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Abstract

The ocean remains largely unexplored and presents a great challenge for scientific re-
search. Ocean fronts have shown importance for understanding both biological and
physical oceanographic phenomena, with river plume fronts being particularly intrigu-
ing. These fronts are a complex combination of freshwater and oceanic systems and
provide a unique perspective on the dynamics of frontal systems.

Despite the acknowledged significance of ocean fronts, their comprehensive sam-
pling is still a goal not yet achieved. To address this issue, this study tries to develop an
approach that utilizes statistical techniques, robotics, and oceanographic knowledge to
create an intelligent and ASS tailored to investigate river plume fronts or other similar
frontal systems. This system is designed to address the spatial and temporal complexi-
ties of ocean fronts, allowing for more efficient and representative sampling.

The basis of our approach is the incorporation of Gaussian random fields. This
modeling technique provides a robust proxy to the intricate field dynamics, allowing
us to capture underlying patterns and forecast evolving behaviors. This surrogate mod-
eling approach enables a nuanced understanding of the river plume front, reducing the
computational burden associated with real-time decision-making, this means that it can
be conducted on-board a robotic agent such as an autonomous underwater vehicle.

Building upon this proxy model, we develop and implement both myopic and non-
myopic path planning algorithms. Myopic planning guides autonomous agents in im-
mediate decision-making, capitalizing on localized data to direct sampling efforts. In
contrast, non-myopic planning offers a broader perspective, considering the entirety of
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the available information to optimize sampling across the entire field. The harmoniza-
tion of these algorithms presents an unprecedented opportunity to balance immediate
responsiveness with long-term strategic sampling.

We engage in a rigorous evaluation of our system through a series of simulation
studies, modeling different scenarios and conditions that represent real-world com-
plexities. Furthermore, we conduct experimental validations in authentic marine en-
vironments, leveraging our system’s adaptability to capture the transient and spatially
heterogeneous nature of river plume fronts. Autonomous underwater vehicles are used
in our field deployments.

The results of our investigation demonstrate the robustness and versatility of our
approach and its potential to improve oceanographic sampling. By seamlessly weav-
ing together statistical modeling and strategic path planning, we present an adaptive
sampling framework for exploring our ocean more efficiently and intelligently. This
work showcases the possibility of adaptive ocean sampling and contributes to our un-
derstanding of river plume fronts.
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(NTNU) in partial fulfillment of the requirements for the degree of Doctor of Philos-
ophy (PhD). The work contained herein unveils an interdisciplinary investigation into
the adaptive sampling of river plume fronts within the realm of ocean science. This ex-
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Chapter 1

Introduction

1.1 Background

The ocean is a major component of our planet, covering more than 70% of the surface
of the Earth1. It is a major heat reservoir, influencing weather patterns and moderating
temperatures around the world (Rhein et al. 2013). Furthermore, the ocean absorbs
almost all greenhouse gases created by humans (Takahashi et al. 2009) and it produces
more than half of the oxygen on Earth (Field et al. 1998). It is also home to a wide
variety of life forms, from the tiniest plankton to the largest whales. In particular, coral
reefs, known as the ”rain forests of the sea,” are responsible for sustaining around 25%
of all marine species, although they take up less than 1% of the ocean floor2. The
ocean provides a wide range of opportunities for the fishing industry, which supports
the livelihoods of more than 600 million people around the world3. Additionally, mar-
itime traffic is responsible for the transport of 80% of global trade, demonstrating its
importance in international networking4.

Ocean fronts are the dynamic boundaries between different water masses. These

1All About the Ocean by National Geographic
2Coral reef ecosystems by National Geographic
3Oceans fisheries and coastal economies by The World Bank
4Review of Maritime Transport 2022 by UNCTAD
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fronts are essential for ocean ecosystems and climate, as they often have high gradi-
ents in salinity, temperature, density, and nutrient concentrations, leading to increased
biodiversity and productivity (Chapman et al. 2020; Mańko et al. 2022). In addition,
upwelling and downwelling of water masses can significantly influence the distribu-
tion and transport of nutrients, heat, and carbon, affecting global climate (Coogan et al.
2019). It is hence essential to understand ocean fronts to comprehend marine ecosys-
tems and global climate, as well as to create conservation plans and regulate human
effects on these ecologically significant areas. River plumes, which are a frequent oc-
currence in places where a river meets the sea, are an ideal focus for investigation.

Despite their importance, our knowledge of ocean fronts is limited due to the dif-
ficulty in sampling these dynamic and often remote regions. In the past, ship surveys,
satellite observations, static buoys, and dynamic drifters have been employed in sam-
pling efforts; however, their high operational costs, vulnerability to inclement weather,
and need for human involvement are major drawbacks (Lin and Yang 2020). Recent
advances in technology, such as autonomous underwater vehicles (AUVs) and high-
fidelity numerical ocean models, offer promising solutions to improve ocean sampling
(Das et al. 2015; Fossum et al. 2019; McCammon et al. 2021; Berget et al. 2023; Ge
et al. 2023).

1.2 Project description

The Maritime Autonomous Sampling and Control (MASCOT) project, funded by the
Norwegian Research Council (NRC), seeks to explore the characteristics of river plumes
through a combination of multiple disciplines such as spatio-temporal statistics, robotics
and oceanography. The project aims to combine traditional data sources such as satel-
lite imagery and numerical models with modern approaches for robotic sampling (Slagstad
and McClimans 2005; Lin and Yang 2020). Conventionally, AUVs utilize fixed, pre-
programmed paths, limiting their adaptability in dynamic marine environments. This
leads to a crucial need for ASS capable of real-time adjustments to fluctuating oceano-
graphic conditions. To address these issues, an adaptive sampling system using AUVs
is proposed. This method involves the use of dynamic sensing systems that can adjust
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their sampling strategies based on observed data, allowing for more efficient data col-
lection. This technique has been successfully applied in various oceanographic studies,
including the examination of river plumes; see (Das et al. 2015; Fossum et al. 2019;
McCammon et al. 2021; Berget et al. 2023; Anyosa et al. 2023; Ge et al. 2023).

1.3 Outline

In the subsequent chapters, we outline our approach to the adaptive sampling issue.
Chapter 2 provides an overview of river plumes, their characteristics, and a review
of existing systems for conducting autonomous sampling of such characteristics. In
Chapter 3, we introduce our Adaptive Sampling System (ASS) developed to address
these challenges. Chapter 4 describes our methods for testing and evaluating the ASS.
Chapter 5 summarizes the papers produced during this Ph.D. research. Chapter 6 shows
the final remarks.
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Chapter 2

Problem Statement

2.1 River plumes

River plumes, which are freshwater bodies released from rivers into the sea, are essen-
tial for the transportation of sediments, nutrients, and pollutants, and thus have a major
effect on coastal dynamics, marine ecosystems, and water quality (Devlin et al. 2015).
The dynamics of river plumes is intricate and is governed by a variety of elements, such
as river discharge, oceanic conditions, wind, and the Coriolis effect (Horner-Devine
et al. 2015a). For example, the Coriolis effect shapes the dynamics of river plumes in
large-scale coastal areas, and the wind direction and strength significantly affect plume
behavior. River plumes also have a considerable impact on coastal and marine ecosys-
tems. They carry nutrients and sediments from land-based sources, influencing primary
productivity and sediment dynamics in coastal waters (Sagar et al. 2020).

Both Figure 2.1 and Figure 2.2 exhibit characteristic outbursts of river plumes,
although they are situated in different geographical locations. Figure 2.1 illustrates a
typical river plume outburst on the Douro River in Porto, Portugal, on 5 January 2020.
The plume’s scale is substantial, and suspended particulate matter contributes to its
visible appearance. Moreover, the plume’s dimensions and dynamics are influenced
by factors such as water discharge, wind direction, and the Coriolis effect. During the
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Figure 2.1: Sentinel-2 image of the Douro River plume. Captured on 5 January 2020.
Courtesy of Copernicus Open Access Hub.

specified period, the water discharge1 reached its peak, while the persistent east wind2

enlarged the plume and induced a rightward drift as it deepened.

In contrast, Figure 2.2 portrays a typical river plume in the Nidelva River in Trond-
heim, Norway, on 30 October 2022. This plume exhibits a relatively smaller size
compared to the one observed in the Douro River. Additionally, the water in Nidelva
appears to be clearer, and a reduced presence of suspended particulate matter is ob-
served in the surroundings. The annual average water discharge of the Douro River, as
noted by Azevedo et al. (2010), is 505 cubic meters per second (m³/s). In comparison,
the Nidelva River’s annual average water discharge, documented by Haraldstad et al.
(2022), stands at 110 cubic meters per second (m³/s).

In addition to the acquisition of satellite images, extensive fieldwork was conducted
onboard a boat to pursue the river plume actively. Subsequently, our aerial survey uti-
lizing a DJI Mini 3 Pro drone has provided valuable visualizations of the dynamic river

1Redes de Monitorização by Sistema Nacional de Informação
2Weather history of Vila Nova da Telha, Porto, Portugal by Weather Underground
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Figure 2.2: Sentinel-2 image of the Nidelva’s river plume. Captured on 30 October
2022. Courtesy of Copernicus Open Access Hub.

plume from an elevated perspective. Figure 2.3 portrays the discernible boundaries
between two distinct water masses, effectively capturing the striking characteristics of
the river plume at two separate locations in close proximity to the Nidelva River in
Trondheim, Norway, during the end of June, 2023.

In addition to satellite images, one can also use high-precision numerical ocean
models such as SINMOD (Slagstad and McClimans 2005) and Delft3D (Mendes et al.
2016) to generate initial understanding of the desired field. An example of the numer-
ical estimation of surface salinity at different locations from SINMOD and Delft3D is
shown in Figure 2.4. Such outputs from the numerical ocean models often capture the
large-scale dependencies of the ocean variables, but they can be biased. Hence, in-situ
sampling is important for calibration and updating.
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Figure 2.3: Aerial view captured by the DJI Mini 3 Pro drone, revealing the intricate
boundaries between different water masses near the Nidelva River in Trondheim, Nor-
way. The image showcases the vibrant dynamics of the river plume during the final
days of June, providing valuable insights into its spatial distribution.
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Figure 2.4: Comparison of surface salinity estimates from SINMOD and Delft3D in
the Trodheimsfjord and Rio Douro regions.
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Figure 2.5: LAUV-Thor undergoes remote operation check before its expedition.

2.2 Adaptive AUV sampling

The utility of AUVs extends to various domains of marine research, enabling effective
contributions to oil plume detection with hydrocarbon sensors (Kukulya et al. (2018);
Thorsnes et al. (2019)), thermocline monitoring via temperature sensors (Antunes and
Cruz (2019)), upwelling fronts exploration with biological and chemical sensors (Jack-
son and Reneau (2014)), and internal waves analysis by measuring water density and
salinity (Ratsimandresy et al. (2014); Toberman et al. (2017)). Furthermore, AUVs are
indispensable in studying biological and chemical features to assess ecosystem health
(Cowles and Donaghay (1998); Fossum et al. (2019)).

Recent developments in AUV maneuverability and computing power have enabled
the integration of modern ASS, for autonomous decision-making, improved sensor
technology, and advanced navigational autonomy. These AUV systems are designed to
adjust their sampling strategies based on real-time environmental data, thus increasing
the efficiency of data collection. Examples of such innovations include glider AUVs
(Lagunas et al. (2018); Chave et al. (2018); Galarza Bogotá (2018)), multi-AUV sys-
tems (Ahmadzadeh et al. (2006); Fiorelli et al. (2006); Cui et al. (2015)), and the in-
corporation of statistical techniques into AUVs for real-time data processing (Fossum
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(2019); Ge et al. (2023)).
The purpose of this study is to utilize an AUV to sample the spatial domain of in-

terest over time in an adaptive way. An AUV (see Figure 2.5) has a variety of sensors,
cameras, and navigation abilities that enable it to move autonomously and investigate
various depths. Its capacity to modify its course and act in response to real-time data
and environmental conditions makes adaptive sampling an increasingly attractive con-
cept. In our case, we aim to build an ASS to recognize the boundaries between different
water masses.

In order for the adaptive sampling to be effective, we must design systems that can
assimilate in-situ data and then make decisions based on the updated knowledge of the
uncertain spatio-temporal field. To do this, we are using Gaussian random field (GRF)
models as the main surrogate model for data assimilation. A GRF has the capacity
to model complex spatial relationships and quantify uncertainties in predictions. It
can flexibly adapt to various spatial patterns without imposing rigid assumptions. By
utilizing the Bayesian framework, a GRF can infer the underlying spatial structure
by encoding prior beliefs about the data and updating the posterior with the observed
measurements. This makes a GRF model an ideal choice for geo-spatial applications,
where capturing spatial dependencies and accurately characterizing uncertainties are
essential. Further, the limited memory and processing power needed make it possible
for the AUV to carry out calculations while in use, in real-time. This should not be
possible with a more complicated surrogate model building on complex differential
equations or neural network models.

A key element of the system is the capacity to make decisions that can guide the
AUV through the area, keeping in mind that the ultimate goal is to sample efficiently.
This process of determining where the AUV should go is known as path planning. It
is designed to provide optimized navigation in complex and often unpredictable un-
derwater environments. Due to the difficult nature of underwater terrains and limited
communication capabilities, it is essential to have intelligent path planning to guarantee
the safety and success of the mission.
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Chapter 3

Adaptive Sampling System

Leveraging the foundational research in the Sense-Plan-Act (SPA) framework, our sys-
tem integrates key insights for enhanced decision-making and interaction with the en-
vironment. The SPA framework’s effectiveness in various fields is well-established,
with studies such as Oddi et al. (2020) demonstrating its extension in robotics through
autonomous, open-ended learning, and Asmaa et al. (2019) highlighting its crucial role
in Unmanned Aerial Vehicle (UAV) control architectures. Additionally, the applica-
tion of the SPA paradigm in mobile health interventions is illustrated in Eapen et al.
(2019), and its importance in autonomous navigation of mobile robots is explored by
Nakhaeinia et al. (2011). The advancement of SPA through the multilayer architecture
in UAV control, merging cognitive methods with traditional robotics, is presented in
Emel’yanov et al. (2016).

