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ABSTRACT 
 
In this article we test a number of score fusion methods for the purpose of multimodal biometric authentication. These 
tests were made for the SecurePhone project, whose aim is to develop a prototype mobile communication system 
enabling biometrically authenticated users to deal legally binding m-contracts during a mobile phone call on a PDA. 
The three biometrics of voice, face and signature were selected because they are all traditional non-intrusive and easy to 
use means of authentication which can readily be captured on a PDA. By combining multiple biometrics of relatively 
low security it may be possible to obtain a combined level of security which is at least as high as that provided by a PIN 
or handwritten signature, traditionally used for user authentication. As the relative success of different fusion methods 
depends on the database used and tests made, the database we used was recorded on a suitable PDA (the Qtek2020) and 
the test protocol was designed to reflect the intended application scenario, which is expected to use short text prompts. 
Not all of the fusion methods tested are original. They were selected for their suitability for implementation within the 
constraints imposed by the application. All of the methods tested are based on fusion of the match scores output by each 
modality. Though computationally simple, the methods tested have shown very promising results. All of the 4 fusion 
methods tested obtain a significant performance increase. 
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1 INTRODUCTION 
 
Multibiometrics, i.e. the verification of a person’s identity by more than one biometric trait, is expected to strongly 
enhance person authentication performance in real applications. But most of the presently available biometric databases 
have been acquired in more or less controlled environments, so that it is difficult to predict performance in real 
applications. The experiments presented here are performed on a database acquired on a personal mobile device 
(smartphone) as part of the SecurePhone project (IST-2002-506883 project “Secure Contracts Signed by Mobile 
Phone”). The project aim is to produce a prototype of a new mobile communication system (the “Securephone”) 
enabling biometrically authenticated users to deal legally binding m-contracts during a mobile phone call in an easy yet 
highly dependable and secure way. 
The use of signals recorded on a smartphone enables us to evaluate multibiometric person authentication with realistic 
signals under various degrees of degradation. The context of mobility generates degradations of input signals due to the 
variety of environments encountered (ambient noise, lighting variations, …), while the sensor's’ lower quality further 
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contributes to decrease system performance. By fusing three different biometric traits, the effect on signal degradation 
on the system’s performance can be counteracted.  
Our aim in this work is to study the benefit of different fusion techniques for combining speech, face and handwritten 
signature on a smartphone. Many fusion techniques have so far been compared in the literature. Among them, score 
fusion techniques can be classified as score combination rules or as statistical learning techniques. Previous works have 
shown that one class of such techniques give better performance than the other depending on the experimental 
framework that is considered. Our aim in this work is to compare score combination rules and statistical learning 
techniques in a concrete application, performing non intrusive biometric verification on a smartphone. 
 

2 BIOMETRIC DATA 
 
In order to evaluate biometric systems in real application conditions, a database of voice, face and signature recordings 
[1] was captured on a mobile device. Examples of data are shown in Figure 1. We used the Qtek2020 device and the 
smartphone’s own sensors (microphone, camera and touch-screen) that have limited sampling capabilities.  
Audio-visual data for the smartphone database is in English. The database contains 60 speakers, 30 male and 30 female, 
of which 80% are native speakers. There are 3 age groups (< 30, 30-45, > 45) with 10 males and 10 females in each 
group. Three types of fixed prompt (5-digit, 10 digit and short phrase) were recorded, with 6 examples from each type. 
Each speaker is recorded in 2 recording sessions separated by at least one week, thus allowing for the evaluation of the 
influence of time variability on person authentication. Each session comprises 2 indoor and 2 outdoor recordings with 
variable environmental signal degradation. The 2 indoor recording conditions were respectively for voice/face: 
good/good and bad/bad. The 2 outdoor recordings conditions were respectively for voice/face: bad/good and bad/bad. 
The 4 recording conditions (2 indoors and 2 outdoors) reflect reasonable variation in noise and lighting conditions. The 
amount of data recorded per person is very limited, permitting only up to short 4 recordings for client model training. 
This reflects the practical need for fast client enrolment. 
Signatures, which were always recorded under good but realistic recording conditions, were recorded from other 
subjects, because signers were recorded in a different place from the audio-visual subjects. Twenty signatures were 
recorded in one session from each of 30 male and 30 female subjects. The signers are balanced in the three age groups 
defined for audio-video persons. Twenty forgeries were made by impostors who were not clients of the signature (or 
audio-visual) database. Those forgeries were made after observing the genuine signatures together with their dynamic 
characteristics on the PDA’s screen. The signature sampling rate was 100 Hz, with coordinates data but no pressure or 
pen inclination information.  
Virtual SecurePhone clients were created by coupling subjects in the audio-visual and signature databases. This is 
possible because a client’s signature can be assumed to be largely independent from his or her appearance and voice. 
Indeed, results from a previous work on signature and voice data from BIOMET [2] support the independence 
assumption of such modalities [3]. The data are coupled using gender-dependent virtual persons. Because both 
databases are balanced in age among the 3 age groups, virtual persons are also age-dependent. To be able to present 
results which are independent of any particular coupling between signatures and audio-visual data, 100 random 
couplings were made and the average over those 100 trials was computed.  
 
