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Derivation of the local two-phase model

e We will always think of two phases: water and ice.

e To simplify:
@ Transport of mass plays no role (no convection).

@ The transition region between two phases is an infinitely thin
surface.

@ The densities are 1, and the specific heats are also 1.

e The physical quantities that play a role are:

@ Latent heat L (the amount of energy needed to transform one
mass unit between phases; melting ice [heat required] versus
freezing water [heat released]).

@ Thermal conductivity k (a substance's ability to conduct heat;
higher in ice than in water [closeness of atoms])
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Derivation of the local two-phase mode

Nonglobal formulation

+ B.C.

N SA =
LVE -kVu=LU



Derivation of the local two-phase model

-
n

Let h be enthalpy (“energy”) density in Q C D.

d/hdx:—/ F-nd5+/fdx.
dt Jq o0 Q
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Derivation of the local two-phase model

-
n

Let h be enthalpy (“energy”) density in Q C D.

d/hdx:—/didex+/fdx.
dt Jq Q Q
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Derivation of the local two-phase model

In many situations, F ~ —Du (flow from high to low
consentration). By the Fourier law:

d/hdx:/div(k(u)Du) dx+/ f dx
dt Jg Q Q

Oth = div(k(u)Du) + f.

or
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Derivation of the local two-phase model

In many situations, F ~ —Du (flow from high to low
consentration). By the Fourier law:

d :
r thx = /lev(k(u)Du) dx
or
Oth = div(k(u)Du).
Assume:
e hevy(u) = u=p3(h)
o k(u) = k(B(h)) =: K'(B(u))
Then

dch = div(DK(B(h))) = AK(B(h)).
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Derivation of the local two-phase model

Basically,

|0ch = AK(B(h)) =: Ad(h)]
where u := ®(h) ~ k x (h) is given as

b= K(Bh)
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Derivation of the local one-phase model

We keep the ice at critical temperature 0°C. That is, we get
8th = Au

where u := ®(h) is given as

u.= KCB(h)

k, (h-L)
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Derivation of the local one-phase model

We keep the ice at critical temperature 0°C.
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Theory for local one-phase model
e Modeling:

@ J. STEFAN. Uber die Theorie der Eisbildung (On the theory of ice formation). Monatsh. Math.
Phys., 1(1):1-6, 1890.

e Well-posedness:

@ S. L. KamenomosTskaJa (KAMIN). On Stefan's problem. Mat. Sh. (N.S.), 53 (95):489-514,
1961.

e The free boundary is smooth (under certain conditions):

@ L. A. CAFrareLLI. The regularity of free boundaries in higher dimensions. Acta Math
139(3-4):155-184, 1977.

@ D. KINDERLEHRER AND L. NIRENBERG. The smoothness of the free boundary in the one phase
Stefan problem. Comm. Pure Appl. Math., 31(3):257-282, 1978.

The one-phase Stefan problem can equivalently be expressed as:
o (Nonglobal) The equation d;u — Au =0 in {u > 0}.
@ (Global) The equation 9:h — Au = 0.
° (Obstacle) The equation 0:U — AU = —1in {U > 0} where
fo x,s)ds.

@ A. FicaLLI. Regularity of interfaces in phase transitions via obstacle problems. In Prooceedings

of the International Congress of Mathematicians (ICM 2018), Vol. |. Plenary lectures, pp.
225-247. World Sci. Publ., Hackensack, NJ, 2019.
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Theory for local one-phase model

e Modeling:

@ J. SteFaN. Uber die Theorie der Eisbildung (On the theory of ice formation). Monatsh. Math.
Phys., 1(1):1-6, 1890.

e Well-posedness:

@ S. L. KamenomosTskaJa (KaMIN). On Stefan's problem. Mat. Sh. (N.S.), 53 (95):489-514,
1961.

e The free boundary is smooth (under certain conditions):

@ L. A. CarrareLLI. The regularity of free boundaries in higher dimensions. Acta Math.,
139(3-4):155-184, 1977.