Our system builds on these insights, adopting the SPA framework for intelligent,
cyclical decision-making and environmental interaction. It starts by collecting environ-
mental data through sensors, followed by planning based on this data to fulfill objec-
tives. The system then executes these plans, enabling adaptive sampling and continuous
adaptation, as depicted in Figure 3.1. This approach not only reflects the evolution of
the SPA framework but also integrates the advancements from previous research into
our system’s unique application.
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Figure 3.1: The Sense-Plan-Act (SPA) framework is responsible for organizing the
cyclical process of collecting data from the environment, planning data-collection
strategies, and carrying out accurate sampling activities.

3.1 Sense

In adaptive sampling, the ’Sense’ phase is pivotal, encompassing both the collection
and assimilation of environmental data. This phase involves deploying sensors and
other tools to gather relevant data, which is crucial for the system to acquire a compre-
hensive understanding of its surroundings. The gathered data not only offers valuable
insights but also aids in capturing the distribution of various environmental parameters,
essential for accurate modeling and decision-making.

The process of data assimilation is equally important in this phase. It involves
integrating the collected data points into the system’s world model, ensuring that the
model is continuously updated and reflective of the current state of the environment.
This assimilation is critical for maintaining the accuracy and relevance of the model,
allowing the system to adapt its responses based on the most current information.

For our system, the GRF acts as the proxy model for the environment. This choice
is due to its effectiveness in handling spatial data, its ability to provide a probabilistic
framework for understanding environmental variations, and the ease of model updating.
The GRF excels in interpolating and predicting environmental states, making it an ideal
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choice for adaptive systems that require a robust and dynamic understanding of their
operational context.

The subsequent section will delve deeper into the specifics of how a GRF is utilized
within our system, illustrating its role in enhancing the system’s sensing capabilities
and its integration into the broader framework of adaptive sampling.

3.1.1 Gaussian random field

A GRF is a powerful and versatile non-parametric Bayesian modeling approach used
for regression tasks. It is especially suitable for scenarios where the relationship be-
tween input and output data is not known beforehand and could be intricate or non-
linear. A GRF not only offers point predictions but also estimates of the uncertainty
related to those predictions, making it useful in the spatial analysis applications.

Posterior =
Likelihood ⇥Prior

NormalizationConstant
. (1)

Equation (1) outlines the general expression for Bayesian inference. The prior dis-
tribution is a key element in the GRF as it reflects the initial assumptions about the
trend, the variability and the smoothness and general behavior of the process being
modeled. Selection of the prior distribution can have a significant effect on the predic-
tions and uncertainty estimates in the GRF. By incorporating the observed data into the
prior model, a GRF can make data-driven updates that refine the model and generate
more accurate and meaningful predictions when more data is collected. Notably, we
assume that the data that we observe are the variables of interest at the locations where
they are taken. We also assume that the measurement noise is normally distributed,
which implies that the posterior model is a GRF.

In our case, we use the GRF to model salinity in river plumes. We let xuuu denote
the salinity at location uuu in a three-dimensional spatial domain M ⇢ R3. Although
we may sometimes focus on the surface layer, we keep it as a three-dimensional field
for general reasons. In this presentation, we will focus on a spatial process, disre-
garding the temporal variation for simplicity. This GRF is used to estimate the mean,
variability, and spatial dependence of the salinity field. To implement the model, the

23



spatial domain is often divided into n grid locations uuu1, . . . ,uuun, with the GRF at these
locations represented by xxx = (xuuu1 , . . . ,xuuun)

T . This GRF follows a normal distribu-
tion, specifically N(µµµ,,,SSS), where µµµ is the mean salinity values and SSS is the covariance
matrix. This matrix can be defined by a Matérn covariance function, characterized
by elements S(i, i0) = s2(1 + f1h(i, i0))exp(�f1h(i, i0)), with s2 being the variance
and f1 the correlation decay parameter (Cressie and Wikle 2015). The model can
take into account anisotropy, which is essential for capturing the varying spatial re-
lationships in the salinity field, particularly due to the differences in lateral and ver-
tical stretches of river plumes (Horner-Devine et al. 2015b). This anisotropy is re-
flected in the weighted distance matrix between grid nodes, formulated as h2(i, i0) =

h2
E(i, i0) + h2

N(i, i0) + (f 2
1 /f 2

2 )h2
D(i, i0), using separate correlation decay parameters f1

and f2 for the lateral and vertical dimensions, respectively.

The measurements at each stage j = 1, . . . ,J are modeled by a Gaussian likelihood
model

yyy j|xxx ⇠ N(FFF jxxx ,RRR j), (2)

where FFF j is an Nj ⇥ n selection matrix containing an entry of 1 in each row and 0
otherwise. The 1 entry refers to the sampling indices. With the covariance matrix
RRR j = r2IIINj , we assume that the data are conditionally independent, given the underlying
salinity. Here, r indicates the measurement standard deviation of the AUV salinity
observations. We denote the associated PDF by p(yyy j|xxx ).

Via Bayes’ rule, data assimilation at stages j = 1, . . .J, gives the sequential condi-
tional PDF p(xxx |Y j) µ p(yyy j|xxx )p(xxx |Y j�1). At the initial stage, the data set Y0 is equal
to F, and a prior GRF model is obtained. As time passes, the data set Y j increases, be-
coming a collection of Y j�1 and Y j. Under the assumptions about a GRF prior model
and a Gaussian measurement error model, this conditional PDF is also Gaussian with
mean µµµ j and covariance matrix SSS j given by

GGG j = SSS j�1FFFT
j (FFF jSSS j�1FFFT

j +RRR j)
�1

µµµ j = µµµ j�1 +GGG j(yyy j �FFF jµµµ j�1)

SSS j = SSS j�1 �GGG jFFF jSSS j�1,

(3)
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where µµµ0 = µµµ and SSS0 = SSS. The sequential updating resembles that of a spatio-temporal
Kalman filter (Cressie and Wikle 2015).

A GRF offers a range of advantages, such as the capacity to measure the uncer-
tainty of predictions and to perform kriging on the field with ease. However, the time
complexity associated with the size of the field increases with the size of the field.
Gaussian Markov random field (GMRF) provides a computationally efficient alter-
native to a GRF, particularly for large datasets, due to their sparse precision matrix
QQQ = SSS�1. This sparsity, which is a consequence of the Markov property, significantly
accelerates computations by reducing the complexity associated with GRF’s large and
dense covariance matrices. Furthermore, a GMRF is particularly adept at modeling
non-stationarity more naturally and flexibly. By adjusting the graph structure in the
precision matrix, a GMRF can represent varying correlation degrees across different
regions, offering a more nuanced approach to spatial variability that is especially use-
ful in large-scale applications where uniformity cannot be assumed (Lindgren and Rue
(2015); Fuglstad et al. (2015); Berild and Fuglstad (2023)).

3.1.2 Illustrative study

This study employs an illustrative case to elucidate the efficacy of using a GRF in
spatial modeling. The prior scalar field is postulated to increment linearly along the
east axis while maintaining uniformity along the north axis. The coefficients used in
the Matérn covariance kernel are specified as s = 0.2, f1 = f2 = 7.5, and r = 0.1. The
excursion set below 0.5 and its corresponding probability are computed, as illustrated
in Figure 3.2. A comprehensive examination of the methodologies for assessing the
excursion set and probability is deferred to the following section. The excursion set
delineates the threshold-based binary classification, assigning a value of one to regions
falling below the threshold and zero to those exceeding it. The excursion probability
represents the model’s estimate of the veracity of the field’s classification under current
assumptions.

To establish simulated ground truth scenarios for subsequent sampling, three stochas-
tic realizations of GRFs are generated, reflecting the inherent covariance structure and
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Figure 3.2: Illustration of the prior mean field, the defined excursion set, and the cor-
responding excursion probability.

prior mean. These are depicted in Figure 3.3, showcasing the field’s variability and the
complexity of its boundaries.

Figure 3.3: Stochastic realizations representing hypothetical ground truth fields derived
from the underlying covariance structure and prior mean.

Following the data acquisition along a predetermined trajectory, the prior field is
updated to yield a conditional field. This field of interest embodies a refined estimate,
integrating empirical observations to enhance the model’s initial predictions. Figure 3.4
presents the posterior fields derived from the GRF realizations in Figure 3.3, utilizing
data collected along the fixed path along the center line and juxtaposed against three
distinct ground truth scenarios. These visualizations affirm the model’s proficiency in
assimilating new data to update its predictions substantively.
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(a) Updated predictive field based on empirical data from ground truth scenario I.

(b) Updated predictive field based on empirical data from ground truth scenario II.

(c) Updated predictive field based on empirical data from ground truth scenario
III.

Figure 3.4: Posterior fields demonstrating the mean, excursion set, and excursion prob-
ability after empirical data integration along a fix path from respective ground truth
scenarios I, II, and III.
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3.2 Plan

The planning stage of the ASS is essential for making decisions. It is necessary to gain
a comprehensive understanding of the current situation in order to decide on the most
suitable strategy to achieve the boundary mapping objectives, in our case, of charac-
terizing fronts. This task can be divided into two components: the boundary classifier
and the path planner. The boundary classifier attempts to classify the boundary area by
utilizing the univariance in a statistical construction known as the excursion set. The
path planner must then determine the most advantageous route to take, accounting for
practical matters such as time constraints, as well as other factors such as balancing
exploration and exploitation.

3.2.1 Boundary classification

We use the notion of an excursion set (ES) to characterize the river and ocean water
masses (Fossum et al. 2019). The ES for salinity threshold t is defined by

ES = {uuu 2 M : xuuu  t}. (1)

Hence, salinity lower than this threshold will indicate river water. The associated ex-
cursion probability (EP) is

puuu = P(xuuu  t), uuu 2 M . (2)

When it is close to 1 or 0 at a given location, it is easy to classify the water mass to be
river or ocean respectively. EP close to 0.5 reflects ambiguity in the characterization
of water masses. The prior Bernoulli variance (BV) at location uuu is puuu(1� puuu) and the
spatially integrated BV (IBV) is

IBV =
Z

puuu(1� puuu)duuu, (3)

which is dominated by locations with probabilities near 0.5 and BV close to 0.25. In
practice the integral will be approximated by a sum over the n grid nodes.
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3.2.2 Planning metrics

In order to identify the most useful areas of the field, we need to focus our efforts
on areas that are deemed to be the most informative or interesting. For optimization
or sampling purposes, there exists a range of metrics including expected improvement
(EI), variance reduction, and others. We have chosen certain metrics based on empirical
evidence from previous studies and their demonstrated effectiveness for the task at
hand. Specifically, we have adopted the following:

• Expected integrated Bernoulli variance (EIBV): This criterion facilitates the AUV
in targeting locations that are likely to be ambiguous, thus channeling focused efforts
around the boundary regions. The goal is to construct AUV sampling strategies that
prioritize locations that are ambiguous, thus making the exploration more effective.
At each stage, considering only the data at that stage, we define the EIBV by

EIBV(DDD j) =
Z

Eyyy j |Y j�1;DDD j

⇥
Buuu(yyy j)

⇤
duuu, (4)

Buuu(yyy j) = puuu(yyy j,DDD j,Y j�1)(1� puuu(yyy j,DDD j,Y j�1)),

where Buuu(yyy j) is the conditional Bernoulli variance for outcome yyy j of data in design
DDD j, and the conditional probability of an excursion is

puuu(yyy j,DDD j,Y j�1) = P(xuuu  t|yyy j,DDD j,Y j�1). (5)

With the GRF modeling assumptions, the EIBV in Equation 4 has a closed-form
solution given via cumulative distribution functions of the bivariate Gaussian distri-
bution (Fossum 2019).

• Integrated variance reduction (IVR): This approach seeks to spread the sampling
efforts throughout the area, striving to reduce variance to the greatest extent possi-
ble. It embodies a more comprehensive strategy for understanding the fundamental
structure of the field. The IVR for a specific design DDD j is defined as

IVR(DDD j) = trace(SSS j�1FFFT
DDD j

(FFFDDD j SSS j�1FFFT
DDD j

+RRR j)
�1FFFDDD j SSS j�1) (6)
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• Operational constraints: This component takes into account the complexities of
the real world, including the presence of obstacles, the amount of time spent, and
any other navigational difficulties that could obstruct the sampling procedure.

3.2.3 Path planning

Path planning is essential in robotics, facilitating efficient navigation for autonomous
systems from one point to another. Dynamic Programming (DP) is a cornerstone in this
area, breaking complex navigation tasks into simpler, recursive sub-problems. It relies
on the Bellman equation, which posits that the optimal path in a route is an aggregation
of optimal sub-paths (Bellman 1966). This principle allows DP to methodically evalu-
ate all potential paths, selecting the most suitable one by using a cost function to gauge
transitions between states. Moreover, DP’s recursive nature optimizes computational
resources by caching and reusing calculations for previously computed sub-paths.

However, the high computational load of traditional DP often makes it impractical
for real-world scenarios, especially in robotics where high-dimensional state spaces
are common. This challenge has led to the adoption of Approximate Dynamic Pro-
gramming (ADP), which offers a more feasible approach for such applications (Powell
2007). While ADP retains the fundamental recursive framework of DP and its depen-
dence on the Bellman equation, it introduces strategic approximations and heuristics.
These modifications effectively manage the complexities and scalability issues inherent
in standard DP. ADP strikes a balance between computational efficiency and the accu-
racy of solutions, focusing on the evaluation and selection of near-optimal paths. This
approach not only ensures practicality in real-world implementations but also main-
tains the integrity of path planning processes, including both myopic and non-myopic
strategies. For our situation, relying on computations on-board the AUV is the main
limitation to the complexity of the ASS.