 

   
 

Figure 1: Examples of data of the PDA database 
 



 
 

3 UNIMODAL PERSON AUTHENTICATION SYSTEMS 

3.1  Signature verification 
As described in [4] each writer's signature is modelled by a continuous left-to-right Hidden Markov Model (HMM), 
characterised by a given number of states with an associated set of transition probabilities among them, the data in each 
state being represented by a continuous density multivariate Gaussian mixture model (GMM). The HMM has a left-right 
topology, i.e. it only authorises transitions from each state to itself and to its immediate right-hand neighbour. An 
optimal number of states is estimated for each writer and a personalised feature normalisation (of 19 features) is carried 
out to improve the quality of the modelling. The system exploits a fusion strategy of two complementary sources of 
information provided by the same HMM. The first is the likelihood of the signature given the HMM. The second is the 
segmentation of the test signature when using the Viterbi algorithm. As shown in [4], the combination of these two 
sources of information results in a better separation of genuine and impostor distributions, thus significantly improving 
writer verification results.  
 

3.2  Speaker verification 
Both in terms of user enrolment as well as for actual verification, realistic applications impose strong restrictions on the 
amount of speech material that can be acquired from each client. To ensure optimal performance with small amounts of 
training data, the speaker verification system used here is text-dependent. We shall test only fixed digit sequences which 
allow us to keep the size of the acoustic model which needs to be stored on the device to a minimum. For a given fixed 
prompt, a GMM background model [5] is trained, from which individual speaker models are trained by maximum a-
posteriori (MAP) adaptation to each speaker. Results are given for gender-dependent as well as gender-independent 
background models. Acoustic features use 19 Mel-frequency cepstral coefficients (MFCCs) together with cepstral mean 
subtraction and appended time difference features. GMMs have 128 Gaussian components and are trained by k-means 
clustering, followed by EM iteration. This is performed by the Torch machine learning API [6], using a variance 
threshold and minimum Gaussian weight determined on the basis of the development data set. The unimodal decision to 
accept or reject a speaker as a true client is based on a thresholding of the test score (the logarithm of the ratio of the 
speaker to background model likelihoods). 
 

3.3  Face verification 
Face verification is a challenging task due to varying conditions in the capturing process (variations in pose, facial 
expressions and illumination). In order to normalise variations in illumination conditions, we applied, as a pre-
processing step, Histogram Equalization (HE) [7]. Our system, based on a wavelet-based verification scheme [8], uses 
the coefficients in the wavelet transformed LL-subbands at depth 3 or more as a feature vector of a given face image. 
The LL-subband corresponds to the low-pass filtering, which captures the scaled energy of the image. The final 
classification decision of a test video is based on verifying each of 10 frames selected from the full video sequence. The 
verification of a frame is performed by computing the City-Block distance between the feature vector of a test frame and 
the feature vectors of enrolled frames. For each test frame, the match-score is the minimum distance to one of the 
enrolled frames. The match score for a test video is the minimum of the 10 frame match scores.  
 
 

4 FUSION METHODS 
 
Two types of score fusion methods are presented. The first type is based on the Arithmetic Mean Rule after a previous 
normalization of each score separately. The second type is based on a 3D density estimation followed by class posterior 
probabilities computation.  
 
 



4.1 Fusion by AMR with associated normalisations 
The 3 unimodal scores are combined by means of a simple Arithmetic Mean Rule (AMR) after performing a 
normalisation of these scores. Two types of normalisation are studied: the first one is based on the Min-Max 
normalisation [9] and the second uses a posteriori class probabilities.  
 
The “Min-Max” normalisation of score s of one unimodal expert is defined as n=(s-m)/(M-m) where M is the maximum 
and m is the minimum. We consider the mean (µ) and standard deviations (σ) of both the client and impostor 
distributions in the training database, and set: m= µimp-2 σimp and M= µcl+2 σcl. Indeed, assuming that genuine and 
impostor scores follow Gaussian distributions, 95% of the values lie in the [µ -2σ µ+2σ] interval; following this model, 
our choice of m and M permits to cover most of the scores. Values higher than M or lower than m are thresholded. This 
linear normalisation maps the score in the [0,1] interval.  
 
