ s ≤ t ≤ T

It − Is − fs(gt − gs) =

∫ t

s
( fr − fs) ġr dr = o(|t − s|).

We write

I0 = 0, It − Is = fs(gt − gs) + Rst, Rst = o(|t − s|).

These properties characterise (It)t∈[0,T], since if we have I1 and I2 then
setting I12 := I1 − I2

|I12
t − I12

s | = o(|t − s|)

which implies I12 constant.
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Local approximation

Let us still study the formula

I0 = 0, It − Is = fs(gt − gs) + Rst, Rst = o(|t − s|).

If we compute for 0 ≤ s ≤ u ≤ t ≤ T

Rst − Rsu − Rut = ( fu − fs)(gt − gu)

which does not depend on I.

Therefore the existence of I is equivalent to the existence of R such that
the above formula holds.
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A cochain complex

Les us define for n ≥ 1

∆n := {(t1, . . . , tn) ∈ [0,T]n : t1 ≤ · · · ≤ tn},

Cn := {f : ∆n → R continuous},

δn : Cn → Cn+1, (δn f )t1...tn+1 =

n+1∑
k=1

(−1)n+2−k ft1... tk\ ...tn+1 .

Then we have
I δn+1 ◦ δn ≡ 0 (exercise!)
I if g ∈ Cn+1 and δn+1 g = 0, then g = δn f with f ∈ Cn (exercise!).

In particular we have an exact cochain complex

R→ C1
δ1−→ C2

δ2−→ C3
δ3−→ · · ·
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Local approximation

Therefore, existence of I ∈ C1 such that
I I0 = 0,
I (δ1 I)st = fs(gt − gs) + o(|t − s|), where (δ1 I)st = It − Is,

is equivalent to the existence of R ∈ C2 such that
I (δ2 R)sut = ( fu − fs)(gt − gu), where (δ2 R)sut = Rst − Rsu − Rut,
I Rst = o(|t − s|).

Gubinelli calls I the integral, Ast := fs(gt − gs) the germ, and Rst the
remainder.
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The sewing lemma

For α > 0 and h ∈ Cn we set

‖h‖α := sup
(t1,...,tn)∈∆n

|h(t1, . . . , tn)|
|tn − t1|α

and we say that h ∈ Cαn if ‖h‖α < +∞. We also set Cα+
n := ∪β>αCβn .

Theorem (Gubinelli)
There exists a unique map Λ : C1+

3 ∩ δ2C2 → C1+
2 such that

δ2Λ = idC1+
3 ∩ δ2C2

. Moreover Λ satifies for all α > 1

‖ΛB‖α ≤ Kα‖B‖α, B ∈ C1+
3 ∩ δ2C2.

Proof.
See the first lecture sheet of MG
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A first application: Young integration

Theorem
If f ∈ Cα, g ∈ Cβ (standard Hölder spaces) with α+ β > 1 then there
exists a unique pair (I,R) ∈ Cβ × Cα+β

2 such that

I0 = 0, It − Is = fs(gt − gs) + Rst.

The map
Cα × Cβ 3 ( f , g)→ I ∈ Cβ

is the unique continuous extension of

C1 × C1 3 ( f , g)→
∫ •

0
f ġ du ∈ C1.
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Proof

I Existence. Setting Ast := fs(gt − gs) ∈ Cβ2 , we already know that
(δ2A)sut = −( fu − fs)(gt − gu), 0 ≤ s ≤ t ≤ T , so that

|(δ2A)sut| ≤ C |u− s|α|t − u|β ≤ C |t − s|α+β.

Setting R := −Λδ2A ∈ Cα+β
2 then A + R ∈ Cβ2 and

δ2(A + R) = δ2A− δ2Λδ2A = 0, so that A + R = δ1I with I ∈ Cβ .
I Uniqueness. If I1, I2 then |I12

t − I12
s | = o(|t − s|).

I Continuity. The estimate

‖I‖Cβ . ‖ f‖Cα‖g‖Cβ

follows from

‖Λδ2A‖α+β ≤ Kα+β‖δ2A‖α+β, δ2A ∈ Cα+β
3 ∩ δ2C2.

in the Sewing Lemma.
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Dyadic approximation

Let us consider for tn
i := i2−nT and n ≥ 0

In
t =

2n∑
i=1

1(tni≤t) Atni−1tni .

Then, since tn+1
2i = tn

i ,

|In
t − In+1

t | =
∣∣∣∣∣

2n∑
i=1

1(tni≤t)

(
Atni−1tni − Atn+1

2i−2tn+1
2i−1
− Atn+1

2i−1tn+1
2i

)∣∣∣∣∣
≤

2n∑
i=1

∣∣∣(δ2A)tn+1
2i−2tn+1

2i−1tn+1
2i

∣∣∣ . 2−n(α+β−1)

which is summable. Then we obtain that In
t → It as n→ +∞ (see

again MG )
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If α = β > 1/2

Theorem
If f , g ∈ Cα, with α > 1/2 then there exists a unique pair
(I,R) ∈ Cα × C2α

2 such that

I0 = 0, It − Is = fs(gt − gs) + Rst.

In the above situation, we write

It =: I[0,t]( f , g) =:

∫ t

0
f dg.

Then uniqueness yields the Integration by parts formula

I[0,t]( f , g) + I[0,t](g, f ) = ftgt − f0g0,

since

ftgt − fsgs︸ ︷︷ ︸
It−Is

= fs(gt − gs) + gs( ft − fs)︸ ︷︷ ︸
Ast

+ ( ft − fs)(gt − gs)︸ ︷︷ ︸
Rst

.
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If α = β ≤ 1/2

However, if α = β ≤ 1/2 then neither existence nor uniqueness.

This problem is revelant for stochastic integration and SDEs:

Xt = X0 +

∫ t

0
σ(Xs) dBs

with (Bt)t≥0 a standard Brownian motion.

In particular, we can not apply the Sewing Lemma to the germ
Ast := fs(gt − gs) since 2α ≤ 1 and therefore in general δ2A /∈ C1+

3 .

We need to change the germ A in such a way that δ2A ∈ C1+
3 .
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Modifying the germ

Note that the result of the integration map is supposed to satisfy

It − Is = fs(gt − gs) + Rst, R ∈ C2α
2 .

Then we could assume that also f satisfies

ft − fs = f ′s (gt − gs) + R′st, R′ ∈ C2α
2 .

If Y ∈ C2 is such that (δ2Y)sut = (gu − gs)(gt − gu), setting

Ast := fs(gt − gs) + f ′s Yst,

then

(δ2A)sut = − ( fu − fs − f ′s (gu − gs))︸ ︷︷ ︸
R′su

(gt − gu) ∈ C3α
3 .

If 1/3 < α ≤ 1/2 we are in the setting of the Sewing Lemma.
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Rough paths

For g ∈ Cα, we want Y ∈ C2 such that (δ2Y)sut = (gu − gs)(gt − gu).