Myopic path planning

Myopic path planning employs a short-term approach that concentrates on immediate
or local improvements instead of considering potential long-term effects. It is fast and
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Figure 3.5: An illustration of myopic path planning is provided. The AUV plans its
next waypoint to achieve its immediate objective, which may lead to overlooking more
interesting areas.

responsive, making decisions quickly based on the current situation. Myopic planning
is a type of ADP that only considers a single-stage expectation and does not take into
account the potential implications of the current data for future stages of planning.
This makes it suitable for scenarios that require quick reactions in a changing environ-
ment, however its greediness can lead to suboptimal solutions and getting stuck in local
minima. The emphasis on short-term gains may overlook long-term benefits or oppor-
tunities, thus limiting its effectiveness in more strategic or complex circumstances, as
demonstrated in Figure 3.5.

Non-myopic path planning

In contrast to myopic path planning, non-myopic path planning takes into account
a broader perspective, considering potential future advantages along the route. This
strategy goes beyond the immediate rewards and produces a more strategic path that
evaluates the long-term benefits. It hence provides a much more complex ADP than the
myopic approach. Depending on the particular approach and situation, it can achieve
a close to optimal solution, but it can be a great challenge for the computational ca-
pacity. The long-term capability of non-myopic path planning usually involves higher
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Figure 3.6: An example of non-myopic path planning is shown. The AUV plans its
future path in order to reach its long-term goal, rather than settling for a locally optimal
region which may be more convenient in the present.

computational costs and requires careful design of the constraints, but it is likely to
generate a more robust and insightful solution for complex problems. An example of
non-myopic path planning is depicted in Figure 3.6. The AUV formulates its future
trajectory based on its long-term goal, rather than focusing on close-by convenient ar-
eas. One example of such long-horizon path planning algorithms is Rapidly-exploring
Random Trees (RRT*), which is suitable for intricate, ever-changing environments in
robotics and self-driving vehicles (Karaman and Frazzoli 2011).

3.3 Act

At this juncture, the AUV initiates the execution of its planned trajectory, a process
intricately designed in the preceding strategic phase. Typically, this trajectory is con-
stituted by a series of waypoints that the AUV must navigate through. The primary
objectives during this phase is to traverse the desired path efficiently. Additionally, the
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Figure 3.7: Illustration of the adaptive sampling framework developed at NTNU, high-
lighting the integration of ASS with hardware control algorithms via ROS messages
(Mo-Bjørkelund et al. 2020).

AUV is equipped to rectify any navigational discrepancies that may arise during this
operation.

To facilitate these objectives, the AUV utilizes an adaptive sampling framework
in its embedded system, developed at NTNU. This framework (Mo-Bjørkelund et al.
2020), as depicted in Figure 3.7, serves a pivotal role in synchronizing the adaptive
sampling mechanism with the AUV’s hardware control algorithms. The essence of
this synchronization lies in the efficient exchange of information, which is realized
through the Robot Operating System (ROS) messages. ROS, an open-source robotics
middleware suite, offers a standardized communication protocol that allows diverse
software components, including those responsible for data collection and hardware
control, to interact seamlessly Quigley (2009).

This framework demonstrates how data collection and decision-making can be ac-
complished at the edge with an AUV. By utilizing ROS, the AUV is able to make
real-time decisions based on the data it collects, decentralizing the decision-making
process and increasing the responsiveness and adaptability of the AUV in dynamic
underwater environments. This approach is statistically significant as it allows for dy-
namic adjustment of sampling strategies based on real-time environmental feedback,
optimizing data collection for further analysis.
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Chapter 4

Evaluation and Testing

We evaluate our ASS through two types of studies. We use a simulation study to
uncover any potential hazards or undiscovered phenomena, and to gain insights from
the model parameters. This allows us to fine-tune the parameters for the subsequent
experiments. To further validate the system, we conduct field experiments in the fjord
system in Trondheim, Norway and the Douro river in Porto, Portugal. The field trips in
Trondheim require us to be physically present in the boat to conduct the experiment. On
the other hand, the field trips in Porto are partially on-site and the rest of the mission
are done remotely. We were assisted by the personnel in Porto when we started the
mission.

4.1 Simulation

This study is designed to replicate the real-world situation as closely as possible, given
all reasonable assumptions. To do this, we select an operational area that is likely to
be the first place the river plume appears. We then obtain numerical results and satel-
lite images to help us identify potential fronts. We build statistical prior models such
as GRF and GMRF, which are trained on numerical results, including SINMOD and
Delft3D (Figure 2.4). This agent is then run in a simulated environment, using simu-
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lated ground truth. To reduce randomness, the proposed algorithms are compared to
state-of-the-art algorithms for many replicates. We monitor a range of metrics, includ-
ing root mean squared error (RMSE), integrated Bernoulli variance (IBV), variance
reduction (VR), and potentially classification error (CE), to gain a deeper understand-
ing of the properties of the system.

4.2 Experiments

The most stimulating part of the validation process is usually the field experiment. It
is usually a multi-day mission that involves planning, executing, and post-processing.
During the planning phase, two stages are typically involved in the preparation for the
field experiment: software-in-the-loop (SIL) and hardware-in-the-loop (HIL). SIL tests
the software used to ensure the accuracy of the algorithms and the overall functionality
of the system. HIL integrates the system with the hardware units to test its interactions
with real-world elements. The deployment to the ocean during the executing phase
is the final stage of the experiment, where the performance of the system is observed
under actual conditions, demonstrating its ability to handle the complexities of the real-
world. Finally, data analysis is conducted to gain further insight into the successes and
failures of the experiment.

The timeline in Figure 4.1 shows the field experiments I conducted during my PhD
study. The challenges of conducting a real experiment underwater are numerous. Nav-
igation can become inaccurate over time, and air bubbles can cause fluctuations in
measured values, adding to measurement noise. Communication channels are not as
reliable as on land, and the risk of collision with undetected objects such as fish or
plastic bottles is high, potentially leading to the loss of the AUV. Additionally, marine
traffic is unpredictable, and currents and waves can be strong, making it difficult to fix
bugs on board a small boat while people are feeling seasick.

Despite these challenges, the gains from the experiment are substantial and mul-
tifaceted. Apart from the technical and scientific insights, we often find joy in the
physical experiences involved. Fun moments arise from driving a boat across the vast
and unpredictable ocean, feeling a mix of excitement and respect for nature’s grandeur.
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Figure 4.1: The timeline of all the field experiments conducted during my PhD period.

The opportunity to be outdoors, breathing fresh air, and being surrounded by the sea
provides a refreshing break from the traditional office environment. The teamwork re-
quired for the experiment fosters actual face-to-face communication with colleagues,
forging stronger relationships, and allowing for real-time problem-solving. Moreover,
the memory of sailing around the ocean, facing unforeseen challenges, and overcoming
them with collaboration and determination, becomes a cherished experience. The mix
of technical mastery, adventure, and camaraderie forms a unique blend that sets such
experimental missions apart and makes them invaluable in both professional growth
and personal fulfillment.
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Figure 4.2: Pictures taken during my doctoral studies demonstrate the successful com-
pletion of a field experiment.

Figure 4.3: The field experiment yielded some unexpected results, as evidenced by the
image on the left which shows an AUV stranded close to the shore. The image on the
right displays an AUV with its wings damaged.
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Chapter 5

Summary of papers

5.1 Paper I

• Title: 3-D Adaptive AUV Sampling for Classification of Water Masses

• Highlights: This paper presents an adaptive sampling algorithm for AUVs to
classify water masses in 3D oceanographic systems, particularly river plumes. It
utilizes GRF models for salinity to differentiate between river and ocean waters.
The study proposes a real-time myopic path planning strategy, which adjusts
based on onboard AUV sensor data. The EIBV is used as a statistical design
criterion for optimizing sampling locations, with the goal of reducing classifi-
cation uncertainty of river plumes and fjord water masses. The efficacy of this
methodology is tested through simulation studies and real-world field trials in
Norway’s Nidelva river plume, showing significant progress in adaptive AUV
sampling techniques. The main contribution of this paper is to use an AUV for
3D adaptive sampling.
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5.2 Paper II

• Title: RRT*-Enhanced Long-Horizon Path Planning for AUV Adaptive Sam-
pling using a Cost Valley

• Highlights: This paper presents an ASS for AUVs that utilizes a long-horizon
path planning approach with a cost valley approach for efficient oceanographic
sampling, particularly of river plumes. The system combines a GRF model with
a RRT* algorithm for onboard path planning, taking into account exploration,
exploitation, and operational constraints. The system was tested through simula-
tions and a field trial in Trondheim fjord, and was found to be able to effectively
navigate dynamic marine environments, improving salinity field characteriza-
tion. The main contribution of this paper is the use of an AUV to sample the
river plume front of the Trondheim fjord region using the RRT*-enhanced long-
horizon path planner and a spatio-temporal GRF.

5.3 Paper III

• Title: Efficient 3D real-time adaptive AUV sampling of a river plume front

• Highlights: This paper presents an adaptive AUV sampling technique for map-
ping ocean salinity. The method utilizes GMRF to learn from high-resolution
ocean model data, and outperforms traditional statistical models in simulations.
Field tests conducted near Trondheim, Norway, confirmed the efficacy of the
approach, with one AUV dynamically adapting its path and outperforming an-
other on a pre-planned route. The results suggest potential applications for ocean
monitoring, although further refinement is needed for complex spatial modeling.
The main contribution of this paper is to demonstrate the use of an AUV for the
adaptive sampling of the river plume front in the Nidelva region, by employing
a complex non-stationary GMRF model as the proxy model and a myopic path
planner.
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5.4 Paper IV

• Title: Using expected improvement of gradients for robotic exploration of ocean
salinity fronts

• Highlights: This paper presents an algorithm for autonomous robotic explo-
ration of ocean salinity fronts, which utilizes spatio-temporal GRFs to anticipate
and investigate regions with considerable salinity variations. The algorithm, de-
signed for an AUV, calculates expected improvements in directional derivatives
to adjust sampling paths in real-time. The approach was tested through simula-
tions and a field experiment in the Trondheim fjord, where the AUV successfully
autonomously sampled salinity changes over two hours. This study provides a
reliable method for dynamic sampling in marine environments, with potential
applications in various domains requiring real-time adaptive monitoring. The
main contribution of this paper is the use of an AUV for the adaptive sampling
of the high-gradient area close to the river mouth region in the Nidelva river.

5.5 Paper V

• Title: Long-Horizon Informative Path Planning with Obstacles and Time Con-
straints

• Highlights: This paper presents a long-horizon path planning algorithm for
AUVs that takes into account obstacles and time constraints. The algorithm
uses a ”cost valley” strategy to guide the AUV through a simulated river plume,
maximizing information gain about salinity fronts while adhering to operational
limits. RRT* is employed for path planning, accounting for various constraints
such as distance budget, obstacles, and directional changes, with an emphasis
on reducing the variance of the field and focusing on salinity excursions. Simu-
lation results show that the algorithm outperforms traditional myopic strategies
and pre-scripted lawnmower patterns, balancing exploration and the need to re-
turn to the base within a set time frame. The main contribution of this paper is to
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demonstrate the feasibility of using RRT* as a path planner with a flexible cost
valley for long-horizon path planning.
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Chapter 6

Remarks

In this thesis, we have endeavored to address the complex challenge of adaptive sam-
pling of river plume fronts, an area that sits at the confluence of statistical modeling,
robotics, and oceanography. Our journey has been one of exploration and learning,
characterized by both progress and the recognition of ongoing challenges. The devel-
opment of an ASS, while a step forward, has also opened up avenues for future research
and development.

Our approach, which combined GRF and GMRF with myopic and non-myopic
path planning algorithms, aimed to refine the efficiency and accuracy of oceanographic
sampling. Through simulations and field experiments, we have gained valuable insights
into the workings of this system in diverse marine environments. These practical ap-
plications have provided a clearer understanding of the system’s capabilities and have
highlighted areas that require further exploration.

Looking to the future, the integration of multiple AUVs and advanced machine
learning techniques presents a promising direction for oceanic exploration. Coordinat-
ing multiple AUVs could increase the efficiency and scope of data collection, providing
a more comprehensive understanding of ocean dynamics. Simultaneously, applying
machine learning to large environmental datasets could uncover new insights and im-
prove predictive modeling. These advancements, combined with more sophisticated
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modeling methods, could deepen our knowledge of complex marine ecosystems and
inform future research in this essential field. In our study, we focused exclusively on
changes in salinity. However, we anticipate that the methods and algorithms we used
could be adapted for other bio-chemical elements, including plankton, oxygen, carbon
dioxide, and more. However, this approach might introduce unique challenges related
to modeling, scaling, and observation.

I am truly enthusiastic about the concept of using underwater robots for ocean
exploration. It is like sending out a team of high-tech explorers into the immense,
mysterious deep sea. Navigating the unpredictable seabed is a huge challenge for these
robots. Once we solve that, I think the rest will follow more easily. At the moment,
though, we are not quite there yet. It is a combination of anticipation and a bit of a
reality check, but the potential is too exciting to ignore.

This thesis has highlighted the importance of ongoing innovation and interdisci-
plinary teamwork in addressing the difficulties posed by our marine environments. The
potential for utilizing advanced technologies and fresh strategies to expand our knowl-
edge of the oceans is immense. We are hopeful and accountable for further progress in
this essential area of study.
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3-D Adaptive AUV Sampling for
Classification of Water Masses

Yaolin Ge , Jo Eidsvik , and Tore Mo-Bjørkelund

Abstract—Autonomous underwater vehicles with onboard com-
puting units foster innovative approaches for sampling oceano-
graphic phenomena. Feedback of observations via the onboard
model for planning algorithms enable adaptive sampling for such
robotic units. In this work, we develop, implement, and test an
adaptive sampling algorithm for efficient sampling of water masses
in a 3-D frontal system. Focusing on a river plume, salinity vari-
ations are used to characterize the water masses. A threshold in
salinity is assumed to distinguish the ocean and river waters, so that
excursions below the threshold define river waters. The onboard
model builds on a Gaussian random field representation of the
salinity variations in (north, east, depth) coordinates. This model
is initially trained from numerical ocean model data, and then
updated with data gathered by the vehicle sensor. The Gaussian
random field model further allows closed-form expressions of the
expected spatially integrated Bernoulli variance of the salinity
excursion set, which is used to reward sampling efforts. Combining
these results with forward-looking planning algorithms, we suggest
a workflow for 3-D adaptive sampling to map river plume systems.
Simulation studies are used to compare the suggested approach
with others. Results of field trials in the Nidelva river plume in
Norway are presented and discussed.