Bayes normalisation uses the a-posteriori client class probability P(C|s) given score s, as a normalised score. A-
posteriori probabilities are obtained using Bayes’ rule:  
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where P(C) and P(I) are the client and impostor priors, set to 0.5 because we have no prior knowledge, and p(s|C) and 
p(s|I) are the client and impostor likelihoods. Conditional probability densities are computed from Gaussian score 
distributions whose parameters are estimated on the training database. Assuming independence between the 3 scores s1, 
s2 and s3, and following [10], we compute the arithmetic mean of P(C|s1), P(C|s2) and P(C|s3).  
 

4.2 Fusion by 3D density estimation  

4.2.1   3D Gaussian density estimation 
In this case, instead of estimating the conditional score densities of each modality separately, the 3D Gaussian density is 
estimated. This is done using a Gaussian assumption on the 3D class conditional densities. The difference with the 
previous case is that there is no independence assumption. We estimate p(s1, s2, s3|C) and p(s1, s2, s3|I) and compute 
the a posteriori class probability p(C|s1, s2, s3), as:  
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P(C) and P(I) are the client and impostor priors, set to 0.5 because we have no prior knowledge.  
For the 3D Gaussian density, we are considering a diagonal covariance matrix, assuming that the 3 scores are 
uncorrelated. This is done for computational reasons, and also considering that there is not enough data to estimate 
cross-correlation.  
 

4.2.2   Estimation with a Gaussian Mixture Model (GMM) 
Fusion using Gaussian Mixture Models (GMM) [5] follows the same idea as AMR using 3D Gaussian density 
estimates: instead of considering that the conditional 3D density is Gaussian, we estimate it as a mixture of Gaussian 
densities (a sum of N (here N=3) 3D Gaussian components of a Gaussian Mixture Model). The ith 3D Gaussian 
component is represented by µi, Σi and αi, the mean vector, covariance matrix and weight of the ith Gaussian component 
in the sum. Therefore, with s=(s1, s2, s3), the joint density is:  
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For impostors’ conditional density, other mean vectors, covariance matrix and weights are estimated and, to obtain the 
final score, we compute the a posteriori class probability p(C|s1, s2, s3) using equation (2).  
 
As before, since cross-correlations cannot be estimated both for computational reasons and because of data sparsity, Σ is 
considered diagonal for both client and impostor densities, assuming that the 3 scores are uncorrelated.  
 
 

5 EXPERIMENTS 
 
Results for fusion are obtained on the PDA database [1] of virtual subjects built by coupling audio-video data from a 
given person to signatures of another person. Virtual persons are gender and age dependent. We perform 100 random 
couplings and compute the average performance over those 100 trials. The three types of prompt are considered: type 1 
(T1) of 5 digits, type 2 (T2) of 10 digits and type 3 (T3) of phrases (of approximately the same duration as the 5-digit 
sequences). Each type is represented by 6 prompt (P1, P2, P3, P4, P5 and P6) examples. Results reported in Table 1 and 
Table 2 are also averaged over these 6 examples per type.  
 
Scores used for fusion are obtained from the three single modality systems using specific protocols. Signature scores are 
generated considering 5 randomly chosen signatures for model training and the remaining 15 signatures for test 
purposes. For voice and face, the 4 sequences (for a given prompt example) of session 1 are used for training and the 4 
sequences of session 2 are used for test purposes. This means that models are trained on both indoor and outdoor data 
and evaluated on both too.  
 
The protocol is the following: 

• 24 persons (balanced in gender and age group) out of 60 available in the PDA database are reserved 
for the construction of the Universal Model Background (UBM) for the speech modality. 

• The remaining 36 persons are split in two sets g1 and g2 of 18 persons each (3 for each age group of 
both gender). Each person has 4 associated client accesses and 20 impostor accesses.  

• The fusion system is trained on g1 and tested on g2, and their roles are interchanged. The resulting 
two EERs are averaged to obtain the final error rate which is given in Table 2.  