In fact, for g : [0,T]→ R it is enough to set Yst := 1
2(gt − gs)

2, since
(a + b)2 − a2 − b2 = 2ab.

This is a natural choice, which moreover shows how much all this is
related to generalised Taylor expansions.

However it is not the only possible choice, nor necessarily the most
desirable. As we’ll see below, Itô integration is not covered by this
setting.

In fact, for any such Y we can set Y ′ := Y + δ1h and Y ′ still has the
desired property.

Note that Yst = 1
2(gt − gs)

2 belongs to C2α
2 . For reasons which will be

clear later, we require this property for all Y .
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Rough and controlled paths

Let us summarise: given α ∈ ]1/3, 1/2] and g ∈ Cα, we call a pair
(g,Y) ∈ Cα × C2α

2 a Rough Path if

(δ2Y)sut = (gu − gs)(gt − gu), 0 ≤ s ≤ u ≤ t ≤ T.

A pair ( f , f ′) ∈ Cα × Cα is controlled by g if

| ft − fs − f ′s (gt − gs)| . |t − s|2α.

We denote by D2α
g the space of paths controlled by g.
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Integration of controlled paths

In this setting, we can apply the Sewing Lemma to the germ
Ast := fs(gt − gs) + f ′s Yst and define the integral I ∈ Cα such that

δ1I = A− Λδ2A, I0 = 0.

Then the integration map acts (continuously) on controlled paths

D2α
g 3 ( f , f ′) 7→ (I, f ) ∈ D2α

g .
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Brownian motion in R

Let us suppose that g ≡ B, a standard Brownian motion in R. Then for
all α < 1/2, a.s. B ∈ Cα. We fix α ∈ ]1/3, 1/2].

We set Yst = 1
2(Bt − Bs)

2. For all α < 1/2, a.s. Y ∈ Cα2 .

A path controlled by B is ( f , f ′) ∈ Cα × Cα such that

| ft − fs − f ′s (Bt − Bs)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

For all such ( f , f ′) there exists a unique I ∈ Cα such that I0 = 0 and

|It − Is − fs(Bt − Bs)− f ′s Yst| . |t − s|3α, 0 ≤ s ≤ t ≤ T.

Moreover

|It − Is − fs(Bt − Bs)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

If the Stratonovich integral
∫ •

0 fs ◦ dBs is well defined, it is equal to I.
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Brownian motion in R

Let us suppose that g ≡ B, a standard Brownian motion in R. Then for
all α < 1/2, a.s. B ∈ Cα. We fix α ∈ ]1/3, 1/2].

We set Yst = 1
2 [(Bt − Bs)

2 − (t − s)]. For all α < 1/2, a.s. Y ∈ Cα2 .

A path controlled by B is ( f , f ′) ∈ Cα × Cα such that

| ft − fs − f ′s (Bt − Bs)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

For all such ( f , f ′) there exists a unique I ∈ Cα such that I0 = 0 and

|It − Is − fs(Bt − Bs)− f ′s Yst| . |t − s|3α, 0 ≤ s ≤ t ≤ T.

Moreover

|It − Is − fs(Bt − Bs)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

If the Itô integral
∫ •

0 fs dBs is well defined, it is equal to I.
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Multi-dimensional (rough) paths

It is important to extend the above setting to functions g : [0, T]→ Rd.

If α ∈ ]1/3, 1/2] and g ∈ Cα, we call (gi,Y ij, 1 ≤ i, j ≤ d), with
(gi,Y ij) ∈ Cα × C2α

2 a Rough Path if for all i, j

(δ2Y ij)sut = (gi
u − gi

s)(gj
t − gj

u), 0 ≤ s ≤ u ≤ t ≤ T.

We say that ( f , f ′i) ∈ Cα × (Cα)d is controlled by g if

| ft − fs −
∑

i

f ′is (gi
t − gi

s)| . |t − s|2α.

We denote by D2α
g the space of paths controlled by g.

In this setting, we can apply the Sewing Lemma to the germ
Aj

st := fs(gj
t − gj

s) +
∑

i f ′is Y ij
st and define the integral Ii ∈ Cα such that

δ1Ij = Aj − Λδ2Aj, Ij
0 = 0.
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Multi-dimensional (rough) paths

First, this allows to cover SDEs in Rd

Xt = X0 +

∫ t

0
σ(Xs) dBs, X,B ∈ C([0,T];Rd), σ : Rd → Rd ⊗Rd.

Furthermore, the situation is more insteresting and complicated, since
there is no canonical choice for the off-diagonal terms

(δ2Y ij)sut = (gi
u − gi

s)(gj
t − gj

u), i 6= j.

It is always possible to find Y ij ∈ C2 satisfying this, take e.g.
Y ij

st = −gi
s(gj

t − gj
s). However in general this choice does not satisfy the

analytical requirement Y ij ∈ C2α
2 .

Therefore existence of Rough Paths over a path g : [0,T]→ Rd is not
obvious.
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Brownian motion in Rd

Let us suppose that gi ≡ Bi, with B = (B1, . . . ,Bd) a standard
Brownian motion in Rd. We fix α ∈ ]1/3, 1/2].

We set Y ij
st =

∫ t
s (Bi

u − Bi
s) ◦ dBj

u. For all α < 1/2, a.s. Y ∈ C2α
2 (not

obvious).

A path controlled by B is ( f , f ′) ∈ Cα × (Cα)d such that

| ft − fs −
∑

i

f ′is (Bi
t − Bi

s)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

For all such ( f , f ′) there exists a unique I ∈ (Cα)d such that I0 = 0 and

|Ij
t − Ij

s − fs(Bj
t − Bj

s)−
∑

i

f ′is Y ij
st| . |t − s|3α, 0 ≤ s ≤ t ≤ T.

If the Stratonovich integral
∫ •

0 fs ◦ dBs is well defined, it is equal to I.
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Brownian motion in Rd

Let us suppose that gi ≡ Bi, with B = (B1, . . . ,Bd) a standard
Brownian motion in Rd. We fix α ∈ ]1/3, 1/2].

We set Y ij
st =

∫ t
s (Bi

u − Bi
s) dBj

u. For all α < 1/2, a.s. Y ∈ C2α
2 (not

obvious).

A path controlled by B is ( f , f ′) ∈ Cα × (Cα)d such that

| ft − fs −
∑

i

f ′is (Bi
t − Bi

s)| . |t − s|2α, 0 ≤ s ≤ t ≤ T.

For all such ( f , f ′) there exists a unique I ∈ (Cα)d such that I0 = 0 and

|Ij
t − Ij

s − fs(Bj
t − Bj

s)−
∑

i

f ′is Y ij
st| . |t − s|3α, 0 ≤ s ≤ t ≤ T.