Index Terms—Adaptive sampling, autonomous underwater
vehicles (AUVs), excursion sets (ES), path planning, river plume.

I. INTRODUCTION

ARIVER plume is formed when the fresh water flowing out
of the river encounters the saline water in the ocean [1].

When these two different water masses meet, they form a vary-
ing spatio-temporal boundary [2]. There have been increasing
efforts using numerical models and data to investigate such
phenomena in the past decades [3], [4], [5], [6], [7], [8].

Autonomous underwater vehicles (AUVs) with onboard sen-
sors and computing resources provide rich opportunities for
oceanographic sampling as they can calibrate numerical ocean
model outputs with in situ data, and fill in the sampling resolution
gaps at locations with large uncertainty [9], [10], [11], [12]. For
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frontal regions such as river plumes, AUV sampling is helpful for
classifying the different water masses more accurately. Previous
AUV sampling efforts focus mainly on preprogrammed de-
signs [13] or use event-triggered adaptation of designs [14], [15].
Recent efforts have shown added value of having model-based
adaptive sampling plans [16]. Adaptive sampling strategies here
refer to AUV planning schemes that enable the AUV plan to be
updated based on the posterior knowledge from in situ sampling
and the probabilistic model description. Ideas from statistical
sampling design are highly useful in this field, because they can
help guide the AUV to informative locations [16], [17].

The main contribution of this work is a 3-D full-scale adaptive
AUV sampling strategy. With the AUVs limiting computing
resources, a Gaussian random field (GRF) model serves as a
statistical proxy models for the spatial salinity field in the 3-D
domain (north, east, depth). This 3-D GRF model running on-
board the AUV is sequentially refined using in situ observations.
This refined probabilistic model is further a basis for evaluating
AUV sampling designs. Starting with prior knowledge from a
numerical ocean model, we use an AUV to adaptively explore
the 3-D boundary between the water masses in the river plume.
We suggest algorithms to speed up design computations and to
enable efficient robotic maneuverability [18]. We use a statistical
design criterion based on the uncertainty of the excursion set
(ES) of low salinity which distinguishes the river from the ocean
water. This ES is defined by spatial locations having salinity
level below a user-defined threshold. Building on recently de-
veloped closed form expressions [16] for the expected integrated
Bernoulli variance (EIBV) associated with the ES, we compare
the EIBV associated with each candidate design location, and
select the design which has the minimum EIBV. The EIBV is
a useful criterion for improved classification of the river plume
as it is large when probabilities of excursions are far from 0
and 1. One should select sampling designs that on expectation
pull probabilities toward the 0 and 1 end-points to reduce the
uncertainty of the ES.

Via simulation studies and in situ measurements from the
Nidelva river plume in Trondheim, Norway, we study the prop-
erties of the EIBV sampling plans in the 3-D domain. For the
real-world experiments we used a light AUV (LAUV) [19] with
an on-board NVIDIA Jetson TX2 computing unit.

The rest of this article is organized as follows. In Section II, we
provide the background and motivation for our work on adaptive
AUV sampling to river plume water masses characterization. In
Section III, we introduce the models and methods used in this
article. In Section IV, we present our implementation used for

1558-1691 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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path planning. In Section V, we show a simulation study illus-
trating the properties of our 3-D adaptive sampling approaches.
In Section VI, we show results from the Nidelva river plume
experiments. Finally, Section VII concludes this article.

II. OCEAN SAMPLING

A. Data Sources

Numerical solutions of the complex differential equations
governing spatio-temporal oceanographic variation with bound-
ary conditions and forcing are essential in understanding the
ocean variability. In our application we rely on a fjord-scale im-
plementation of the SINMOD software [20]. Such ocean model
data provide physical interpretability of the ocean variability,
but they often need calibration or bias adjustments, and there
have been growing interests in uncertainty quantification and
data assimilation methods for various scales of this challenge,
see, e.g., [21].

Traditional in situ measurements generating input or cali-
bration data to numerical ocean models include stationary or
floating buoys, gliders, moorings, and ships [22]. With the advent
of smaller inexpensive sensor systems, one has capabilities of
handling a variety of measurements for biological, chemical,
and oceanographic purposes [22]. Ships data can be expensive,
and buoys and gliders have limited flexibility in maneuverability
given coverage constraints [23].

Satellite imagery has been a powerful and useful tool for
analyzing ocean variables. Data from satellites can provide a
large-scale coverage of the entire field of interest, and even
output portraits of river plumes [6]. However, due to large
latency and uncertainty (cloud coverage issues) of obtaining
such images, the usage of satellite imagery is limited. Satellite
data unfavorably cover only the surface of the ocean [24].

The development of underwater robotics have led to a large
number of robot-assisted applications in oceanography. Thanks
to the flexibility of the robots, there are growing numbers of au-
tonomous sampling missions which are conducted by robots [9].
Benefits further include real-time sensing and high-resolution
data gathering, with large opportunities to move in flexible paths
in the ocean environment. In our case, an AUV is used as the
target platform which is able to support 3-D adaptive sampling
at high resolution.

B. Sequential AUV Sampling

We denote the salinity field by {⇠u;u 2 M ⇢ R3}, where
the location u is (longitude, latitude, depth) and M is the spatial
domain of interest. Initially, we specify a probabilistic model for
the salinity based on numerical ocean model data. This provides
a realistic initial model for the 3-D salinity characteristics, one
that it is much more physically inspired than a simple linear
regression from available in situ AUV data [16]. We still use
regression analysis to calibrate the 3-D ocean model data to the
real-world ocean experiment by using a short preliminary AUV
survey [25]. The objective of the survey is not to reveal the entire
field, but rather provide some in situ measurements to adjust

Fig. 1. Sequential loop where design Dj is chosen based on the updated
model, yj is the data collected in this design, and this is used to update the
model (mj , Sj ). This continues over stages j = 1, 2, . . . J .

the ocean-model data and to form a reasonable prior model for
the day of deployment. Therefore, the path for the preliminary
survey can be as simple as a transect line with yo-yo movements
in the vertical direction. As mentioned in the previous section,
one can also use satellite data or even drone images in this initial
model specification, if such data are available [26].

In situ salinity observations for the main part of the deploy-
ment are denoted by {yj ; j = 1, . . . , J}, for stages j of AUV
measurements gathered over time. The vector yj of measure-
ments at stage j, holds Nj measurements made according to
spatial sampling designDj . The initial deployment location will
then define D1. We denote by Yj = {(y1,D1), . . . , (yj ,Dj)}
the collection of data gathered with the selected designs up to
stage j. Initially, this is an empty set; Y0 = ;.

The sequential designs are selected adaptively based on what
is evaluated to be the most informative AUV sampling locations.
In this evaluation, the on-board model is conditional to all the
data gathered until the current time. With new observations
available, data assimilation methods are used to update the
probabilistic representation for the salinity variables. This means
that the model is “alive,” and changing at every stage, depending
on the data. Adaptive sampling fits into the diagram loop in
Fig. 1. In our setting the spatial design plan is optimized based
on the current spatial statistical model. Then the AUV gathers
new observations according to the chosen design, and the GRF
model is updated. This continues over stages j = 1, . . . J .

For prioritizing sampling efforts, one must impose an ex-
pected reward or value function associated with the different
available sampling designs. At each stage, the expected rewards
of all possible designs are evaluated. In our setting with river
plumes, it makes sense to reward sampling locations that are
expected to give data that improve the spatial characterization
of the water masses [15], [16]. The setting is illustrated in Fig. 2,
where we indicate the current location of the AUV, its path, and
the sampling design opportunities at this stage. The information
criterion (EIBV) is calculated for all feasible designs, shown as
circular dots. Here, smaller dots with lighter colors are indicative
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Fig. 2. Adaptive path example on a 3-D waypoint graph. There are 17 candidate locations in different layers, the blue dot shows the current AUV location whereas
the green dot indicates the desired next waypoint selected based on the minimum EIBV criterion.

of larger expected uncertainty reduction. The adaptive sampling
approach would act by moving to the location with lowest EIBV.

III. STATISTICAL MODELS AND METHODS FOR

AUV SAMPLING

We next discuss our probabilistic modeling choices for the
salinity field, and show how this enables efficient data assimila-
tion as well as onboard design criteria. We then define ES and
the EIBV as a design criterion, and finally present an adaptive
sampling design algorithm for efficient 3-D characterization of
the river plume.

A. On-Board Computing With GRFs

The prior model for river plume salinity {⇠u,u 2 M ⇢ R3},
is defined via a GRF. A working assumption in our work is hence
that the GRF provides a reasonable proxy model for the spatial
salinity field in (latitude, longitude, depth). The initial model
specification includes estimating the expected value of the field,
its variability and spatial dependence. Note that the duration of
the experiment will be short and the temporal variation in the
river plume is ignored here. To check the Gaussian assumption,
we made a quantile-quantile (QQ) plot from the SINMOD
salinity data (see Fig. 3). Here, we have computed the mean and
variance at each location in a gridded domain over replicates
of time steps. The standardized residuals are used in the QQ
plot. The QQ plot in Fig. 3 shows a crossplot of the theoretical
Gaussian quantile of the residuals against the empirical quantile
of residuals in the data set. The blue line that we achieve is quite
close to the straight line (red). Of course, the physical model does
not give a Gaussian model, and we notice a sharper distribution
near 0, but nevertheless the discrepancy is rather small.

Critically, the GRF model enables onboard data assimilation
and adaptive AUV sampling efforts, as we will describe next.

Fig. 3. Quantile-quantile plot of the residual based on SINMOD estimation.
The residual is computed by subtracting the mean of the field and dividing the
standard deviation.

For onboard implementation and computing, the spatial domain
is discretized to a set of n grid locations; {u1, . . . ,un}. This
grid is also used for the waypoint graph setting for the AUV
sampling design. The prior or initial GRF model at these grid
locations is denoted by

⇠ = (⇠u1 , . . . , ⇠un)T , ⇠ ⇠ N(µ,⌃) (1)

with associated probability density function (PDF) p(⇠). Here,
length-n vector µ represents the prior mean of the 3-D salinity
variations, as will later be specified from ocean model data and
a preliminary AUV transect run. The n⇥ n covariance matrix
⌃ is defined via a Matérn covariance function with elements
⌃(i, i0) = �2(1 + �1h(i, i0)) exp(��1h(i, i0)), where �2 is the
variance and�1 a correlation decay parameter [27]. The distance
between grid nodes ui and ui0 is defined for east, north, and
depth Euclidean distances via

h2(i, i0) = h2

E(i, i0) + h2

N (i, i0) + (�2

1
/�2

2
)h2

D(i, i0)
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with h being distance, and subscripts E, N, D indicating each of
the three directions in vector ui0 � ui. Studies have shown that
the lateral stretch of the river plume tends to be many magnitudes
above the vertical stretch [1]. To model the correlation in dif-
ferent dimensions properly, we employ anisotropy between the
lateral domain and the vertical domain. This means that the depth
dimension is scaled differently (�2) using another correlation
decay parameter than the one used in the lateral field (�1).

The measurements at each stage j = 1, . . . , J are modeled by
a Gaussian likelihood model

yj |⇠ ⇠ N(F j⇠,Rj) (2)

where F j is an Nj ⇥ n selection matrix containing an entry of
1 in each row and 0 otherwise. The 1 entry refers to the sampling
indices. With the covariance matrix Rj = r2INj , we assume
that the data are conditionally independent, given the underlying
salinity. Here, r indicates the measurement standard deviation
of the AUV salinity observations. We denote the associated PDF
by p(yj |⇠).

Via Bayes’ rule, data assimilation at stages j = 1, . . . J , gives
the sequential conditional PDF p(⇠|Yj) / p(yj |⇠)p(⇠|Yj�1).
Under the assumptions about a GRF prior model and a Gaussian
measurement error model, this conditional PDF is also Gaussian
with mean mj and covariance matrix Sj given by

Gj = Sj�1F
T
j (F jSj�1F

T
j + Rj)

�1

mj = mj�1 + Gj(yj � F jmj�1)

Sj = Sj�1 �GjF jSj�1 (3)

wherem0 = µ andS0 = ⌃. The sequential updating resembles
that of a spatio-temporal Kalman filter [27]. In our case, we study
the benefits of using a 3-D spatial model in the AUV sampling.
Having a relatively short-term deployment, no explicit temporal
dynamics are modeled.

B. Excursion Set and Expected Integrated Bernoulli Variance

We use the notion of an ES to characterize the river and ocean
water masses [16]. The ES for salinity threshold t is defined by

ES = {u 2 M : ⇠u  t}. (4)

Hence, salinity lower than this threshold will indicate river water.
The associated excursion probability (EP) is

pu = P (⇠u  t), u 2 M. (5)

When it is close to 1 or 0 at a given location, it is easy to classify
the water mass to be river or ocean respectively. EP close to 0.5
reflects ambiguity in the characterization of water masses. The
prior Bernoulli variance (BV) at location u is pu(1 � pu) and
the spatially integrated BV (IBV) is

IBV =

Z
pu(1 � pu)du (6)

which is dominated by locations with probabilities near 0.5 and
BV close 0.25. In practice, the integral will be approximated by
a sum over the n grid nodes.

The goal is to construct AUV sampling strategies that priori-
tize locations that are ambiguous, thus, making the exploration
more effective. At each stage, we define the EIBV by

EIBV(Dj) =

Z
Eyj |Yj�1;Dj

⇥
Bu(yj)

⇤
du

Bu(yj) = pu(yj ,Dj ,Yj�1)(1 � pu(yj ,Dj ,Yj�1)) (7)

whereBu(yj) is the conditional Bernoulli variance for outcome
yj of data in design Dj , and the conditional probability of an
excursion is

pu(yj ,Dj ,Yj�1) = P (⇠u  t|yj ,Dj ,Yj�1). (8)

The notation in (7) indicates that the EIBV is an expectation
with respect to the random data yj for design Dj , conditional
on the history of sampling results Yj�1.