 
Table 1: Single modalities results (EER) for the 6 examples (P1 to P6) of each prompt type. 
Prompt 

type 
T1 (5-digits) T2 (10-digits) T3 (phrases) 

Prompt 
examples P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 

7.21 % 3.24 % 5.5 % voice 
9.51 7.22 8.40 5.69 6.87 5.55 4.03 4.03 2.91 2.64 2.22 3.61 4.23 6.66 6.94 5.62 6.25 3.543.54 

28.40 27.55 % 28.33 % face 
27.43 26.46 27.08 29.16 28.40 31.87 27.84 27.84 26.73 28.33 27.78 26.73 30.55 26.87 24.86 28.54 27.98 31.18 

signature 8.01 % 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2: Fusion results (EER) compared to single modalities in the PDA database 
  T1 (5 T2 (10- i T3 (phr-digits) dig ts) ases) 

Voi  7.21 % 3.24 % 5.54 % ce  

Face 28.40 % 27.55 % 28.33 % Single Modalities 

Si t 8.01 % gna ure  

AMR with Min-Max 4.  % 3. % 3.809  16  5 % 

AMR of posterior 
p ab 2.41 % 1.67 % 2.30 % rob ilities 

3D Gau an y 
est ati 2. 1.93  2.52  ssi  densit

im on 67 %  %  %

GMM with  
co o 2.56 % 1.66 % 2.68 %  3 Gaussian

mp nents 

Fusion Methods 

MinMax 2. % 1.5 2.30   + GMM 39  4 %  %

 

Compared with the baseline results fo e le modalities, a strong improvement in user authentication is found for 
most fusion me MM after a Min alisation of sc res leads to the lowest EERs. For this metho
each prompt type, the 6 values of the EE onding to ea o nce are repo d in Table 3. We also indicate 
their associated st  deviation for 10 plings of virtua bjects.  
 
A comparative study of the fusion methods bed in Section 4 show that training-based methods, here based on 
GMMs, seem to be more suited to degrade nditions, as already shown in [11].  
 
Table 3: ERRs for each example of the 3 pes and their n eviation for t  b on method 

 T1 (5-digits) T2 (10-di T3 (phrases) 

r th sing
-Max norm

R corresp
0 random cou

 descri

thods. G

andard

o
ch ccurre

l su

d, and for 
rte

d test co

 prompt ty  sta dard d
gits) 

he est fusi

Averaged 
EER 2.39 % 1.54 % 2.30 % 

ERRs 2.51 1.99 2.89 2.58 2.39 1. 85 1.54 1.43 1. 1.74 1.27 2.06  3.04 1.91 2.08 1.  96 1. 43 2.81 90

Standard 
Dev. 

1.01 0.87 1.07 1.10 0.87 0.83 0.91 0.87 0.81 0.76 0.83 0.78 1.04 2.98 3.07 1.97 1.16 0.88 

Averaged 
St.Dev. 0.96 % 0.83 % 1.85 % 

 
In order to visualize performance for GMM fusion using Min-Max normalised scores from the individual modalities 
ompared to single experts for every value of the decision threshold, DET curves [12] for T1, T2 and T3 are shown in 

 

c
Figure 2.  
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Figure 2: DET curves for signature, voice, face and best fusion method, fo
 
Figure 2 shows that fusion of three modalities by a GMM improves system p dalities 
for the 3 prompt types. The standard deviation of the error rates is also show  values 
of decision threshold, the upper bound of the interval of variation of error rat jects is 
still better than the best modality.  
 
Other specific functioning points, namely the WER (Weighted Error Rate 0.1 and 
R=10 and their corresponding FAR (False Acceptance Rate) and FRR (False Rejec ble 3. 
WER is defined as:  

R
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The  on 
e evaluation group g2 (a priori threshold), and vice versa. A-priori error rates are then averaged. 

threshold corresponding to the minimum of WER on the development group g1 is used to report the error rate
th
 
Table 3: fusion results (WER) for the best fusion method (MinMax + GMM).  

  T1 (5-digits) T2 (10-digits) T3 (phrases) 

EER 2.39 % 1.54 % 2.30 % 

R=1 
1.57 %/3.24 % 0.89 %/3.32 % 1.61 %/3.14 % 

2.40 % 1.60 % 2.37 % 

R=0.1 
4.97 %/1.56 % 3.05 %/1.20 % 4.54 %/1.78 % 

1.87 % 1.37 % 2.03 % 

FAR / FRR 

63 % 

0.38 %/6.34 % 

0.92 % 

WER 

R=10 
0.43 %/6.95 % 0.25 %/4.37 % 

1.02 % 0.

 
Table 3 re rts weighted error rates (WERs) for 3 different R values: 1, 0.1 and 10, together with their corresponding 
FAR and FRR. R show that low error rates c tained for a wide range of cost ratios. Res -digit 
prom han for either 5-digit prompts ch show s
 
 

6 SIONS 
 
The aim of this work is to stud enefit of multi sion on single no e modalities acqu
To that aim, a virtual subjects database was built from audio-video data and signatures from different subjects, captured 

po
esults an be ob ults for 10

pts are better t  or phrases, whi imilar performance. 