@ D. KINDERLEHRER AND L. NIRENBERG. The smoothness of the free boundary in the one phase
Stefan problem. Comm. Pure Appl. Math., 31(3):257-282, 1978.

e Continuity of the temperature (independent of the free boundary):

@ L. A. CAFFARELLI AND A. FRrRIEDMAN. Continuity of the temperature in the Stefan problem.
Indiana Univ. Math. J., 28(1):53-70, 1979.

e The selfsimilar solutions has the form H(xt~1/2), and a free
boundary given by x(t) = &t/2.

J. L. VAzQuEz. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP) oth+ (=A)°u=0 in Qr:=RNx(0,7),
h(-,0) = ho on RN,

Jgrgen Endal The one-phase fractional Stefan problem



The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP) Och+ (—A)°u=0 in Qr =RN x (0, T),
h(-,0) = ho on RN,
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FsP) {izh ;r) (:—fo)su =0 i)nn ?RTAI:: RN x (0, T),
where s € (0,1), hy € L°(RN) unsigned, and

u:= ®(h) := max{h — L,0}.
Note that ¢ is degenerate and Lipschitz, and if h > L then

Oru+ (—A)°u=0.
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Previous work on one-phase nonlocal Stefan

e Nonsingular spatial-fractional operators:

@ C. BRANDLE, E. CHASSEIGNE, AND F. QUIRGS. Phase transitions with midrange interactions: a
nonlocal Stefan model. SIAM J. Math. Anal., 44(4):3071-3100, 2012.

e Temporal-fractional operators:

@ V. R. VoLLER. Fractional Stefan problems. International Journal of Heat and Mass Transfer,
74:269-277, 2014.

e Singular spatial-fractional operators (fractional Laplacian):
Continuity of the temperature:

@ I. ATHANAsOPOULOS AND L. A. CarrareLLI. Continuity of the temperature in boundary heat
control problems. Adv. Math., 224(1):293-315, 2010.

Existence and properties of weak and very weak solutions (e.g.):

@ A. pE PaBLo, F. QUIrRGs, A. RobpricUEz AND J. L. VAzQuUEz. A general fractional porous
medium equation. Comm. Pure Appl. Math., 65(9):1242-1284, 2012.

@ F. peL Teso, JE, anp E. R. JAkoBseN. Uniqueness and properties of distributional solutions
of nonlocal equations of porous medium type. Adv. Math., 305:78-143, 2017.

Uniqueness of merely bounded very weak solutions:

@ G. GriLLo, M. MURATORI, AND F. PUNzo. Uniqueness of very weak solutions for a fractional
filtration equation. Adv. Math., 365, 107041, 35 pp., 2020.
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Still water and ice?
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Initial guesses and thoughts

______________

______________________________

The numerical solution of the problem

O¢h + \ (—=A)z max{h—1,0} = 0.
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Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Math. Models
Methods Appl. Sci., 31(1):83-131, 2021.

@ F. peL Teso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Adv.
Nonlinear Stud., 20(2):437-458, 2020.
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Very weak solutions

Consider very weak solutions of

Och+(=AyPu=0 in  Qr:=RNVx(0,T),
h(-,0) = ho on RN.

For all ¢» € C*(RN x [0, T)),

-
/ / (hdp — u(—A)%y) dxdt + / ho(x)¥(x,0)dx = 0.
0 RN RN
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Immediate properties

A priori results (dPQuRoVal2, dTEnJal7-19):

o (L*-bound) |[A(-, t)[[e= < |[hol| 1o

e (Comparison principle) hy < hg = h<h

o (L*-contraction) [(h(-,t) — h(-, t))* < [(ho — ho)*
e (Conservation of mass) [ h(-,t) = [ ho

e (Time regularity) h € C([0, T] : L} (RN))

if [[ho(-+ &) — hOHLl(RN) — 0as |¢] — 0"

Continuity through approximation (AtCal0):

u € C(RN x (0, T)) with a uniform modulus of continuity for
t>7>0.