The criterion for selecting designDj and then getting data yj

at stage j = 1, . . . , J , is based on the minimum EIBV computed
for all designs in a candidate waypoint set denoted Dj . We have

Dj = argminD0
j2Dj

EIBV(D0
j). (9)

Using expressions similar to that of [28], the EIBV in (7) can
be evaluated in closed form. Denoting the variance reduction
from data by V j = GjF jSj�1, see (3), the EIBV becomes

EIBV(D0
j) =

nX

i=1

EBVui(D
0
j)

EBVui(D
0
j) = �2

 "
t

�t

#
;

"
mj�1(i)

�mj�1(i)

#
,W j(i, i)

!
(10)

where �2 denotes the bivariate Gaussian cumulative distribution
function, and with

W j(i, i) =


T (i, i) �Vj(i, i)

�Vj(i, i) T (i, i)

�

T (i, i) = Sj(i, i) + Vj(i, i).

We next give some intuition for this EIBV criterion. Fig. 4
illustrates a Gaussian PDF (left) representing the current knowl-
edge about salinity at some location. In this case it is standardized
so that

Z1 =
⇠ui �mj�1(i)p

Sj�1(i, i)

for location ui. The scaled threshold t�mj�1(i) is shown
as a vertical line. With variance s2j�1

(i) = Sj�1(i, i), the cur-
rent BV = p(1 � p), p = �(⇠ui ;mj�1(i), s2j�1

(i)) is also dis-
played.

We can collect data and get more information. The expected
BV (EBV) at this location is then available as a cumulative
probability as indicated in Fig. 4 (right). The EBV depends on
the mean value relative to the threshold. Assume that the mean
is lower, meaning that the threshold t�mj�1(i) moves to the
right in the left display. Then the BV decreases, and the EBV
illustrated in the right display also decreases as the vertical line
moves right and the horizontal line moves down. The EBV is
further smallest when there is much negative correlation in the
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Fig. 4. Left: Density curve represents the current knowledge at a selected location, while the vertical line indicates the threshold. The Bernoulli variance (BV)
is indicated. Right: EBV calculation involves bivariate Gaussian cumulative probabilities, which is the volume below the contours in the bottom left region.

Algorithm 1: Informative Myopic Sampling Algorithm.
Initialization: m0, S0, t, Y0 = ;, D1

j = 1
while j  Nsteps do

Plan: Evaluate EIBV(D0
j) for all D0

j 2 Dj B (7) and
(10)
Dj = argminD0

j2Dj
EIBV(D0

j) B (9)
Go to design Dj with the AUV, set design matrix F j ,

form set Dj+1.
Sense: Gather in situ AUV data yj according to design
Dj .
Yj = (Yj�1,yj).
Update : Gj = Sj�1F

T
j (F jSj�1F

T
j + Rj)�1

mj = mj�1 + Gj(yj � F jmj�1),
Sj = Sj�1 �GjF jSj�1 B (3)
j = j + 1

end while

density in Fig. 4 (right). From matrix W j(i, i) in (11), we see
that this occurs when the variance reduction Vj(i, i) is large
compared with Sj(i, i) + Vj(i, i). The bivariate �2 calculation
in (10) is somewhat costly, and if the correlation term is small,
one could approximate it with two univariate calculations to gain
computational efficiency.

Previous research has demonstrated the possibility of using
EIBV as the design criterion for AUV adaptive sampling in 2-D
domains [16]. We next explain how we build on this to construct
effective AUV operations in 3-D adaptive sampling plans.

IV. PATH PLANNING ALGORITHM

A. Adaptive Sampling

The GRF model updating in (3) and closed form EIBV
calculation in (10) enable information-based adaptive AUV
sampling. We summarize the approach in Algorithm 1.

Note that as outlined this defines a myopic or greedy
approach to adaptive sampling. This is not necessarily optimal.
The myopic evaluation is done by taking the expectation of data
at this stage only, without anticipation of what future sampling
efforts might bring. The optimal solution to the sequential
sampling design problem would also account for the sampling
efforts at future stages. However, from the mathematical and
computational setting, it is not feasible to find the optimal design
strategy because it involves combinatorial growth of possible
paths requiring intermixed optimization and expected values.
Instead, one often resorts to the outlined myopic strategy. More
nuanced approaches exist for doing longer-horizon search,
for instance variants of Markov decision processes (MDPs)
or partially observed MDPs [29], rapidly exploring random
trees [30] or those based on genetic algorithms [31]. Such
approaches will typically perform better than the myopic
heuristic in situations with forbidden regions or with high
collision risks, but it is not easy to use these in large-scale
computations onboard the AUV. Further, restricted Monte Carlo
search or pruning of paths, these nonmyopic approaches will
not necessarily improve performance compared with a myopic
search on the regular waypoint graph case [16]. We will limit
scope to the myopic calculations (Algorithm 1) in this work.

For the 3-D application we consider here, the sequential
sampling is restricted to a path embedded on a predefined grid
of waypoints. In practice, the EIBV is computed for a set of
neighborhood waypoint locations, meaning that the candidate
design D0

j must be among those possible designs defining Dj .
For small AUVs and large field, it might be possible to move

the AUV wherever it needs to be. However, this might lead to
an excess of manoeuvring time for the operation. To foster effi-
ciency of the autonomous sampling process, a smooth-filtering
method is applied to achieve AUV-friendly path planning
(Algorithm 2). It first selects neighboring locations, and two
vectors will be formed. Vector ~b1 is defined from the previous
location to the current location, whereas vector ~b2 is from the
current location to the potential candidate locations. Next, the
inner products between there two vectors is calculated, and
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Fig. 5. Smooth path planning. I: Arrive at the current location. II: Search all neighboring locations. III, IV: Compute inner products. V: Select qualified candidate
locations. Blue thin crosses indicate the abandoned locations, whereas the green thick crosses indicate the filtered locations.

Algorithm 2: Smooth-Filtering Algorithm.
Require: Dj�1,Dj�2

D⇤ = {u 2 M such that |u�Dj�1| < neighboring
distance}
~b1 = Dj�1 �Dj�2

i = 1
while i  ND⇤ do
~b2 = D⇤

i �Dj�1

if ~b1 · ~b2 < 0 then
Abandon D⇤

i .
end if
i = i + 1

end while
Dj = D⇤

only candidate locations with positive inner products will be
considered for EIBV evaluation.

A map view version of the smooth-filtering is depicted on
a 2-D waypoint graph in Fig. 5. In 3-D, the principle is the
same, except that it is expanded to include the vertical can-
didate locations as well. This path smooth-filtering algorithm
is effective since it removes locations which might require
a hydrobatic maneuver to go there [32]. The smooth-filtered
trajectory further avoids time-consuming turning which would
increase the traveling time and introduce location inaccuracy.

V. SIMULATION STUDY

To compare the performance between some existing algo-
rithms and the 3-D myopic algorithm that we have developed
here, a simulation study is conducted. We next describe the case,
present the various methods, and discuss results.

A. Simulation Setup

We use data from the numerical ocean model SINMOD as
a reference for specifying realistic trends and variabilities for
the oceanographic fjord-river water masses. Fig. 6 shows the
average surface salinity field predicted for the first week in May
using SINMOD. Four outlets from the river are recognized. The
salinity variation from the river mouth to the ocean changes
dramatically from bins of [0, 3] to [28, 30] ppt. The boundary
between the freshwater and the more saline fjord water is clearly
depicted by the contours.

Fig. 6. Regional average surface salinity prediction in May 2021 from SIN-
MOD. The blue rectangle indicates the designated simulation area (Section V),
and the red dotted regions indicate the waypoint graph used in the field deploy-
ment (Section VI). The grid consists of 25 ⇥ 25 nodes in each lateral axis and 5
layers in depth. Courtesy of SINTEF Ocean and ESRI basemap.

To narrow down the focus on mapping the front of the river
plume in 3-D, a smaller region of interest in the easternmost part
is selected (see blue rectangle in Fig. 6). Five depth layers 0.5,
1.0, 1.5, 2.0, 2.5 m are used.

A 3-D GRF benchmark field is created based on the
data extracted from SINMOD on the desired simulation re-
gion. The mean values are set from averaging SINMOD
data. The coefficients used in the Matérn covariance ker-
nel are specified as � = 0.71, �1 = 0.008, �2 = 2.25, and
r = 0.2.

Fig. 7 shows one realization from our GRF model with the
specified mean and covariance model. This is regarded as the
ground truth in the simulation. There is clearly river plume areas
to the south-east and near the surface, and realistic variability
in salinity extent with some mixing of water masses, indicating
that the GRF model emulates the physical phenomenon rather
well.

B. Simulation Approaches

We next describe two additional sampling strategies that are
compared with our suggested 3-D adaptive sampling method. In
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Fig. 7. One benchmark salinity field used in the simulation study. Some water blobs are shown on the north side of the region.

Fig. 8. Adaptive myopic 2-D algorithm illustration. The outmost envelope shows the estimated boundary after sampling 20 locations. Note that the yoyo pattern
is shown as an illustration. It can be denser in the actual setting.

all three, the GRF proxy model provides an easy way to update
the knowledge of the field by measuring the data at specified
locations. The differences occur in how the data is included
in the on-board computing and in what sampling strategy is
used to explore the domain. When we compare results of the
various approaches, they will be influenced by the sampling
methodology used.

1) Adaptive Myopic 2-D: For the adaptive myopic 2-D,
the AUV is only moving adaptively in the middle layer with
the myopic strategy. It updates the entire field based on
the data obtained from the middle layer at 1.5 m depth. In
practice, the AUV needs to calibrate its navigational errors

by constantly popping up onto the surface and request ac-
curate GPS locations and dive back to the place where it
should continue. This is achieved by a yoyo pattern, as shown
in Fig. 8.

2) Nonadaptive Lawnmower: For the nonadaptive lawn-
mower, Fig. 9 shows that the AUV will follow a predesigned
3-D lawnmower pattern. In the lateral direction, the surface-
projected trajectory will be a typical lawnmower manoeuvre. To
extend it into 3-D, a vertical yoyo maneuver is added in addition
to the lateral lawnmower. This preprogrammed method requires
no statistical computations at waypoints, and it uncovers the field
with large coverage. But the approach is usually time-consuming
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Fig. 9. Lawnmower-yoyo maneuver illustration. The estimated boundary after observing 20 sampling locations is shown as the outermost envelope.

Fig. 10. Adaptive myopic 3-D sampling illustration. The outermost envelope shows the estimated river plume front after sampling 20 locations with the adaptive
myopic 3-D path planning.

and inefficient in finding interesting features as it does not adapt
to the data.

3) Adaptive Myopic 3-D: Our suggested adaptive myopic
3-D strategy extends the potential candidate sampling locations
from one layer to include multiple layers. Therefore, it adapts
to the field data with a much wider perspective. It is further
both energy-efficient and time-efficient. One example of the
adaptive 3-D myopic path planning is depicted in Fig. 10. One
can see that at each stage, candidate locations will be generated
in three dimensions. Only a few (shown as blue in Fig. 10) will
be selected for the EIBV calculation due to the constraints of
AUV maneuverability.

C. Simulation Results and Discussion

Figs. 8–10 show how each strategy behaves for one specific
generated salinity field. To remove random effects, results of 100
replicate simulation results are averaged and shown in Fig. 11.
At each time step of the runs, integrated Bernoulli variance
(IBV), root-mean-squared error (RMSE), variance reduction
and distance traveled are monitored for comparison of the three
strategies.

The IBV indicator shows that the Lawnmower-yoyo pattern
has the slowest reduction of the three strategies. However, it
goes down quickly when the robot is in the area of interest, i.e.,
the boundary region or the front of the river plume, performing
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Fig. 11. Average results from 100 replicate simulations for 20 sampling locations. The standard error is depicted as vertical lines.

better than myopic 2-D after about 15 iterations (The same holds
for RMSE and variance reduction.) This occurs because the lawn
mower strategy can get lucky and the AUV runs into interesting
parts of the domain, but it can also miss this entirely in the given
time window. Even though the myopic 3-D strategy is guided by
EIBV reduction, it also achieves large reduction in RMSE and
variance, and more so than the other methods. It performs better
than the 3-D lawnmower strategy because it explores new parts
of the domains and in doing so avoids locations that are highly
correlated to the ones already sampled.

With the same starting location and about the same traveled
distance (see Fig. 11, lower right), the 3-D version of the myopic
planning reveals the most information of the field within the
three strategies. The flexibility in 3-D enables the AUV to both
explore and exploit the environment effectively.

VI. AUV EXPERIMENTS IN THE NIDELVA PLUME

We next describe and show results of AUV experiments done
in late Spring 2021 to map the Nidelva River plume, Trondheim,
Norway. The adaptive AUV experiments were conducted on 6
July 2021. Before that, we gathered various complementary data.
The phone footage on 27 May shows a visible river plume (see

Fig. 12). A satellite image on 2 June (see Fig. 13) shows how the
river plume area is unfolded by pollen flushed away by the river
in the spring season. That matches very well with the phone
footage (see Fig. 12). Such data motivate AUV sampling for
calibration, improved resolution, and 3-D characterization.

A. Experiment Setup

1) Discretize the Grid: Computational constraints and prac-
tical matters lead to a 25 ⇥ 25 ⇥ 5 grid discretization within
the 1 km ⇥ 1 km ⇥ 2 m box region overlapping the river plume
area as shown in Fig. 6 (red dots). We concentrate our effort
on the near-surface regions (depth smaller than 2.5 m) because
ocean model data and observations made during an initial AUV
transect (see Fig. 14) show that the freshwater river plume tends
to float close to the surface regions [1].

2) Building the Prior: To form a prior, we use SIN-
MOD data as a core building block. First, we allocate
mean values to each 3-D grid node, extracted from aver-
ages over many SINMOD runs. Second, we calibrate these
mean values in a regression model using AUV data from
a preliminary transect survey. A linear regression model
yuk = �0 + �1ySINMOD

uk
is fitted, where uk indicate locations
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Fig. 12. River plume zone captured by mobile phone on 27 May 2021. The camera perspective is shown as the white fan on the left corner which indicates the
area where the plume occurs.