If the Itô integral
∫ •

0 fs dBs is well defined, it is equal to I.
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Remarks

I In the Young situation (α > 1/2), f and g play symmetric rôles.
The integral is a bilinear functional

I If α ≤ 1/2, the pair (g, Y) is a non-linear object by the constraint
on δ2Y .

I In particular, rough paths are non-linear objects. This is where
algebra gets into the picture.

I On the other hand, for a fixed rough path, controlled paths form a
linear space and the integral is a linear functional.

I The off-diagonal terms Y ij
st =

∫ t
s (Bi

u − Bi
s) dBj

u, i 6= j, are defined
using Stochastic calculus. Since δ2Y ij ∈ C1−

3 , the Sewing Lemma
can not be used to define them.
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Remarks

Another fundamental remark:
I the analytical bound in the Sewing Lemma implies that the

integral is continuous w.r.t. ( f , g,Y).
I This implies that solutions to a Rough Differential Equation are

continuous w.r.t. the underlying rough path.
I This was the motivation of Terry Lyons when he introduced

Rough Paths in the first place, and it is called the Continuity of the
Itô-Lyons map.

I (Hans Föllmer wrote in the ’80s a famous note conjecturing this
kind of results)

I In the classical theory of stochastic calculus and SDEs, one has in
general only measurability of the Itô map.

Lorenzo Zambotti Santander, July 2017



Lower regularity

If we want to consider a path g : [0, T]→ R with even lower regularity,
say g ∈ Cα with α ∈ ]1/4, 1/3], then we have to modify further the
germ.

We assume that ( f , f ′, f ′′) ∈ (Cα)3 satisfies

ft − fs = f ′s (gt − gs) + f ′′s
(gt − gs)

2

2
+ Rst, R ∈ C3α

2 .

Then the germ

Ast := fs(gt − gs) + f ′s
(gt − gs)

2

2
+ f ′′s

(gt − gs)
3

3!

satisfies

(δ2A)sut = −Rsu(gt − gu)− (f ′t − f ′s − f ′′s (gt − gs))︸ ︷︷ ︸
=:R′st

(gt − gu)2

2
.

In order to apply the Sewing Lemma, we need that R′ ∈ C2α
2 .

Lorenzo Zambotti Santander, July 2017



Lower regularity

If we want to consider a path g : [0, T]→ R with even lower regularity,
say g ∈ Cα with α ∈ ]1/4, 1/3], then we have to modify further the
germ.

We assume that ( f , f ′, f ′′) ∈ (Cα)3 satisfies

ft − fs = f ′s (gt − gs) + f ′′s
(gt − gs)

2

2
+ Rst, R ∈ C3α

2 ,

f ′t − f ′s = f ′′s (gt − gs) + R′st, R′ ∈ C2α
2 .

Then the germ

Ast := fs(gt − gs) + f ′s
(gt − gs)

2

2
+ f ′′s

(gt − gs)
3

3!
satisfies (exercise...)

(δ2A)sut = −Rsu(gt − gu)− R′su
(gt − gu)2

2
.

If 1/4 < α ≤ 1/3 we are in the setting of the Sewing Lemma.
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Compact notations

Let α ∈ ]0, 1[ and g ∈ Cα.

We set Xn
st := 1

n!(gt − gs)
n, s, t ∈ [0,T], n ≥ 0. By Newton’s binomial

theorem

Xn
st =

n∑
k=0

Xk
su Xn−k

ut , s, u, t ∈ [0,T]

(a convolution product...). Note that Xn ∈ Cnα
2 and

(δ2Xn)sut =

n−1∑
k=1

Xk
su Xn−k

ut , s, u, t ∈ [0,T].

Now we define N as the largest integer such that Nα ≤ 1, i.e.
N = b1/αc.
We say that Z : [0,T]→ R{0,...,N−1} is controlled by X if

Zn
t =

N−1∑
k=n

Zk
s Xk−n

st + Rn
st, n ∈ {0, . . . ,N − 1}, Rn ∈ C(N−n)α

2 .
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Compact notations

Then the germ Ast :=

N−1∑
k=0

Zk
s Xk+1

st satisfies

(δ2A)sut =

N−1∑
k=0

[
Zk

s (Xk+1
st − Xk+1

su )− Zk
u Xk+1

ut
]

=

N−1∑
k=0

Zk
s

k+1∑
i=1

Xk+1−i
su Xi

ut −
N−1∑
k=0

Zk
u Xk+1

ut

=

N−1∑
i=0

Xi+1
ut

N−1∑
k=i

Zk
s Xk−i

su −
N−1∑
i=0

Zi
u Xi+1

ut

=

N−1∑
i=0

Xi+1
ut
[
Zi

u − Ri
su
]
−

N−1∑
i=0

Zi
u Xi+1

ut

= −
N−1∑
i=0

Ri
su Xi+1

ut ∈ C(N−i+i+1)α
3 ⊂ C1+

3 .
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Compact notations

We define as above I by I0 = 0 and

δ1I = A− Λδ2A, R̄ := −Λδ2A.

If we set Z̄ : [0,T]→ R{0,...,N−1} by

Z̄0
t = It, Z̄n

t := Zn−1
t , n ∈ {1, . . . ,N − 1},

then Z̄ is a controlled path. Indeed

Z̄0
t −

N−1∑
k=0

Z̄k
s Xk

st = It−Is−
N−2∑
i=0

Zi
s Xi+1

st = [δ1I − A]st+ZN−1
s XN

st ∈ CNα
2 .

Z̄n
t = Zn−1

t =

N−1∑
k=n−1

Zk
s Xk−n+1

st +Rn
st =

N−1∑
k=n

Z̄k
s Xk−n

st +Rn
st+ZN−1

s XN−n
st .
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Iterated integrals

In four celebrated papers (1954, 1957, 1958, 1971) Kuo-Tsai Chen
discovered that the family of iterated integrals of a smooth path in Rd

has a number of algebraic properties.

Let s ≤ t and X : [s, t]→ Rd a smooth path. Set Xst() := 1,

Xst(i1 . . . in) =

∫ t

s
Xsr(i1 . . . in−1) Ẋin

r dr

=

∫ t

s
Ẋin

rn
drn

∫ rn

s
Ẋin−1

rn−1 drn−1 · · ·
∫ r2

s
Ẋi1

r1
dr1,

with n ∈ N, ik ∈ {1, . . . , d}.
Then Xst is in the dual V∗ of the vector space V spanned by all finite
words {(a1 . . . an)}n≥0 with letters in {1, . . . , d} (tensor algebra).

Example:

Xst( i . . . i︸︷︷︸
n

) =
1
n!

(Xi
t − Xi

s)
n.

Lorenzo Zambotti Santander, July 2017



Bialgebra

On V we have a bialgebra structure (defined by Frédéric on Monday)
I the shuffle product� : V ⊗ V → V

iσ� jτ = i(σ� jτ) + j(iσ� τ).