 CONCLU

y the b modal fu n intrusiv ired on a PDA. 



on the PDA. Single modality exp w in g ror rates o  compare  
results on standard databases is due to the mobility conditi  in isition 
protocol. This remark emphasizes the interest of m l fusion in mobil tions, which is co y our 
tudy: fusion by a training-based method, based on GMMs, proves to be robust in the variety of acquisition conditions 

one project can be used 
 achieve a level of authentication accuracy which would be sufficient for a wide range of applications.  
urther work will focus on a more difficult protocol, relying on training unimodal experts on controlled reference data 

and testing the fusion system on variable acqui on  and adverse). This would indeed simplify the 
nrolment phase for the user. Also this work exploits a sm ber of persons and client accesses; we look 
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considered in this work. Moreover, considering the variance of the fusion system performance due to random couplings 
of virtual subjects, the upper bound of the error rate still does better than the best unimodal system, for most values of 
the decision threshold. Tests have shown that the non-intrusive biometrics used in the SecurePh
to
F

siti  conditions (degraded
all database in nume

forward extending our database for further tests. Another possibility is to consider a text-independent speaker 
verification system, which would permit to consider the 18 available prompt examples as being of the same type. This 
way the fusion system could be trained on enough data, and particularly density estimation could be done with full 
covariance matrices.  
 
 

7 ACKNOWLEDGEMENTS 
 
This work was supported by the EC SecurePhone project IST-2002-506883. 
 
 

8 REFERENCES 
 
[1] A.C. Morris, H. Sellahewa, L. Allano, “The SecurePhone PDA database and automatic test procedure for 
multimodal user verification”, Tech Report, Jan. 2006. 
http://www.coli.uni-saarland.de/SecurePhone/documents/PDA_database_and_test_protocol.pdf
 
[2
P

of 4  International Conference on Aud
A
 
[3
v

[4 sion of HMM’s Lik
Sign e Verification”, Biometric Authentication Workshop (BioAW), Lecture Notes in Computer Science (LNCS) 
3087, pp. 318-331, Prague, Czech Republic, May 2004. 
 

] Reynolds, D.A.: Speaker identification and verification using Gaussian mixture speaker m[5
Com 7, 1995, pp.91-108. 
 
[6] Collobert, R., Bengio, S. & Mariéthoz, J.: Torch: a modular machine learning software library. Technical 
Report IDIAP-RR 02-46, 2002. 
 
[7] R. Beveridge, D. Bolme, M. Teixeira and B. Draper “The CSU Face Identification Evaluation System User’s 
Guide: Version 5.0”, Computer Science Department, Colorado State University, May 1, 2003. 
ttp://www.cs.colostate.edu/evalfacerec/index.htmlh  (10/01/06) 

 
[8] H. Sellahewa and S. Jassim, “Wavelet-based Face Verification for constrained platforms”, Proc. SPIE 
Biometric Technology for Human Identification II, Florid

on 
a 2005, Vol. 5779, pp 173-183, March 2005. 

 



[9] M. Indovina, U. Uludag, R. Snelick, A. Mink, A. Jain, “Multimodal Biometric Authentication Methods : A 
COTS Approach”, in Proc. MMUA 2003, Santa Barbara, California, USA, Dec. 2003, pp. 99-106. 

Vol. 20, N°3, pp. 226-239, March 1998.  

 . 

2] A. Martin, G. Doddington, T. Kamm, M. Ordowski, M. Przybocki, “The DET Curve in Assessment of 

 
[10] J. Kittler, M. Hatef, R.P.W. Duin, J. Matas, “On Combining Classifiers”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 
 
[11] S. Garcia-Salicetti, A. Mellakh, L. Allano, B. Dorizzi, “Multimodal Biometric Score Fusion: the Mean Rule vs
Support Vector Classifiers”, in Proc. of EUSIPCO’05, Antalya, Turkey, 4-8 September 2005. 
 
[1
Detection Task Performance”, in Proc. EUROSPEECH’97, Vol. 4, pp. 1895-1898, Rhodes Greece, 1997.  
 
 


	Signature verification
	3.2  Speaker verification
	3.3  Face verification
	Fusion by AMR with associated normalisations
	Fusion by 3D density estimation
	3D Gaussian density estimation
	Estimation with a Gaussian Mixture Model (GMM)