Fig. 13. Satellite image captured on 2 June 2021, showing the visible river plume thanks to the pollen flushed away by the river.

of transect line AUV data yuk and SINMOD data ySINMOD
uk

.
The fitted coefficients �̂0, �̂1 adjust the entire field, and �̂0 +
�̂1ySINMOD

uk
provides the prior mean in the onboard model used

in the AUV deployment.

The coefficients for the Matérn kernel are approximated using
empirical variograms of the AUV data collected from the initial
survey. They are specified to� = 2,�1 = 0.011,�2 = 0.94, and
r = 0.55. Careful assessment of these parameters is important
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Fig. 14. Salinity versus depth plot from AUV in situ measurements and from
SINMOD prediction. Both SINMOD and the in situ measurements show that
most salinity variation happens close to the surface.

Fig. 15. LAUV Roald is taking a shower after the heavy duty.

when it comes to sharpening the performance of the adaptive
sampling algorithm such that it recognizes the boundary more
agilely. However, further tweaking of these parameters are out
of the scope of this work.

3) AUV Deployment: LAUV Roald (see Fig. 15) from the
Applied Underwater Robotics Laboratory at NTNU was em-
ployed in the Nidelva missions. All the essential scripts were
integrated onboard on the backseat NVIDIA Jetson TX2 CPU.
For hardware and software in the loop testing and the actual
deployment we relied on the framework developed by [12]. The
implementation of Algorithm 1 and 2 requires robot operating
systems (ROS) [33] and a software bridge to the LAUV, running

Fig. 16. Main software components in the communication between the adap-
tive code and the vehicle. DUNE [34] is running on the main CPU of the AUV
while the IMC [35] messages are transmitted via TCP [37] to an auxiliary CPU,
where ROS [33] and the adaptive code is run.

DUNE (DUNE :Unified Navigation Environment [34]) embed-
ded and communicating over the intermodule communication
(IMC) message protocol [35].

The software bridge between ROS and IMC was adapted
from the Swedish Maritime Robotics Centers implementation
of an ROS-IMC bridge [36]1 to include messages going from
ROS to the vehicle. In addition, a wrapper for the vehicle
IMC messages was used, enabling easy interaction between the
adaptive software and the vehicle. The communication bridge
and framework between ROS and IMC use the same back-seat
interface as [15], with IMC messages being transmitted over
Transmission Control Protocol (TCP) [37] between the main
CPU and the auxiliary CPU in the AUV. The adaptive code is
run in the auxiliary CPU to preserve the integrity of the main
CPU. For illustration, a flowchart containing the main software
components is presented in Fig. 16.

B. Experiment Results and Discussion

Fig. 17 shows the posterior EPs after assimilating all the
AUV measurements from the adaptive mission. When the EP
is close to 1, it is classified as river water, while ocean water
has probabilities close to 0. Some parts of the domain are still
unexplored and have intermediate probabilities. In its adaptive
sampling efforts to distinguish the water masses, the AUV travels
between different layers and traverse the lateral domain. The
sampling mainly takes place in the top three layers that mirror
the buoyant river plume assumption, but it dips down to 2 and
2.5 m. The adaptive behavior guides the agent to be within the
boundary region instead of putting too much effort on either side
of the front. According to the updated field, there appears to be
patches of river waters going down to 1 and 1.5 m, but most river
water is near the surface.

In Fig. 18, we compare prior and posterior EPs for the top
two layers. Clearly, the AUV reveals a bigger plume region than
what is predicted by the SINMOD prior model. At 1.0 m there
appears to be water mass separation. This kind of separation
is likely very heterogeneous in space and time, and the dis-
played results only show predicted conditions at the day of the
mission.

1[Online]. Available: https://github.com/smarc-project/imc_ros_bridge
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Fig. 17. Excursion probability for the posterior field. It describes how similar the water mass is to the river water. Values near 1 (blue) represents river water,
while 0 (white) represents ocean water.

Fig. 18. Excursion probability comparison for the prior field (left) and the posterior field (right) at 0.5 m depth (top) and 1.0 m depth (bottom). The AUV trajectory
is shown as the black line in the right column.
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VII. CONCLUSION

The main contribution of this work is to apply Gaussian
random field models for 3-D north-east-depth domains in the
context of adaptive sampling with real-time computation and
maneuverability routines on a robotic vehicle. The adaptive
sampling routine presented here is tailored to frontal systems,
and it relies on reduction of the EIBV. We conducted a simulation
study comparing the suggested approach with more standard
approaches. Results demonstrate the capability of the adaptive
myopic 3-D sampling in a field deployment. The AUV managed
to distinguish the different water masses in a river plume in a
Norwegian fjord-river system.

River plumes are influenced by many factors such as winds,
waves, and tides, and we could likely model statistical correla-
tions more sensibly by using a nonstationary Gaussian random
field prior [38]. Our method uses ocean model data to build
a reasonable prior model of the salinity field in 3-D. However,
when this type of information is lacking, the prior belief can also
be constructed based on other data, possibly satellite imagery or
buoy information. As AUV data are rather sparse, there is likely
much to gain by using spatially covering physical modeling
data and satellite data, as this allows a better initial model for
sampling.

The time variation will play an important role if the AUV
deployment lasts longer. This is naturally the case when the
frontal region gets bigger and the distance traveled by the AUV
increases. In long-term deployments it will also be important
to capture such temporal effects [39]. The current myopic
philosophy works well for a small river plume. As the plume
gets bigger, or one has interest in capturing subregional plumes,
there is likely some gain by using strategies that anticipate
many stages [30], [31] or in using ocean physics for the 3-D
navigation [40]. Other opportunities stem from using adaptive
sampling in a cooperative fleet as discussed in [41].
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With the goal of e↵ective sampling of oceanographic variables by autonomous

underwater vehicles, we propose a long-horizon adaptive sampling system which

consists of a flexible cost valley concept and a non-myopic path planner. The goal of

sampling is to gather information to reduce the expected variability or classification

error of a particular feature. At the same time, one must adhere to operational

challenges such as obstacles or time constraints. We combine various such objectives

allocated to spatial locations in a weighted calculation to construct a cost surface,

and the cost valley concept is then based on maneuvering to the minimal parts of

this surface. We combine this cost valley concept with a rapidly exploring random

trees strategy for non-myopic path planning. Results from a field trial in a Norwegian

fjord show that the autonomous underwater vehicle running our long-horizon adaptive

sampling system onboard successfully explores the salinity field in a river plume during

a several-hours mission.

1



1 Introduction

Autonomous underwater vehicles (AUVs) have been used extensively to investigate

di↵erent oceanographic phenomena. See e.g. Hwang et al. (2019) for a recent review.

Benefits of AUV exploration are fast deployment and guided in-situ measurements

without much human involvement. By bridging statistical modeling, embedded

computing, and sensor technology, one can conduct AUV missions using adaptive

sampling, which has gained interest in a variety of oceanographic application such as

quantification of chlorophyll (Fossum et al., 2019; Zhang et al., 2020), detection of

dissolved oxygen (Stankiewicz et al., 2021), benthic habitat mapping (Rigby et al.,

2010; Anyosa et al., 2023) and frontal zones characterization (Zhang et al., 2016;

Fossum et al., 2021; Ge et al., 2023).

In using only one AUV to conduct adaptive sampling, dominating methods can

be grouped into either myopic (greedy) or non-myopic approaches. Myopic strategies

guide the AUV towards the most informative location selected from a subset of

candidate locations within the myopic (near-sighted) neighborhood radius (Fossum

et al., 2021). The greediness of such computationally e↵ective algorithms can make

them fail at revealing new interesting areas that are not in the vicinity of the current

location. Non-myopic strategies can alleviate such challenges by expanding their search

horizon (Bai et al., 2021). Xiao and Wachs (2022) demonstrate long-horizon algorithms

in a small-scale case study where the shapes of unknown objects are revealed by

a robot arm, using prediction variance reduction as the main criterion. Suh et al.

(2017) present an idea of using cost-aware rapidly exploring random trees (RRT*)

to generate sampling paths based on cross-entropy as a cost function. However, the

computational costs associated with such non-myopic algorithms are usually very high.

Although there are marine field applications using RRT* (Enevoldsen and Galeazzi,

2021; Zacchini et al., 2022), it has shown di�cult to apply methods such as RRT* for

large-scale onboard computations in the ocean. In particular, the tree expansion used
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in such algorithms is challenging in real-time operations, and with limited trees it loses

some of its strengths. It is interesting to find ways to robustify the tree construction,

for instance by combining multiple criteria in the objective function used for sampling.

Adaptive sampling relies on a criterion that allows the AUV to recognize high

or low costs. In some sampling situations, one can explicitly relate the rewards or

costs of sampling to an underlying decision situation, and then compute the value of

information in monetary values (Eidsvik et al., 2015). In other situations, one can ask

more expeditionary questions related to scientific task execution, such as Preston et al.

(2022) who employ an AUV ’sni�ng’ for hydrothermal vents. But in many situations,

the reward is more ambiguous and multifaceted, say via occupancy grids for presence

or absence of a feature (Jakuba and Yoerger, 2008), reduced variance or entropy of

a field variable (Binney et al., 2013; Berget et al., 2018; Ma et al., 2018; Fossum

et al., 2018) or by identifying hot spots in the field or the di↵erent water masses (Das

et al., 2010; Fossum et al., 2021; Ge et al., 2023). Moreover, very high costs should be

assigned to collisions or neglected time constraints. We will focus on a multi-objective

cost function here, and in doing so we will incorporate both information rewards and

operational costs. Jaillet et al. (2010) apply a cost map approach to optimize path

planning in di↵erent case studies within a predefined configuration space. Similarly,

Ettlin and Bleuler (2006) show the feasibility of utilizing a blended cost map based

on the weighted sum of sub-components for rough terrain path planning using RRT.

Okopal (2019) shows benefits of multiple objectives in the setting of evolving mission

policies. The sub-component of the cost map can thus represent the terrain roughness

or other operational aspects. However, the cost map’s inflexibility during operations

limits its usefulness.

In this study, we design a long-horizon adaptive sampling system for AUVs for river

plume front mapping. This system allows an AUV to adjust its paths based on samples,

which is beneficial in mapping frontal zones. It is essential to assess the system’s
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ability to function in regions like river plume fronts, a↵ected by ocean currents.

Operational safety, budgetary concerns, collision hazards, and regional bathymetry

are also considered. Given the river plume front’s dynamic nature, it is a suitable

model to analyze system robustness in intricate settings. Our system comprises two

main components: i) the cost valley, and ii) the path planner. The cost valley directs

the AUV on the most e�cient path for detecting the river plume front, incorporating

collision avoidance within a set distance budget. This is achieved through weighted

penalty and reward fields. For the path planning, we employ the RRT* for long-

horizon planning, and in doing so we demonstrate the algorithm’s e�ciency in the

Trondheim fjord deployment by refining an ocean model output using in-situ salinity

measurements. The main contributions of this paper are:

• A versatile multi-criterion cost surface where its cost valley defines promising AUV

sampling paths,

• A RRT* algorithm for exploring the cost valley in a long-horizon planner,

• An AUV field deployment conducting adaptive sampling in a Norwegian fjord based

on RRT* and the cost valley concept including weighted information fields as well

as collision and distance budget.

In Section 2 we describe the background which motivates the study of long-horizon

path planning to map the river plume front. In Section 3 we outline our approach

for onboard AUV computations. In Section 4 we present the cost valley concept. In

Section 5 we show results from a simulation study. In Section 6 we show the results

of the AUV field deployment. In Section 7 we conclude and point to future research

directions.

2 Problem Statement

Frontal regions have been recognized as important for physical and biological

oceanography. Fedorov (1986) discuss how fronts are critical for the dynamic and
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kinematic features arising when energy is transmitted in the oceanic basins. Belkin

et al. (2009) describe frontal systems as hot-spots that shape parts of the marine

ecosystem. We are particularly interested in river plumes in this paper. Rivers carry

more than one-third of land-based precipitation to the ocean, and there has recently

been much research on the transformation of river freshwater discharge and its

dissolution into the ambient ocean, see e.g. Horner-Devine et al. (2015) for a review.

This is important for instance in the context of agricultural run-o↵ and understanding

how riverine nutrients reach the open ocean (Sharples et al., 2017).

Figure 1 shows a satellite image illustrating typical water mass mixing during the

Spring in the Trondheim fjord, Norway. The original image is enhanced by using the

SNAP software developed by Zuhlke et al. (2015) which uses basic remote sensing

techniques such as contrast stretching, color balancing, and false-color composites

to highlight the visual features of water mass mixing between the ocean and the

river (Richards and Richards, 2022). It is not obvious how to interpret the di↵erent

colors in an image like Figure 1, even though one might be able to see river water

masses with di↵erent sediment types in such a snapshot. To build more nuanced

models, one typically also relies on numerical ocean models and in-situ measurements

for calibration.

We zoom in on the Nidelva river (Figure 1) in this study, with the goal of

characterizing the river plume region using ocean models and an AUV. Figure 2(a)

shows the salinity field from numerical ocean model SINMOD (Slagstad and

McClimans, 2005) on 11 May 2022. SINMOD (https://www.sintef.no/en/ocean/

initiatives/sinmod/) is a multi-purpose numerical ocean model that can be connected

to biological oceanography models with a broad spectrum of applications. For our

situation, we focus only on the salinity output from SINMOD. The results in Figure 2

are constructed by averaging numerical ocean model data over time. It shows multiple

river outlets causing regional river plumes.
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Fig. 1: Sentinel-2 image of ocean water mixing on June-4th, 2021 in
Trondheimsfjorden. Basic remote sensing techniques such as contrast stretching, color
balancing, and false-color composites are applied. The arrow points out the Nidelva
river outlet that we are interested in. Courtesy of the Copernicus, ESA

For the AUV field deployment, the operational area is chosen based on the

interesting parts of the outputs from the numerical ocean model, see Figure 2(b).