I the deconcatenation coproduct ∆ : V → V ⊗ V

∆(i1 . . . in) :=

n∑
k=0

(i1 . . . ik)⊗ (ik+1 . . . in)

I associativity�(id⊗�) = �(�⊗ id)

I coassociativity (id⊗∆)∆ = (∆⊗ id)∆

I unit 1 : R→ V ,�(id⊗ 1)(v, r) = �(1⊗ id)(r, v) = rv
I counit 1∗ : V → R, (id⊗ 1∗)∆ = (1∗ ⊗ id)∆ = id
I compatibility ∆(a� b) = (∆a)� (∆b)

I grading V = ⊕n≥0Vn where Vn is the span of the words with n
letters.
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Convolution product

Note the recursive formulae ∆() = ()⊗ (),

∆(τ i) = (id⊗ ·i)∆τ + τ i⊗ ().

If V has a coproduct, then on V∗ we can define the convolution product
? : V∗ ⊗ V∗ → V∗

(A ? B)(τ) := (A⊗ B)∆τ

which is associative with unit 1∗.

E.g.
〈Xsu ? Xut, τ〉 = 〈Xsu ⊗ Xut,∆τ〉, ∀τ ∈ V.

Important remark: ? is commutative if and only if ∆ is cocommutative.

(Deconcatenation is not cocommutative)
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Hopf Algebra

If V is a bialgebra and we have a linear map A : V → V (antipode)
such that for all τ ∈ V

�(A⊗ id)∆τ = �(id⊗A)∆τ = 1 ◦ 1∗(τ)

then V is called a Hopf Algebra. In our case:

A(i1 . . . in) = (−1)n(in . . . i1).

Let G ⊂ V∗ the space of characters (multiplicative functionals):

g ∈ V∗, g(a� b) = g(a) g(b), ∀ a, b ∈ V.

If V is a Hopf Algebra then G is a group for the convolution product

(g1 ? g2)(τ) := (g1 ⊗ g2)∆τ

with inverse g−1 = g ◦ A and identity 1∗.
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Concatenation

If u ∈ [s, t] then X[s,t] := (Xr, r ∈ [s, t]) is the concatenation of X[s,u]

and X[u,t]. We write
X[s,t] = X[s,u] ∗ X[u,t].

Setting rn+1 := t, r0 := s, we have

Xst(i1 . . . in) =

=

n∑
k=0

∫ t

s
Ẋin

rn
drn

∫ rn

s
Ẋin−1

rn−1 drn−1 · · ·
∫ r2

s
Ẋi1

r1
dr1 1(rk≤u<rk+1)

=

n∑
k=0

Xsu(i1 . . . ik)Xut(ik+1 . . . in).

Namely Xst = Xsu ? Xut,

〈Xst, τ〉 = 〈Xsu ⊗ Xut,∆τ〉 = 〈Xsu ? Xut, τ〉, ∀τ ∈ V.
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Shuffle

Note now that

1(s<r1<···<rn<t) 1(s<rn+1<···<rn+m<t) =
∑

σ∈Sh(n,m)

1(s<rσ(1)<···<rσ(n+m)<t)

where Sh(n,m) is the set of all σ ∈ Sn+m such that

σ−1(1) < σ−1(2) < . . . < σ−1(n),

σ−1(n + 1) < σ−1(n + 2) . . . < σ−1(n + m).

This yields the multiplicativity w.r.t. the shuffle product

〈Xst, τ1〉 〈Xst, τ2〉 = 〈Xst, τ1 � τ2〉

(i1 . . . in)� (in+1 . . . in+m) =
∑

σ∈Sh(n,m)

(iσ(1) . . . iσ(n+m)).
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Geometric rough paths

Chen proved that X is a V∗-valued function with the following
properties for all s ≤ u ≤ t:

I Xst(τ) = (Xsu ⊗ Xut)∆τ , ∀τ ∈ V , i.e. Xsu ? Xut = Xst.
I Xst(τ1 � τ2) = Xst(τ1)Xst(τ2).

(Notations from [Hairer-Kelly 2013]).

Therefore X is a flow of characters.

Terry Lyons defined [1998] a (weak) geometric rough path of regularity
α > 0 as a V∗-valued function X satisfying the above properties plus
some control on the modulus of continuity

I sups6=t[|Xst(i1 . . . in)|/|t − s|nα] < +∞, for all (i1 . . . in) ∈ V .

Remarks:
I Smooth paths are dense.
I Xst(i) = Xi

t − Xi
s for some Xi ∈ Cα, since i is primitive in V .
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Rough integration and differential equations

Terry Lyons proved that this setting allows to give a deterministic
theory of integration w.r.t. dX and to solve differential equations

dY = α(Y) dX,

obtaining continuity of the Itô-Lyons map X 7→ Y and even X 7→ Y,
although the map X 7→ Y is in general only measurable.

This result includes Brownian integration, both in the sense of Itô and
Stratonovich (although the Itô rough path is not geometric), but not
more general rough paths.

Note that setting Xt := X0t, we have

Xst = X−1
s ? Xt = (Xs ◦ A) ? Xt

where A is the antipode.
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The Stratonovich Rough Path is geometric

Let (Bi
t)i≥1,t≥0 be independent Brownian Motions.

We set Xst() := 1 and for n ≥ 1

Xst(i1 . . . in) :=

∫ t

s
Xsr(i1 . . . in−1) ◦ dBin

r .

We claim that this defines a.s. a geometric rough path.
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The Chen relation

A recurrence proof: let us set τ = (i1, . . . , in−1) and
τi = (i1, . . . , in−1, i). Then

〈Xst, τi〉 =

∫ t

s
(Xsrτ) ◦ dBi

r

=

∫ u

s
(Xsrτ) ◦ dBi

r +

∫ t

u
(Xsrτ) ◦ dBi

r

= 〈Xsu, τi〉+

∫ t

u
〈Xsu ⊗ Xur,∆τ〉 ◦ dBi

r

= 〈Xsu, τi〉+ 〈Xsu ⊗
∫ t

u
Xur ◦ dBi

r,∆τ〉

= 〈Xsu ⊗ Xut, τi ⊗ 1 + (id⊗ ·i)∆τ〉
= 〈Xsu ⊗ Xut,∆τi〉.
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Multiplicativity w.r.t. the shuffle

Recall that for M,N two continuous semimartingales, the Stratonovich
integral has the property

MtNt −MsNs =

∫ t

s
Mr ◦ dNr +

∫ t

s
Nr ◦ dMr

(integration by parts formula).