OBS: Ok, as long as e.g. hg € L*™.

Uniqueness (GrMuPu20): If hy € L*, then there exists a unique
very weak solution h of (FSP) in L*°.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class

of solutions of the form
H(xt=")

with 8 := 1/(2s).
Note that 5 > 1/2, so that we always have superdiffusion.
x ) 'i{l §=1/t

Z',f s='h

3:‘ t’/z e

> 4>
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class

of solutions of the form
H(xt=?)

with 8 :=1/(2s).
Note that 5 > 1/2, so that we always have superdiffusion.

The proof follows from the scaling of the equation:
ho(x) = ho(ax) = h(x, t) = h(ax, a*t)

for all a > 0. In particular for a = t~1/(29) > 0.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form

H(xt™?) =: h(xt7,1)
with 8 :=1/(2s).
Note that 5 > 1/2, so that we always have superdiffusion.
The proof follows from the scaling of the equation:
ho(x) = ho(ax) = h(x, t) = h(ax, a*t)

for all a > 0. In particular for a = t=1/(29) > 0.
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Which solutions do we search for?

When N = 1, we can easily choose initial data such that
ho = ho(-a). Eg

7 X

So, we only care about the interphase between water and ice.
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Selfsimilar solutions: Elliptic problem in R

For now, fix N =1 and Py, P, > 0.
Let h solve (FSP) with initial condition

L+ P if x<0
ho(x) := .
L— P> if x> 0.

Then H solves

where U = (H — L) and & = xt~1/(239),

Immediately, we note that:

o[ — Py, <H(&) <L+ P;forall £ €R.

o lime, oo H(E) = L+ Py and limg oo H(E) = L — Po.
e H is nonincreasing.
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Selfsimilar solutions: Elliptic problem in RV

In multi-D, we make a constant extension of the 1-D H in the new
spatial variables.

So let us focus on the 1-D case.

Jgrgen Endal The one-phase fractional Stefan problem



Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2%).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Math. Models
Methods Appl. Sci., 31(1):83-131, 2021.

@ F. peEL Teso, JE, anp J. L. VAzQuEz. On the two-phase fractional Stefan problem. Adv.
Nonlinear Stud., 20(2):437-458, 2020.
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Selfsimilar solutions: Free boundary

Theorem (Free boundary [del Teso & E. & Vazquez, 2021])

There exists a unique finite &y > 0 such that H({, ) = L.

This means that the free boundary of the space-time solution
h(x, t) at the level L is given by the curve

x(t) = &o tas for all te(0,T).
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Selfsimilar solutions: Free boundary; Proof

Let us argue that H is strictly decreasing in a certain set.

Define

D:={¢cR:H(E) <L} = {¢cR: U =0}

Assume by contradiction that H is not strictly decreasing in D.

Jgrgen Endal The one-phase fractional Stefan problem



Selfsimilar solutions: Free boundary; Proof

Let us argue that H is strictly decreasing in a certain set.

v

I

Then H is constant somewhere in D, and U = 0 on those parts.
l.e., H, U are regular, —-&H'(€) + (—A)*U(€) =0, and H' = 0.

So, (—A)*U =0 in “flat part”, U = 0 in “flat part” to infinity, and
U > 0 and cont.

Then U = 0 in minus infinity up to “flat part”, and U = 0.
But H—> L+ P; as £ — —c.



Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point &.

>
x
—
s
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Selfsimilar solutions: Free boundary; Proof

Let us argue that & > 0.

>

H(P < hiz, 1)

h ()= T’L(‘S, f
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

Argue by contradiction. If £, = 0, then U(&) 2= |£]° for all small
enough & < 0. Which gives H not bounded in [0, +00).