The outer polygon draws the border for safe operation, whereas the inner polygon

is an unsafe region due to shallow waters. For autonomous operation, we select a

start location (small red dot to the east) and an end location (big blue dot), see

Figure 2(b). The objective is then to conduct long-term AUV sampling without human

intervention. Hence, the robot must travel from the start location to the end location

to sample the salinity field informatively while returning home in time and with

operational constraints such as avoiding the shallow region near the island in the

center and time or traveling distance constraints. In practice, the time constraints can

be translated to the maximum allowance for the traveling range. Start locations and

destination are chosen to enable reasonable mapping of the entire river plume frontal

region, well within the specified distance budget.
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Fig. 2: (a) Numerical ocean model data for surface salinity on May 11th, 2022. (b)
The selected operational area, the outer polygon draws the border for the operation
whereas the inner polygon shows an unsafe region. The small red dot shows where to
start, and the big blue dot shows where to end.

3 Spatio-temporal model

We here define the Gaussian spatio-temporal surrogate model for the ocean salinity.

The main benefit of having such a Gaussian surrogate model is that it enables real-time

model updating onboard the AUV.

3.1 Prior model

A spatio-temporal prior model for salinity is trained from SINMOD numerical ocean

model data. This prior represents a statistical surrogate model of the complex physical

processes in the ocean, that nevertheless mimics the key trends, variability and

correlations of salinity in space and time for our case study. The prior model is here

defined as a spatial auto-regressive Gaussian process model (Cressie and Wikle, 2015).

We assume a spatially discretized domain of n locations; u1, . . . ,un where {u 2

M ⇢ R2}. This grid covers a lateral domain, with depth fixed at 0.5m. Times are
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indicated by t = 0, 1 . . ., discretized in a regular sampling time interval. We denote

the spatio-temporal salinity variable by ⇠t = (⇠t,u1 , . . . , ⇠t,un)T .

The initial state is Gaussian distributed ⇠0 ⇠ N(µ,⌃), where the length-n mean

vector µ is specified by averaging SINMOD numerical ocean model data over time

at every location. For the n ⇥ n covariance matrix ⌃, we assume constant variance

�2 and a Matérn correlation function so that covariance elements are ⌃(i, i0) =

�2(1 + �h(i, i0)) exp(��h(i, i0)), where the correlation decay parameter is � and with

Euclidean distance h(i, i0) between sites ui and ui0 , i, i0 = 1, . . . , n. We specify

parameters � and � using variogram plots of SINMOD data (Cressie and Wikle, 2015).

The temporal variation is defined by an autoregressive process:

⇠t = µ + ⇢(⇠t�1 � µ) + vt, vt ⇠ N(0, (1 � ⇢2)⌃), t = 1, . . . , (1)

where the scalar autocorrelation parameter ⇢. Assuming |⇢|  1, this is a stationary

process over time so that the marginal distribution at any time is ⇠t ⇠ N(µ,⌃) for

t � 0. The extreme case with ⇢ = 1 represents a spatial model without temporal

variation. With ⇢ = 0, the spatial fields at di↵erent times t are uncorrelated. In our

field study, the parameter ⇢ is trained from correlations over discretized time steps in

the SINMOD data for the same location.

3.2 Updating

The prior model described in equation (1) is updated by in-situ AUV measurements,

where we then assume that the AUV is cruising in the lateral plane at 0.5 m depth.

We model the AUV measurement yt at stage or time t = 1, . . . by

yt|⇠t ⇠ N(fT
t ⇠t, r

2), (2)
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where the vector f t defines the spatial sampling indices at this stage of operation and

r is the salinity measurement noise standard deviation.

The statistical surrogate model running onboard the AUV is updated with the

in-situ salinity measurements. We apply Bayes’ rule to achieve data assimilation

at times t. Similar to a Kalman filter with the state vector now representing the

spatial salinity field, this updating is done in real-time onboard the AUV. Between

measurement times, the dynamical model propagates the state variable mean and

covariance. Denoting the predictive mean and covariance by mt|t�1 and St|t�1, the

updated mean mt|t and covariance St|t are available by the recursive Kalman filter

formulae defined by

mt|t�1 = µ + ⇢(mt�1|t�1 � µ)

St|t�1 = ⇢2St�1|t�1 + (1 � ⇢2)⌃

Gt = St|t�1f t(f
T
t St|t�1f t + r2)�1

mt|t = mt|t�1 + Gt(yt � fT
t mt|t�1)

St|t = St|t�1 �Gtf
T
t St|t�1.

(3)

Here, we start by m1|0 = µ and S1|0 = ⌃ at the first step.

If the AUV is pausing, the last three steps in equation (3) do not take place, as

there is no data updating. In that situation, one will just propagate the mean and

covariance expressions according to the first two steps.

Regarding scalability, the Gaussian updating formula in equation (3) requires

matrix factorization (inverse calculation) of a matrix with size equal to the amount

of data gathered at each time point. In our case with sequential data assimilation,

only data yt 2 R at a single waypoint node is included, and this factorization is

hence very fast. A bigger challenge here is the evaluation and storage of the n ⇥ n
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covariance matrices St|t�1 and St|t, but for the waypoint graph in the two-dimensional

longitude-latitude domain, this does not cause challenges.

4 Long-horizon path planning using cost valley

In this section, we introduce our concept for constructing a cost valley in the context

of long-horizon path planning. A cost valley refers to a cost function that takes the

shape of a valley when plotted on a 3D graph (see Figure 5). This shape results from

certain locations having lower costs than others, thus creating a valley-like structure

in the cost function.

Identifying the region of the cost function that represents the most e�cient path

is crucial for designing algorithms that can help robots navigate through complex

environments in the most e�cient way possible. To this end, the agent can utilize

di↵erent planners such as the myopic planner (representing a greedy approach) or

the RRT* planner (representing a long-horizon search). Each planner has its own

advantages and disadvantages, so it is up to the designer to choose depending on the

specific application.

Our approach for constructing a cost valley involves two groups of cost sub-fields:

i) operational and ii) informative. The operational cost fields guide the agent safely

and e�ciently to its destination, while the informative cost fields help the agent make

informed decisions about where to sample by highlighting areas of information gain

returning a reward. We explain each group of cost fields in the following sections to

better understand how they are used to construct the cost valley.

Once the cost valley is defined, we put this in a path planning framework and

explain our system architecture for using this in a field robotics setting.
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Fig. 3: Operational cost fields. The left display shows an obstacle cost field that
assigns infinite cost to the island in the middle of the operation domain and zero cost
to other areas. The right display shows a budget cost field that assigns high costs to
areas outside the budget ellipse and zero costs to areas inside. Here, the AUV should
go to the end location (house) before the distance budget runs out.

4.1 Operational cost fields

The operational cost fields are designed to guide the agent responsibly while ensuring

that it reaches its destination on time. This is achieved through the use of two di↵erent

cost sub-fields: obstacle avoidance and budget cost fields. The obstacle avoidance cost

field prevents the agent from colliding with obstacles. In our case, it gives infinite cost

for the island region in the Trondheim fjord and zero cost elsewhere. The time budget

cost field ensures that the AUV reaches its destination before the time or distance

budget runs out. It assigns a large cost to areas outside of the budget ellipse and zero

cost to areas inside it. Both these cost fields work together to constrain the agent

within a specific operational frame, as shown in Figure 3.

4.2 Informative cost fields

The informative cost fields in our approach are focused on aiding in e�cient sampling

of the river plume front. We use two criteria; integrated variance reduction (IVR) and
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Fig. 4: Informative cost fields at the initial stage. The left display shows the EIBV
cost field, which assigns low cost to areas where the river plume front might exist at
this initial time. The right display shows the IVR cost field, which assigns low cost
almost everywhere as it has not yet sampled any in-situ measurements.

expected integrated Bernoulli variance (EIBV), which are incorporated into the cost

field, as shown in Figure 4.

The IVR cost field aims to reduce the overall uncertainty of the field. For a given

sampling design, the IVR is the trace (sum of diagonal elements) of the covariance

reduction matrix R = Gtf
T
t St|t�1 in equation (3). Here, the design enters in the

vector f . Note that the cost related to IVR is inversely proportional, meaning that

larger IVR results in smaller costs, and vice versa. Sampling locations that have been

visited recently, will give a small IVR. Sampling locations that are yet unexplored or

have not been explored in a long time will tend to give large IVR. To reduce this IVR

cost field, one would naturally sample the latter kinds of design for this criterion.

The EIBV cost field aims to guide the agent to locations where the river plume

front may appear. The EIBV is in our case based on excursion probabilities related to

a threshold and the associated Bernoulli variation. We let ⇣ be a threshold in salinity.

This threshold is chosen as it separates fresh river water from the more saline fjord

water. At a location, ui and at time t, the excursion probability that salinity exceeds

the threshold is then p(ui) = P (⇠t,ui < ⇣) = �1

✓
⇣�mt|t(i)p

St|t(i,i)

◆
, where �1 denotes
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the univariate cumulative distribution function (CDF) of the standard normal. The

Bernoulli variance is p(ui)(1 � p(ui)). With a goal of classifying water masses, one

would collect AUV data at sampling locations that reduce this Bernoulli variance.

Unlike the IVR, the reduction will now depend on the observed data, but the expected

reduction has a closed-form solution via a bivariate CDF (Ge et al., 2023). The cost

field of EIBV of course depends on previously sampled locations. It further tends to

resemble the spatial distribution of the river plume boundary given by the certain

threshold ⇣ because locations close too the threshold have a large Bernoulli variance,

and therefore carry much information, see Figure 4.

Algorithm 1 shows how we compute these informative cost fields. Note how the

design f varies in the loop over spatial sampling locations i. The cost field in this way

indicates the information value of the sampling individual locations. Each spatial site

ui has an associated cost value for each criterion. The closed form solutions for both

Algorithm 1 Calculate informative cost fields for EIBV and IVR

Require: mt|t�1,St|t�1

EIBV = 0n⇥1

IVR = 0n⇥1

for i 2 1 . . . n do
f = 0n⇥1, f(i) = 1
R = St|t�1f(fTSt|t�1f + r2)�1fTSt|t�1

IVR(i) =
Pn

i0=1
diag(R)

EIBV(i) =
Pn

i0=1
�2

✓
⇣
�⇣

�
;


mt|t�1(i

0)
�mt|t�1(i

0)

�
,W (i0, i0)

◆
,

where, W (i0, i0) =


St|t�1(i

0, i0) �R(i0, i0)
�R(i0, i0) St|t�1(i

0, i0)

�

end for
CEIBV = (EIBV� min(EIBV))/(max(EIBV) � min(EIBV))
CIVR = 1� (IVR� min(IVR))/(max(IVR) � min(IVR))
return CEIBV,CIVR

IVR and EIBV provided in Algorithm 1 ensure that the computations are relatively

fast to do on the onboard computing units.
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4.3 Cost valley construction

To compute the cost valley, we construct a weighted sum of all components using

C = Cobstacle + Cbudget + w1 ·CEIBV + w2 ·CIVR, w1 + w2 = 1. (4)

The operational cost fields, which include the obstacle cost field Cobstacle and the

budget cost field Cbudget, are of utmost importance due to their ability to protect

operational integrity. This is done by imposing hefty penalties in areas that are

dangerous or far to reach. As a result, the EIBV and IVR cost fields (CEIBV and

CIVR), which are informative cost fields, have little e↵ect on guiding the agent when

compared to the strong penalties of the operational cost fields. Nevertheless, when

operational safety is guaranteed and there is plenty of time, the costs in legitimate

regions are minimal. In such cases, the main costs come from the informative cost

fields, which direct the agent based on knowledge. In our approach, no weights are

assigned to the operational cost fields to guarantee the agent’s prompt reaction when

any of these fields are activated. For example, it is essential that the agent returns to

the base when the budget cost field is nearly exhausted. Therefore, locations located

outside the allocated budget ellipse are heavily penalized, regardless of their perceived

worth in the informative cost fields.

Figure 5 illustrates an instance of the cost valley, where the budget remains

ample and the weights are evenly distributed (w1 = w2 = 0.5). At each stage

t = 1, . . . , Nsteps, the AUV calculates this kind of cost valley by evaluating all

criteria for all locations and weighting as in equation (4). The weighting aids the

AUV sampling in balancing exploration of uncertain locations and clearly detecting

the salinity boundaries, while maintaining the operational constraints for the vehicle.
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4.4 Path planning using the cost valley

We design a path planning algorithm to guide the agent in the adaptive sampling

process. For this purpose we use the cost fields, and at each iteration, the least-cost

path in the cost valley is calculated. This leads the AUV from its current location to

the one with the lowest cost. In doing so, one finds the best design Dt at this stage

in time t.

The algorithm we use for long-horizon path planning is described in Algorithm 2.

To determine the optimal path, we here utilize the RRT* path planner, as described

in Karaman and Frazzoli (2011) and Hollinger and Sukhatme (2014). This planner

computes the least-cost trajectory T t from the current location to the target location

which is therefore the global minimum cost location, and the first location on this

trajectory is selected as the next optimal design location Dt. The AUV then takes in-

situ measurements yt at this location, and the model is updated using equation (3).

This, in turn, updates the cost valley. The process continues until the budget is

exhausted, with each new starting location being provided to the RRT* path planner.

In our approach, we also introduce a nuanced modification by adding an additional

waypoint, termed the ’pioneer waypoint’. Initially, the AUV calculates two waypoints.

After transitioning from the current waypoint to the next waypoint, the AUV

immediately proceeds from this next waypoint to the pioneer waypoint. Concurrently,

it performs computations for the forthcoming waypoints originating from the pioneer

waypoint. In doing so, it enables us to do the real-time path planning. For a detailed

explanation of using RRT* path planner to determine the next waypoint, please refer

to Ge et al. (2022).