This implies

Xst(i)Xst( j) =

∫ t

s
Xsr(i) ◦ dB j

r +

∫ t

s
Xsr( j) ◦ dBi

r

= Xst(ij) + Xst( ji) = Xst(i� j).
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Multiplicativity w.r.t. the shuffle

Let Mt := Xst(τ i), Nt := Xst(σ j), t ≥ s. Then

Xst(τ i)Xst(σ j) = MtNt =

∫ t

s
Mr ◦ dNr +

∫ t

s
Nr ◦ dMr =

=

∫ t

s
Xsrτ Xsr(σ j) ◦ dBi

r +

∫ t

s
XsrσXsr(τ i) ◦ dB j

r

=

∫ t

s
Xsr(τ � σj) ◦ dBi

r +

∫ t

s
Xsr(τ i� σ) ◦ dB j

r

= Xst ((τ � σj)i + (τ i� σ) j) = Xst(τ i� σ j).
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The extension Theorem

Theorem (T. Lyons)
Given a (geometric) rough path X of regularity α > 0, the values
(Xτ, τ ∈ Vm,m > N) are uniquely determined by the values of
(Xτ, τ ∈ Vm,m ≤ N), where N := b1/αc.

Proof.
We have for all τ ∈ Vm

(δ2Xτ)sut = (Xsu ⊗ Xut)∆
′τ

where ∆′τ := ∆τ − ()⊗ τ − τ ⊗ () is the reduced coproduct. We
conclude by recurrence on the number of letters and by the Sewing
Lemma since (δ2Xτ) ∈ Cmα

3 .
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Controlled Paths

Given a geometric rough path X of regularity α > 0, we say that
Z : [0,T]→ VN−1, with N := b1/αc, is a controlled path if for all
words τ, σ

Zτt =
∑

|σ|≤N−1

Zσs (Xst ⊗ τ∗)∆σ + Rτst, Rτ ∈ C(N−|τ |)α
2 ,

where τ∗ : V → R is the linear functional such that τ∗(σ) = 1(τ=σ)

and |σ| is the number of letters in σ.

When the alphabet has a single letter, the condition is:
We say that Z : [0,T]→ R{0,...,N−1} is controlled by X if

Zn
t =

N−1∑
k=n

Zk
s Xk−n

st + Rn
st, n ∈ {0, . . . ,N − 1}, Rn ∈ C(N−n)α

2 .
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Rough Integration

Theorem
If Z is a controlled path then for each letter i the germ

Ai
st :=

∑
|σ|≤N−1

Zσs Xσi
st

satisfies δ2A ∈ C(N+1)α
3 . Then by the Sewing Lemma the rough integral∫ •

0
Z dXi

is well defined where Xi
t − Xi

s = Xst(i).

Lorenzo Zambotti Santander, July 2017



The Itô Rough Path is not geometric

Let (Bi
t)i≥1,t≥0 be independent Brownian Motions.

We set Xst() := 1 and

Xst(i1 . . . in) :=

∫ t

s
Xsr(i1 . . . in−1) dBin

r .

E.g. i� i = 2ii,

Xst(i� i) = 2
∫ t

s
(Bi

r − Bi
s) dBi

r = (Bi
t − Bi

s)
2 − (t − s)

Xst(i) = Bi
t − Bi

s =⇒ Xst(i� i) 6= Xst(i)Xst(i).
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The Itô Rough Path

However we do have Xst = Xsu ? Xut: setting r0 := t, rn+1 := s

Xst(i1 . . . in) =

=

n∑
k=0

∫ t

s
dBin

rn

∫ rn

s
dBin−1

rn−1 · · ·
∫ r2

s
dBi1

r1
1(rk≤u<rk+1)

=

n∑
k=0

Xsu(i1 . . . ik)Xut(ik+1 . . . in).

How can we describe the Itô Rough Path?
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Decorated Trees/Forests

Two equivalent settings

∅ i i j k i

j

i

j k

m n

p

q

i i j k

j

i

j

m n

k

i

q

p
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The Connes-Kreimer Hopf algebra

We consider the spaceH of rooted trees, with edges decorated by
letters of the alphabet {1, . . . , d}. The identity is •, the product is the
identification of the roots, and the coproduct is

∆τ =
∑
σ⊆τ

(τ/σ)⊗ σ

where σ varies among all subtrees of τ with the same root as τ .

This is a bialgebra and a Hopf algebra.

The previous bialgebra V is canonically embedded inH: a word
(i1 · · · in) is interpreted as a linear tree with n edges, the first (at the
root) decorated with in, the next with in−1 and so on.

The coproduct ofH extends that of V , the product does not.

This Hopf algebra was already famous in numerical analysis (!):
Butcher (1972) and Hairer-Wanner (1974).
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An example

∆

j k

i
=

j k

i
⊗ +

j k
⊗

i

+
k
⊗

j

i
+

j
⊗

k

i
+ ⊗

j k

i

(different but isomorphic representation w.r.t. that common in algebra,
see Kurusch’ lectures).
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A recursive formula

H has a recursive structure: all elements ofH are obtained from • with
a finite number of products and of applications of the operators

τ → [τ ]i

where we add to the root of τ a new edge with decoration i and we
move the root to the new node.

The coproduct ∆ has the recursive construction

∆• = • ⊗ •, ∆(τ1 · · · τn) = (∆τ1) · · · (∆τn)

∆[τ ]i = [τ ]i ⊗ •+ (id⊗ [·]i)∆τ.
(A non-cocommutative coproduct)

H is graded by the number of edges.
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Chen and Kreimer

In 1998, Dirk Kreimer gives an extension of Chen’s result.

He extends the iterated integrals to functionals of decorated trees inH:
I 〈Xst, •〉 = 1
I 〈Xst, τ1 · · · τn〉 = 〈Xst, τ1〉 · · · 〈Xst, τn〉
I

〈Xst, [τ ]i〉 =

∫ t

s
(Xsuτ) Ẋi

u du

and shows that X is aH∗-valued function with the following properties
for all s ≤ u ≤ t:

I Xst(τ) = (Xsu ⊗ Xut)∆τ , ∀τ ∈ H, i.e. Xsu ? Xut = Xst

I Xst(τ1τ2) = Xst(τ1)Xst(τ2).
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Examples

τ =
i i j k

j

i

j k

i

I Xst(τ) = 1

I Xst(τ) = Xi
t − Xi

s =

∫ t

s
Ẋi

r dr

I Xst(τ) = (Xi
t − Xi

s)(Xj
t − Xj

s)(Xk
t − Xk

s )

I Xst(τ) =

∫ t

s
(Xj

r − Xj
s) Ẋi

r dr

I Xst(τ) =

∫ t

s
(Xj

r − Xj
s)(Xk

r − Xk
s ) Ẋi

r dr
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A recursive proof of Chen’s relation

〈Xst, [τ ]i〉 =

∫ t

s
(Xsrτ) Ẋi

r dr

=

∫ u

s
(Xsrτ) Ẋi

r dr +

∫ t

u
(Xsrτ) Ẋi

r dr

= 〈Xsu, [τ ]i〉+

∫ t

u
〈Xsu ⊗ Xur,∆τ〉Ẋi

r dr

= 〈Xsu, [τ ]i〉+ 〈Xsu ⊗
∫ t

u
Xur Ẋi

r dr,∆τ〉

= 〈Xsu, [τ ]i〉+ 〈Xsu ⊗ Xut[·]i,∆τ〉

= 〈Xsu ⊗ Xut, [τ ]i ⊗ 1 + (id⊗ [·]i)∆τ〉

= 〈Xsu ⊗ Xut,∆[τ ]i〉.
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Branched rough paths

In 2006 Massimiliano defines a branched rough path of regularity
α > 0 as a function X : [0,T]2 → H∗ s.t.