Assume that U(&) 2 |£]° for £ < 0. Then, for £ > 0,

0 —£ s
~(~D)U(E) = cra / |“(’”dnz / B U/ O O

oo |1 — &[1T2s 2¢ | — &1 €

)

Moreover, for & > &1 > 0, solve —H'(§) = —2s(—A)*U(§)/¢:

_ & _(-AFUM) .. [ dy
H(&)—H(@)Hs/& / an1+/€1 i

Conclusion follows by sending &1 — 0.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

Strategy: Argue by contradiction. If £, = 0, then U(&) 2 [¢]° for
all small enough & < 0. Which gives H not bounded in [0, +00):

Assume that U(¢) = [£]° for € < 0. Then, for £ > 0,

—(=A) U(g)—cl,a/_oom_g‘?l)%dnz/_%MgP%an €l

Moreover, for &5 > & > 0, solve —H'(§) = —2s(—A)°U(§)/&:

&2 _(_A)U £ g
R e e
& n & "

Conclusion follows by sending &1 — 0.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.
If & =0, then U(§) 2 |£]° for € < 0.
Fix £, consider / := [£,0], and let U’ solve

(—D)U'(€) = 55EH(€) in  gel,
ul¢)y=o0 in  fel-.

Since £H' > 0, the Hopf lemma gives

ule)z1gf forall  cel.

@ X. Ros-OToN. Nonlocal elliptic equations in bounded domains: A survey. Publ. Mat., 60:3-26,
2016.

(The case U' =0 can be excluded.)



Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.
If & = 0, then U(&) > U'(€) = |€]° for £ < 0.

U > 0 and satisfies (—A)*U(&) = £H'(€) in R. Then
w = U — U’ solves

(—A)y’w(§) =0 in §el,
w(€) >0 in gel,

and w > 0.

Jgrgen Endal The one-phase fractional Stefan problem



Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Math. Models
Methods Appl. Sci., 31(1):83-131, 2021.

@ F. peEL Teso, JE, anp J. L. VAzQuEz. On the two-phase fractional Stefan problem. Adv.
Nonlinear Stud., 20(2):437-458, 2020.
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Selfsimilar solutions: Continuity

Theorem (Continuity [del Teso & E. & Vazquez, 2021])

H € Gy(R). Moreover, H € C1%((—00,&)) for some @ > 0,
H € C>*((&o, +00)), and

(~AYUE) = 5-EH/(©)

is satisfied in the classical sense in R\ {&o}.
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Selfsimilar solutions: Continuity; Proof

e By known results, H € C1%((—00,&)) for some o > 0:

We already know that U € C((—o0,&g)) N L®(RN).
It solves the fractional heat equation.
Then it is C® away from &.

@ L. SivesTRE. Holder estimates for advection fractional-diffusion equations. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 11(4):843-855, 2012.

Then it is C1* also. Hence, H= U + L in (—o0, &) is C12.

@ H. CHaNG-LARA, G. DAviLA. Regularity for solutions of non local parabolic equations. Calc.
Var. Partial Differential Equations, 49(1-2):139-172, 2014.

e Let us prove H € C*®((&o, +0)):

In [0, +00), U=0, and since 0 < U € L*®((—0o0,&p)), we have

(—A)*U € C*((§o, +00)). Then
H'(¢) = 252(—A)5U(§) holds pointwise in (&, +00).
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at & = &.

Let us show that A = 0.
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ = &y <— A=0.

The equation reads {H'(§) = 2s(—A)°U or

Eo+te Eote Eo+e
"d¢é = 2s —A)*Ud H(E) dE.
/é (H(E)E) de =2 / (“A) U + / (©)de

0—€ §o—¢ &o—¢

The first term is equal to
H(éo +€)(6o +¢) — H(éo — €)(o —€) — Ay as e — 0T
The third term is bounded by (L + P;)2e — 0 ase — 0T,

We are left with

So+e
A& = 2s lim / (—=A)*Ud¢E.
&

+
e—0 0—¢

Jgrgen Endal The one-phase fractional Stefan problem



Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

We are left with

Eote
Ao = 2s lim / (—A)*U dg,
§

e—0t 0—e

where (recall that U = 0 in [¢p, 00))