I 〈Xst, τ〉 = 〈Xsu ⊗ Xut,∆τ〉, ∀τ ∈ H.
I 〈Xst, τ1τ2〉 = 〈Xst, τ1〉〈Xst, τ2〉.
I sups6=t[|〈Xst, τ〉|/|t − s|α|τ |] < +∞, for all τ ∈ H, where |τ | is

the number of edges of τ .

Notations and presentation follow [Hairer-Kelly 2013].

Massimiliano also extends the analytical theory of rough SDEs to the
branched case, in particular the notion of controlled paths.

Since [•]i is primitive, we have Xst([•]i) = Xi
t − Xi

s with Xi ∈ Cα.
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Itô as a Branched Rough Path

〈Xst, [τ ]i〉 =

∫ t

s
(Xsrτ) dBi

r

=

∫ u

s
(Xsrτ) dBi

r +

∫ t

u
(Xsrτ) dBi

r

= 〈Xsu, [τ ]i〉+

∫ t

u
〈Xsu ⊗ Xur,∆τ〉 dBi

r

= 〈Xsu, [τ ]i〉+ 〈Xsu ⊗
∫ t

u
Xur dBi

r,∆τ〉

= 〈Xsu, [τ ]i〉+ 〈Xsu ⊗ Xut[·]i,∆τ〉
= 〈Xsu ⊗ Xut, [τ ]i ⊗ 1 + (id⊗ [·]i)∆τ〉
= 〈Xsu ⊗ Xut,∆[τ ]i〉.
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Itô as a Branched Rough Path

Let us recall that the Itô Branched Rough Path is not geometric, since

Xst(i� i) = (Bi
t − Bi

s)
2 − (t − s) 6= (Bi

t − Bi
s)

2 = Xst(i)Xst(i).

Note that now i� i = 2τ with τ equal to

i

i

which is not a product inH. On the other hand,

σ =
i

=⇒ σσ =
i i

.

Note that setting Xt := X0t, we have

Xst = X−1
s ? Xt = (Xs ◦ A) ? Xt

where A is the antipode inH.
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The antipode

A
i

= −
i
.

A

j

i
= −

j

i
+

i j

A

j k

i
= −

j k

i
−

i j k
+

j

i k
+

k

i j
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Exercise

Let X be the Itô Brownian rough path, with 1/3 ≤ γ < 1/2. Then for

τ =

j

i

Xstτ =

∫ t

s
(B j

r − B j
s) dBi

r

=

∫ t

0
B j

r dBi
r −
∫ s

0
B j

r dBi
r + Bi

sB
j
s − Bi

tB
j
s

= (Xs ◦ A) ? Xt τ.
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Question

Let X be the Itô Brownian rough path, with 1/3 ≤ γ < 1/2.

For s ≤ t, what is Xts ? For instance, if

τ :=

i

i
, Xstτ =

∫ t

s
(Bi

r − Bi
s) dBi

r =
(Bi

t − Bi
s)

2 − (t − s)
2

.

What is Xtsτ ?

Answer: by the Chen relation, Xts = Xst ◦ A. Example:

Xtsτ = −Xstτ + Xst
i i

= −(Bi
t − Bi

s)
2 − (t − s)
2

+ (Bi
t − Bi

s)
2 =

(Bi
t − Bi

s)
2 + (t − s)
2

.
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i
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r − Bi
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t − Bi
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2
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2

+ (Bi
t − Bi
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2 =
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2
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The extension Theorem

Theorem
Given a branched rough path X of regularity α > 0, the values
(Xτ, τ ∈ Hm,m > N) are uniquely determined by the values of
(Xτ, τ ∈ Hm,m ≤ N), where N := b1/αc.

Proof.
We have for all τ ∈ Hm

(δ2Xτ)sut = (Xsu ⊗ Xut)∆
′τ

where ∆′τ := ∆τ − • ⊗ τ − τ ⊗ • is the reduced coproduct. We
conclude by recurrence on the number of edges and by the Sewing
Lemma since (δ2Xτ) ∈ Cmα

3 .
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Controlled Paths

Given a branched rough path X of regularity α > 0, we say that
Z : [0,T]→ HN−1, with N := b1/αc, is a controlled path if for all
trees τ, σ

Zτt =
∑

|σ|≤N−1

Zσs (Xst ⊗ τ∗)∆σ + Rτst, Rτ ∈ C(N−|τ |)α
2 ,

where τ∗ : H → R is the linear functional such that τ∗(σ) = 1(τ=σ)

and |σ| is the number of edges in σ.

When the alphabet has a single letter, the condition is:
We say that Z : [0,T]→ R{0,...,N−1} is controlled by X if

Zn
t =

N−1∑
k=n

Zk
s Xk−n

st + Rn
st, n ∈ {0, . . . ,N − 1}, Rn ∈ C(N−n)α

2 .
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Rough Integration

Theorem
If Z is a controlled path then for each letter i the germ

Ai
st :=

∑
|σ|≤N−1

Zσs X[σ]i
st

satisfies δ2A ∈ C(N+1)α
3 . Then by the Sewing Lemma the rough integral∫ •

0
Z dXi

is well defined where Xi
t − Xi

s = Xst([•]i).

For further readings on Rough Paths, see the books by Peter Friz.

If you want one paper to read on what I discussed until now, then I
recommend [Hairer-Kelly, AIHP15].
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Three papers

I Martin Hairer (2014),
A theory of regularity structures, Inventiones.

I Yvain Bruned, M.H., L.Z. (2016),
Algebraic renormalisation of regularity structures, arXiv.

I Ajay Chandra, M.H. (2016),
An analytic BPHZ theorem for regulariy structures, arXiv.

This trio of papers "gives a completely automatic black box for local
existence and uniqueness theorems for a wide class of SPDEs".
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Singular stochastic PDEs

Let ξ be a space time white noise

(KPZ) ∂tu = ∆u + (∂xu)2 + ξ, x ∈ R,

(PAM) ∂tu = ∆u + u ξ, x ∈ R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, x ∈ R3.

Even for polynomial non-linearities, we do not know how to properly
define products of (random) distributions.

Note that if T ∈ S ′(Rd) and ψ ∈ S(Rd), then we can define
canonically the product ψT = Tψ ∈ S ′(Rd) by

ψT(ϕ) = Tψ(ϕ) := T(ψϕ), ϕ ∈ S(Rd).

Similar problem with stochastic integrals, as we have seen.
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Wong-Zakai

Let us consider the ODE in Rd

ẋε = b(xε) + f (xε) Ḃε (1)

where Bε is a smooth approximation of a BM B. Then it is well known
that xε → x solution to the Stratonovich SDE

dx = b(x) dt + f (x) ◦ dB.

In order to obtain the Itô SDE in the limit, one has to define rather

d
dt

x̂ε = b(x̂ε)−
1
2

Df (x̂ε) f (x̂ε) + f (x̂ε) Ḃε (2)

and in this case x̂ε → x̂ solution to

dx̂ = b(x̂) dt + f (x̂) dB.

Now, (2) is a renormalisation of (1).
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Regularisation

Let ξε = ρε ∗ ξ a regularisation of ξ and let uε solve

∂tuε = ∆uε + F(uε,∇uε, ξε).

What happens as ε→ 0 ?

We need a topology such that
I the map ξε 7→ uε is continuous
I ξε → ξ as ε→ 0.

For classical negative Sobolev spaces the first point fails.

For classical positive Sobolev spaces the second point fails.

The theory of regularity structures (RS) gives a framework to solve this
problem.
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The Solution Map on models

Martin’s theory gives
I a space of Models (M, d) (analog of the space of Rough Paths)
I a canonical lift of every smooth ξε to a model Xε ∈M
I a continuous function Φ :M→ S ′(Rd) such that uε = Φ(Xε)

solves the regularised equation

∂tuε = ∆uε + F(uε,∇uε, ξε).

The model Xε ∈M contains a finite number of relevant explicit
products (analogous to the necessary finitely many iterated integrals)

e.g. ξε(G ∗ ξε)
(with G the heat kernel). These products can be ill-defined in the limit
ε→ 0:

E[ξε(G ∗ ξε)] = ρε ∗ G ∗ ρε(0)→ G(0) = +∞.
Therefore in general Xε does not converge in (M, d) as ε→ 0.
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Renormalised products

The theory identifies a class of equations, called subcritical, for which
it is enough to modify a finite number of products in order to obtain a
convergent lift X̂ε ∈M of ξε. For instance

ξε(G ∗ ξε)→ ξε(G ∗ ξε)− E[ξε(G ∗ ξε)].

The model X̂ε ∈M contains all these modified (renormalised)
products.

Convergence in (M, d) means (simplifying a lot) convergence of all
these objects as distributions.

Then we define the renormalised solution by ûε := Φ(X̂ε).
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An image

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ

S ′(Rd) S ′(Rd)

M
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The general procedure

One can summarize the procedure into three steps:
I Analytic step Construction of the space of models (M, d) and

continuity of the solution map Φ :M→ S ′(Rd), [MH14]
I Algebraic step Renormalisation of the canonical model

Xε → X̂ε ∈M, [BHZ16]
I Probabilistic step Convergence in probability of the renormalised

model X̂ε to X̂ in (M, d), [CH16].

We obtain a renormalised solution û := Φ(X̂), also the unique solution
of a fixed point problem.

This works for very general noises, far beyond the Gaussian case.
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Wong-Zakai for SPDEs

The analogous result for the SPDE is much more subtle: if

∂tuε = ∂2
x uε + H(uε) + F(uε) ξε, x ∈ R,

then uε = Φ(Xε) does not converge in general; necessary to
renormalise the equation and study ûε := Φ(X̂ε):

∂tûε = ∂2
x ûε + H̄(ûε)− Cε F′(ûε) F(ûε) + F(ûε) ξε

with Cε = E[ξε(G ∗ ξε)] ∼ ε−1. The limit û := Φ(X̂) solves

dû = (∂2
x û + H(û)) dt + F(û) dWt

in the Itô sense (true for very general ξε, see [Chandra-Shen]).

Although there is nothing singular in this SPDE, the result is far from
simple and requires the full power of the theory [Hairer-Pardoux15].
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Important messages

We want to renormalise the (unknown) solution uε = Φ(Xε).

We renormalise the (finitely many, explicit) ill-defined products and
construct the renormalised model X̂ε [BHZ16].

We prove that the renormalised model X̂ε converges to X̂ in (M, d)
[CH16].

Continuity of the solution map Φ :M→ S ′(Rd) yields convergence
of the renormalised solution ûε = Φ(X̂ε) to û = Φ(X̂) [MH14].

Very important: (M, d), Xε, X̂ε and Xε → X̂ε are all non-linear.

The group describing the transformation Xε → X̂ε is in general
non-commutative.

Renormalisation does not mean modifying the equation but choosing
the correct equation.
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Another example: KPZ

The regularised version is

∂tuε = ∂2
x uε + (∂xuε)2 + ξε

which has to be renormalised to

∂tûε = ∂2
x ûε + (∂xûε)2 − Cε + ξε

and
Cε = E

[
(∂xG ∗ ξε)2

]
∼ 1
ε
.

In this case, one of the ill-defined products to be renormalised is

(∂xG ∗ ξε)2 −→ (∂xG ∗ ξε)2 − E[(∂xG ∗ ξε)2].
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Singular stochastic PDEs

Around 2010, Martin and Massimiliano, among others, try to
generalise Rough Paths to stochastic PDEs like KPZ, PAM and Φ4.

(KPZ) ∂tu = ∆u + (∇u)2 + ξ, (t, x) ∈ R× R,
(PAM) ∂tu = ∆u + u ξ, (t, x) ∈ R× R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, (t, x) ∈ R× R3.

This needs two generalisations:
I The rough path must be parametrized by Rd with d ≥ 2
I Xst(τ) can become a distribution, say, in t for fixed s, i.e. we want

to allow that sups6=t[|Xst(τ)|/|t − s|ατ ] < +∞ with ατ ∈ R.

Two new theories are born: regularity structures and paraproducts.
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Rough Paths ?

Consider e.g.

∂tuε = ∆uε + σ(uε) ξε, (t, x) ∈ R× R.

What is the associated "Rough Path" (model) ? If we had before

〈Xst, [τ ]i〉 =

∫ t

s
(Xsuτ) Ẋi

u du

then now it looks reasonable to replace

Ẋi
u −→ ξε(u, y),

∫ t

s
· · · du −→

∫ t

0

∫
R

Gt−u(x− y) · · · du dy.
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Rough Paths ?

In Rough Paths Xst(τ) is always an increment

〈Xst, [τ ]i〉 =

∫ t

s
(Xsuτ) Ẋi

u du

=

∫ t

a
(Xsuτ) Ẋi

u du−
∫ s

a
(Xsuτ) Ẋi

u du.

The analytic property

sup
s6=t

[|〈Xst, τ〉|/|t − s|γ|τ |] < +∞

is recursive, since if s, t are close to each other then u ∈ [s, t] is close to
s as well.
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Rough Paths ?