Eot+e
/5 (—A)yUde

0—¢

Eot+e +ooU )
/50 |1+2s d d€

. /m” Tl nae
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

We are left with

So+e
Ao = 2s lim / (—A)*Ude.
§

e—0t 0—e

where (recall that U = 0 in [¢p, 00))

Eot+e
/5 (—A)yUdE

0—¢

fote réo U(77)
:/50 / _ ‘1+2s dT] d§

+o0o U )
+/§ ’1—&-25 d df
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

We are left with
Eote
Ao = 2s lim / (—A)*U de.
e—0t fo—c¢

where (recall that U = 0 in [¢p, 00))
Sot+e

| apua
&

0—¢€

/€o+6 /Eo 0—U
dnd¢
£ ’1+2s
o U )
+/§ / ’1+2s d df
+o0 U
+/£ /f |§ ,,7’14-25 dndf
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

We are left with

Eote
Ao = 2s lim / (—A)*U de.
e—0t &o—e
where (recall that U = 0 in [¢p, 00))
Sote
| eapua
&

0—¢€

Eot+e o _ U(??)
_/5 / 7_ 1175 dnd¢
0

foEU

“ 0
/5 / (€ - 77)1+25 d d£+/5 /50 R |1+25)d d
" /»:os /;OO (nu_g);ﬂ dnd¢

0
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ = §y <— A=0.

We are left with

Sote
A& = 2s lim / (=AU dE.
&

e=0t Jeg—e

where (recall that U = 0 in [, o0))

Cote
/5 (—A)Ude

0—¢€

551_S+/ / )d d¢.
to—e Jeo—e \f 77’1+2s

Under the assumption U(z) < (§o — z)® when z < &.
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ = &y <— A=0.

We are left with

gote
Al = 2s lim / (—A)*Ude.
¢

e=0% Jeg—e
where (recall that U = 0 in [¢p, 00))

§o+6
) Ude

fo—¢
551 Ste a+2(1— s)

Under the assumption U(z) < (§o — z)® when z < &.
Under the assumption U € CL«.

We thus conclude that A{y =0, i.e., A=0.



Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

Why do we have U(§) < (§o — &)° when & < &o?
Recall that U(x) = u(x, 1) where u satisfies

deu+ (—A)u=0 in  (—o0,&t2) x (0,1],
u=2~0 in [got%a +OO) X [0’ l]a
u(-,0) = uo in (—o0, &o).

Now, if v solves

Ov + (—A)°v=0 in (=00, &) x (0,1],
v=20 in [€0, +00) x [0, 1],
v(+,0) = uo in (—o0, &).

Then 0 < v(x,t) < |x — &of® for x < &.

@ X. FERNANDEZ-REAL AND X. Ros-OToN. Boundary regularity for the fractional heat equation.
Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 110(1):49-64, 2016.
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Selfsimilar solutions: Continuity; Proof

H is continuous at £ =&y <= A=0.

Why do we have U(§) < (§o — &)° when & < &o?
Recall that U(x) = u(x, 1) where u satisfies

Beu+ (—A)u=0 in  (—o0,&t2) x (0,1],
u=0 in [t +oo) x [0, 1],
U(’,O) = Up in (_00750)'

To finish, we consider w = v — u. It satisfies:

Ow + (—A)°w >0 in (—o0,&0) x (0,1],
w =0 in [€0, +00) x [0, 1],
w(-,0) =0 in (—00, &).

In [€0t}/ (%) &] x (0,1], u=0and u > 0 in R gives d;u = 0 and
(—=A)°u <0 there. Thus, w > 0.
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Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Math. Models
Methods Appl. Sci., 31(1):83-131, 2021.