Let us use a now notation for the addition of a new trunk:

[τ ]i −→ I(τ).

For SPDEs, we imagine a recursive object Πxτ(y) replacing Xst(τ),
such that

Πx I(τ)(y) = G ∗ (Πxτ)(y)− G ∗ (Πxτ)(x).

(From now on, x, y are space-time variables.)
What would be a reasonable analytic requirement here ? If

|Πxτ(y)| ≤ C|y− x||τ |s

with |τ |s > 0 then we would like to have, by analogy with RPs,

|Πx I(τ)(y)| ≤ C|y− x||τ |s+2

but this requires further assumptions on y 7→ G ∗ (Πxτ)(y).
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Taylor sums and remainders

In fact we have to modify the definition of Πxτ(y). We recall

〈Xst, [τ ]i〉 =

∫ t

s
(Xsuτ) Ẋi

u du

=

∫ t

a
(Xsuτ) Ẋi

u du−
∫ s

a
(Xsuτ) Ẋi

u du.

This increment is a Taylor remainder at order 0. This suggests to go to
a higher order by setting

Πx I(τ)(y) = G ∗ (Πxτ)(y)−
∑

k≤|I(τ)|s

(y− x)k

k!
∂kG ∗ (Πxτ)(x).

But then we have to modify the coproduct if we want Chen’s relation.
It still involves extraction of a subtree at the root and contraction, but
there are additional decorations that take into account the terms of the
Taylor series.
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Tree representation

Recall that we are interested in a finite number of polynomial functions
of ξε, P1(ξε), . . . ,PN(ξε).

More precisely, for a fixed ϕ ∈ C∞c we consider the random variables

Zi :=

∫
Rd
ϕ(z) Pi(ξε(z)) dz, i = 1, . . . ,N.

To each such random variable we associate a rooted tree Ti.

Every integration variable in Zi is a vertex in Ti.

Every integral kernel in Zi is an edge in Ti.
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Examples

Ξ −→
∫
ϕ(z) ξε(z) dz =

∫
ϕ(z) ρε(z− x) ξ(dx) dz −→

z

x

Remark: the previous tree is absent in Rough Paths.

I(Ξ) −→
∫
ϕ(z) G ∗ ξε(z) dz −→

z

x y

ΞI(Ξ) −→
∫
ϕ(z) ξε(z) G ∗ ξε(z) dz −→

z

x y2

y1
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Examples

ΞI(ΞI(Ξ)) ΞI(Ξ)2
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Further decorations on trees

We have additional decorations on trees, needed to code

Πx I(τ)(y) = G ∗ (Πxτ)(y)−
∑

k≤|I(τ)|s

(y− x)k

k!
∂kG ∗ (Πxτ)(x).

I n on nodes, representing powers of (y− x)

I e on edges, representing derivatives ∂kG of the heat kernel

∆+Tn
e =

∑
S⊆T

∑
nS,eS

1
eS!

(
n

nS

)
(T/S)n−nS

e+eS
⊗ SnS+πeS

e

−→ ⊗
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Distributions

We have a linear spaceH of decorated trees, representing distributions
on Rd which are relevant to the given equation.

Since we do not expect to multiply all distributions,H is not assumed
to be an algebra.

We do not expectH to have a coproduct either, so it is not clear how to
define the Chen relation

Xxz ? Xzy = Xxy.

The solution is to split Xxy into two components, containing
respectively functions and distributions.

Remember: in Rough Paths we have Xst = X−1
s ? Xt.

Then we want to differentiate the two factors, and have X−1
s behaving

as a true function of s, while Xt can behave as a distribution in t.
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Comodules

We consider two spaces of decorated trees,H andH+ such that
I H+ is a Hopf algebra and codes classical functions
I H is a linear space coding relevant explicit distributions
I we have a left coaction

∆+ : H → H+ ⊗H

compatible with the coproduct ofH+.

ThenH is a comodule overH+.

For gx ∈ G+ and Π : H → S ′(Rd),

Πxτ(y) := 〈gx ⊗Π,∆+τ〉(y)

is a good candidate for Xxy = X−1
x ? Xy.

Lorenzo Zambotti Santander, July 2017



Remarks

Πxτ(y) = 〈gx ⊗Π,∆+τ〉(y)

I gx ∈ G+ is a character and therefore multiplicative
I in general Π : H → S ′(Rd) is not multiplicative, even if it takes

values in smooth functions
I this "freedom" of Π to be non-multiplicative is crucial in the

renormalisation procedure
I Π is always assumed to satisfy

ΠΞ = ξε, Π I(τ) = G ∗Πτ

I the canonical choice of Π, for a regularised version ξε of the noise,
satisfies moreover multiplicativity

Π(τ1 · · · τn) = Π(τ1) · · ·Π(τn).
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Renormalisation

We consider a third space of decorated forests,H−
I H− is a Hopf algebra and codes renormalisation of diverging

subtrees
I we have right coactions

∆− : H → H⊗H−, ∆− : H+ → H+ ⊗H−

compatible with the coproduct ofH−, so thatH andH+ are
comodules overH−.

∆−Tn
e =

∑
S

∑
nS,eS

1
eS!

(
n

nS

)
(T/S)n−nS

e+eS
⊗ SnS+πeS

e

−→ ⊗
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Positive and negative renormalisations

If we set
I A+(T) := {S ⊆ T : S subtree with the same root as T}
I A−(T) := {S ⊆ T : S subforest of T}

then

∆+Tn
e =

∑
S∈A+(T)

∑
nS,eS

1
eS!

(
n

nS

)
(T/S)n−nS

e+eS
⊗ SnS+πeS

e

∆−Tn
e =

∑
S∈A−(T)

∑
nS,eS

1
eS!

(
n

nS

)
(T/S)n−nS

e+eS
⊗ SnS+πeS

e
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The renormalised model

We define for ` ∈ G− ⊂ H∗− maps M` : H → H and M` : H+ → H+

M`(τ) := (id⊗ `)∆−τ.

We can define for ` ∈ G− ⊂ H∗−

Π`
xτ(y) := 〈gxM` ⊗ΠM`,∆

+τ〉(y)

= (gx ⊗ `⊗Π⊗ `)(∆− ⊗∆−)∆+τ(y).

A compatibility condition between these coactions implies that this
works well...

G+ is the structure group, G− the renormalisation group.
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Coactions and coproducts

We have defined 2 coproducts and 3 coactions, which are all variants of
just 2 operators ∆+,∆−:

I a contraction/extraction of subtrees at the root (as in Rough Paths)
I a contraction/extraction of subforests.

We also have a non-trivial action on decorations, related to the Taylor
sums, which is the same for all operators.

For the Analytical theory: there is an analog of controlled paths.

Several theorems replace the Sewing Lemma.
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