@ F. peEL Teso, JE, anp J. L. VAzQuEz. On the two-phase fractional Stefan problem. Adv.
Nonlinear Stud., 20(2):437-458, 2020.
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Speeds of propagation

Theorem (Finite speed for u, [del Teso & E. & Vazquez, 2021])

Let h € L>(QT) be the very weak solution of (FSP) with

ho € L=(RN) as initial data and u := ®(h).

If supp{®(ho(x) + ¢)} C Br(xo) for some e >0, R > 0, and
xo € RN, then

supp{u(-,t)} C B for some & > 0 and all t € (0, T).

R+&o f%S (XO)

4

Proof: Use multi-D special solutions in all directions. Why &7

7
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Speeds of propagation

Theorem (Finite speed for u, [del Teso & E. & Vazquez, 2021])

Let h € L>°(Q7) be the very weak solution of (FSP) with

ho € L=(RN) as initial data and u := ®(h).

If supp{®(ho(x) +¢)} C Br(xo) for some e >0, R > 0, and
xo € RN then

supp{u(-,t)} C B

s (x0) for some & >0 and all t € (0, T).
0 S

Proof: Use multi-D selfsimilar solutions in all directions. Why &7

Theorem (Infinite speed for h, [del Teso & E. & Vazquez, 2021])

Let 0 < h € L*°(QT) be the very weak solution of (FSP) with

0 < hg € L=®(RN) as initial data.

If hg > L+e>LinB,(x1) for somee >0, p>0, and x; € RN,
then h(-,t) > 0 for all t € (0, T).

Proof: Show h(-,t*) > 0, then all times > t* by comp.



Speeds of propagation

Free boundary: x(t) = &t1/(2%)
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Speeds of propagation

s

t= 1=0.19141 t=0.77734
=. 2 . : 2 L d
T
— = ssko) T
! — = Latontheat — = Latent heat
|
|
)
1
I
08
0s | | os
| 04 | | | 04
[ 0z | | 02 |
L
e, i =
B 10 3 B 10 s 3 s 10
X X X
t= t=0.19141 t=0.77734
T Ny 1
[-- gl u L )
| 09 \‘ e 09 =~ o )
08 \ 08 N
| \
] 07 \ 07 1
| 06 ] 06 1
{ | 1
1 0s | 0s |
1
| 04 ! 04
| | \
| 03 ) 03 \
| | \
| 02 | 02 \
N
| 04 v 04 ~ao
| 9 =S
e i o FAN o
s 10 s o B 10 s s 10
X X X

rgen Endal The one-phase fractional Stefan problem



Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL TEso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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The support of u never recedes

Theorem (Cons. of positivity, [del Teso & E. & Vazquez, 2021])

If u(x, t*) > 0 in an open set Q C RN for a given time t* € (0, T),
then

u(x,t) >0 for all (x,t) € Qx [t", T).

The same result holds for t* = 0 if ug = ®(ho) is continuous in .

Proof: Involved. Use the postive eigenfunction as subsolution.
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Goals of the talk

Free boundary of selfsimilar solution given by x(t) = &t1/(2).

Construct a continuous solution (selfsimilar solution) of (FSP).

Finite speed of propagation of u, and infinite of h.

The support of u never recedes.

Behaviour determined by L.

@ F. peL TEso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Behaviour determined by L

Recall that we solve
Oth+ (—A)° max{h — L,0} = 0.
What happens when L — 0T or L — 00?

L — 0T It becomes infinitely easy to turn ice into water.
L — oo: It becomes infinitely hard to turn ice into water.
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Behaviour determined by L

Theorem (Limit cases in L, [del Teso & E. & Vazquez, 2021])

Define the initial data

L+ up(x) in Q,
ho,L = .
0 in QF,

and let hy € L>°(RN) be the corresponding very weak solution of
(FSP) with uy := (hy — L)4.
Then:

@ u; — ugn pointwise in Qr as L — 0.

@ u; — ug pointwise in Qr as L — +oo.

o ug < u; < ugn.
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Thank you for your attention!
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