In Figure 5, a 3D visualization is presented for one-step planning. Here the RRT*

planner uses the equal-weighted cost valley as a guide. As depicted in the display,

the planned path (blue) that is computed from this cost valley facilitate long-horizon

planning, and the planner is able to navigate away from the high-cost area. However,
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Fig. 5: RRT* path planning using cost valley illustrated in 3D. The green trees are
generated using RRT*, and the blue path is selected based on the minimum cost
criterion. It leads the agent toward the global minimum cost location, shown as the
red dot. The current waypoint is depicted as a black dot. One can see that RRT* is
not perfect and has a detour in the low-cost area close to the target location.

due to insu�cient convergence in the RRT* path planner, the path taken is sub-

optimal, as evidenced by the detour in the trajectory. Increasing the number of

iterations in the tree expansion can improve the optimality of the path. However, one

must consider the trade-o↵ between the computational cost and path optimality.

4.5 System architecture

Figure 6 shows how the architecture combines RRT* path planning with cost valley

guidance for adaptive sampling. The diagram also indicates how SINMOD is used to

create an initial prior for the system, which is then improved using pre-survey data.

The GRF (Gaussian random field) module is used to incorporate in-situ data into

and updated state model including an uncertainty map, which is essential for the cost

valley calculation. After this model update, an optimal trajectory is determined from
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Algorithm 2 Informative long-horizon path planning algorithm

Require: Initial mean µ and covariance ⌃. Set m1|0 = µ and S1|0 = ⌃.
Set start waypoint D0

Y0 = ;
Budget=MaxDistanceRange
t = 1.
while Budget >= allowance do

Plan :
CV = updateCostValley(mt|t�1,St|t�1,Budget,Dt�1)
ut = argminu2M(CV)
T t = RRT*(CV,Dt�1,ut)
Dt = T t{1}
Budget = Budget - ||Dt �Dt�1||2

Act :
Go to waypoint Dt.

Sense :
Gather data yt. Yt = (Yt�1, yt).
Gt = St|t�1f t(f

T
t St|t�1f t + r2)�1.

mt|t = mt|t�1 + Gt(yt � fT
t mt|t�1).

St|t = St|t�1 �Gtf
T
t St|t�1.

mt+1|t = µ + ⇢(mt|t � µ).
St+1|t = ⇢2St|t + (1 � ⇢2)⌃.

t = t + 1.
end while

the current location to the minimum cost location, producing the next waypoint. The

ROS-IMC bridge is then used to send instructions to the AUV, which is discussed in

more detail in the field deployment description. DUNE executes the control command,

allowing the AUV to sample autonomously.

5 Simulation study

In this simulation study, we explore the influence of various weighting schemes on

AUV pathways. We also compare the RRT* planner with its myopic counterpart. In

doing so, we assess the system’s long-term robustness in identifying spatio-temporal

complexities in a river plume system.
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Fig. 6: System architecture of our proposed adaptive sampling system using RRT*
for path planning and a cost valley for guidance.

5.1 Simulation setup

Figure 3 shows the operational cost fields. They should always be given the highest

priority to ensure adherence to safety constraints. Thus, the planner must evaluate

the operational cost fields before evaluating the informative cost fields. The weights

used should not a↵ect the priority given to the operational cost fields. Therefore, we

choose to study the planner’s behavior under di↵erent weighting schemes solely with

respect to the informative EIBV and IVR cost fields (see Figure 4).

We can assign various weights between EIBV and IVR cost fields. It is important to

note that the appropriate weight may vary depending on the application, and therefore,

we cannot provide an ideal weighting scheme for all scenarios. In our study, we aim

to demonstrate how extreme weighting schemes impact the system’s performance. To

achieve this, we have created three cost scenarios with the following weights:

• EIBV dominant: w1 = 1, w2 = 0

• IVR dominant: w1 = 0, w2 = 1

• Equal weight: w1 = 0.5, w2 = 0.5

Replicate data sets are simulated using a temporal benchmark field of 8 hours from

SINMOD as the mean value field. For the variation in the replicate runs, the Matérn

18



Fig. 7: The surface salinity ground truth field at di↵erent time steps. The red contour
shows the boundary of di↵erent water masses classified by the threshold.

covariance matrix coe�cients are specified as � = 1.0 and � = 0.0064. The average

salinity over the 100 replicates is shown in Figure 7 for di↵erent time steps. The red

contour line delineates the boundary between saline and fresh water masses and is

determined by a salinity threshold. It is clear that the numerical solution captures the

tidal cycle as the boundary expands with the tide going from high to low, meaning

the boundary is shifting outward as the current brings more freshwater from the river

mouth.

Using the weight sets mentioned above, we construct three cost scenarios or valleys.

For each cost valley, we run two agents starting at coordinates N63.440, E10.356 in

the WGS84 coordinate system. Two agents are employed, one using a myopic planner

and the other a long-horizon RRT* planner. Both have access to the cost valley field;

however, the myopic agent is only able to assess the cost of adjacent locations from

the cost valley and then select the next waypoint with the lowest cost. Thus, it does

not take into account long-term considerations. Both agents have the same step size

of 240m and are allowed to run for 8 hours, which is equivalent to 120 steps. At each

sampling point, the AUV data is extracted from the replicate field data at the present

location. We set measurement noise standard deviation r = 0.5.
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5.2 Agent analysis for EIBV dominant field

We start by assessing typical AUV paths for a single replicate only. For clarity, we

focus on the EIBV dominant cost valley scenario, contrasting the trajectories of the

myopic and RRT* planners under identical ground truth.

5.2.1 Myopic

Figure 8 shows the mean salinity field (left), uncertainty field (center), and cost valley

(right) over time, following adaptive sampling with the myopic strategy across time

iterations. Figure 8a showcases the fields after limited exploration near the start to

the south-west. The cost valley directs the agent towards boundary regions, with the

uncertainty field illustrating decreased uncertainty in visited areas. The eastern parts

of the cost valley have low costs, but it is separated from the current AUV position

by a high-cost region.

Figures 8b and 8c depict later stages with the agent predominantly exploring the

field in the south-west. As time progresses, the boundary expands outward with the

tide, and the agent’s sampling interest shifts in this direction. By 16:40, guided by

the cost valley, the agent gravitates eastward. However, the low-cost region is now

quite far to the north-east because of the tide, and clearly, time influences the agent’s

posterior belief. Towards the end of the operation (Figure 8d), the east remains largely

unexplored, and the boundary growth over time underscores the spatio-temporal

model’s advantage in accommodating field dynamics. The myopic approach, with its

limited foresight, often results in localized planning. Such agents risk entrapment in

proximate regions, underscoring the need for expansive strategies. Nevertheless, the

AUV has mapped the south-east parts of the river plume front very accurately.
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(a)

(b)

(c)

(d)

Fig. 8: The updated mean salinity field (left), uncertainty field (middle) and cost
valley (right) after the adaptive sampling using the myopic strategy over a series of
time iterations. In this particular example, most of the e↵ort was focused on the
southwest side before the agent moved eastward.
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5.2.2 Long-horizon RRT*

Figure 9 presents the evolving mean salinity field, uncertainty field and cost valley

from left to right for the long-horizon RRT* strategy. The cost valley plots also display

RRT* trees, elucidating the planning process. The agent e�ciently targets high-value

regions for sampling.

Figure 9a captures the early phase of sampling, where the cost valley reveals the

agent’s awareness of a prospective low-cost region in the east and its intention to

navigate towards it. At the intermediate stages (Figures 9b and 9c), the AUV now

moves between west and east parts of the plume front. Hence, in contrast to the

myopic approach in Figure 8, the adaptive agent utilizing the long-horizon RRT*

strategy exhibits a sampling behavior that is covering much more of the spatial

domain. Running RRT* onboard, the agent’s ability to escape local attractions is

clearly increased, and it spans longer to find regions o↵ering maximum reward. Similar

to what was seen for the myopic case, the AUV tends to move further out with the

tide. In fact, in Figure 9d, in the concluding phase, the AUV judiciously navigates

from the north past the obstacle to access the broader northern boundary. Overall,

the RRT* planner navigates the agent through dynamic terrains, and it spans much

wider than the myopic planner. Even so, it could of course perform worse than the

myopic planner in detecting local plume details.

5.3 Tra�c density analysis

To visualize the AUV sampling e↵ort distribution across the 100 replicates, we devise

a tra�c flow density plot using kernel density estimation. This plot quantifies the

intensity of AUV trajectories in various locations, pinpointing high-tra�c areas. To

underscore the influence of the cost valley, we employ this method for every weight

set and for both the myopic and RRT* planners.
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(a)

(b)

(c)

(d)

Fig. 9: The updated mean salinity field (left), uncertainty field (middle) and cost valley
(right) after the adaptive sampling using our proposed long-horizon RRT* strategy
over a series of time iterations. The RRT* trees are displayed in the cost valley column
as well to better illustrate the planning mechanisms.
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5.3.1 EIBV dominant cost valley

The EIBV cost valley prioritizes areas likely harboring the river plume front, as

illustrated in Figure 4 (left). Often, these fronts manifest near river outlets. Figures

10a and 10b show the tra�c-flow density maps for the myopic and RRT* planners,

respectively. At 11:52, the RRT* strategy directs spread the AUV e↵orts toward key

boundary regions, whereas the myopic planner’s e↵orts are limited to proximate areas

around the starting location. It is not until 15:52 that the myopic planner starts to

recognize the valuable eastern region in some of the replicate runs, a zone that the

RRT* planner has been covering extensively for hours. By 17:52, the myopic planner

still has not su�ciently sampled the eastern region. For instance, it is missing the

plume front at this time which is further out north because of the tide. The RRT*

planner has gained temporal insights in the temporal variations in this eastern part

of the river plume front.

In practical terms, the RRT* planner’s intentional tra�c flow optimally directs

the agent to e�ciently sample key EIBV zones. For gathering equivalent data, it is

preferable to expend minimal e↵ort. The myopic planner, however, might become

ensnared in particular local hot-spots. This underscores the importance of a well-

conceived cost valley design to prevent over-exploitation of specific areas, ensuring a

balanced sampling strategy.

5.3.2 IVR dominant cost valley

For the IVR dominant cost valley, the objective is to maximize uncertainty reduction

across the field. The tra�c-flow density maps for both the myopic and RRT* planners

are portrayed in Figures 11a and 11b respectively.

Interestingly, while both planners initially adopt distinct paths, they soon exhibit

comparable behaviors, rapidly dispersing across the field. Consequently, distinguishing

between the two planners becomes challenging in this context. They both e↵ectively
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(a)

(b)

Fig. 10: The tra�c flow density map for the myopic agent (a) and the long-horizon
RRT* agent (b) using the EIBV dominant cost valley.

and expediently spread to cover the field comprehensively. Contrary to the EIBV cost

valley, the IVR cost field depends solely on sampling locations in this situation with

a Gaussian model, and it is not influenced by the data gathered at this location.

5.3.3 Equal weight cost valley

In this scenario, striking a balance between exploration (seeking unknown regions)

and exploitation (sampling river plume fronts) is crucial. The intention is for the AUV

to prioritize areas with low costs for both variance and the river plume fronts. The

side-by-side tra�c-flow density maps provided in Figures 12a and 12b o↵er a telling

comparison between the myopic and RRT* planners.

The myopic planner, particularly during its early hours of operation, displays a

tendency to focus its sampling around its initial starting point, but less so than for the

EIBV dominant strategy in Figure 10. It takes a longer time for the myopic strategy

to expand its sampling reach towards the east. Its movements around an identified
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(a)

(b)

Fig. 11: The tra�c flow density map for the myopic agent (a) and the long-horizon
RRT* agent (b) using the IBV dominant cost valley.

obstacle are quite balanced: it is about as likely to take a route south of the obstacle

as it is to go north.

Conversely, the RRT* planner exhibits a more strategic approach that reflects

the EIBV tra�c maps in Figure 10 but more spread out to also cover the domain

and reduce uncertainty. It is predominantly focusing on the southern regions for the

majority of its operation. However, in the later hours, especially as the tidal e↵ects

become more prominent, the RRT* planner directs its e↵orts towards the northern

areas, albeit sparingly. This particular behavior underscores the planner’s adaptability

to dynamic environmental changes such as tides.

When observing the coloration of the tra�c-flow density maps, the myopic

planner’s sampling pattern is evident. The darker red hues, particularly near its

starting point, highlight its increased sampling frequency in that locale. This implies

that the myopic strategy might be less e�cient in adapting to changing environments

or leveraging information from larger field areas. Not so for the RRT* planner which
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(a)

(b)

Fig. 12: The tra�c flow density map for the myopic agent (a) and the long-horizon
RRT* agent (b) using the equally weighted cost valley.

has its more evenly spread hue, illustrating a more balanced and extensive coverage

of the field.

5.4 Metric analysis

In the replicate simulations, we monitor four key metrics: integrated Bernoulli variance

(IBV), variance reduction (VR), root mean squared error (RMSE) and classification

error (CE). For each metric, we take the average over all spatial grid cells, at every

time point.

Figure 13 displays these metrics for the myopic and RRT* planners across various

weights in the cost valleys. Over time, these metrics vary. The IBV (top) increases for

all variants during the later hours when the tide goes out and the plume front grows

in extent. Naturally, the IVR dominant strategy has the poorest performance for this

metric because it is not instructed to focus on EIBV. The equally weighted cost valley

(green curves) exhibit balanced performance and is on par with the EIBV dominant
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(a)

(b)

(c)

Fig. 13: The IBV (top), RMSE (middle) and VR (bottom) metrics from the 100
replicate simulation study. The solid line is the mean while the light-colored band
indicates 90 % uncertainty over the 100 replicates.

strategy. RRT* results of IBV tends to be slightly below the myopic strategy, but it

is hardly significantly better for this metric. This is somewhat surprising after seeing

the tra�c analysis (Figure 8-12). It seems that RRT* covers the domain better, but

overall, when averaging over the entire grid, myopic performs similarly.

For the RMSE and VR metrics in Figure 13b-13c, the weighted strategy performs

almost at the level of the IVR-dominant strategy which we would expect to do

28



well at covering the domain and reducing variance and overall error compared with

the truth, given the spatio-temporal correlation. Both weighted and IVR dominant

appear substantially better than the EIBV dominant for these metrics. The di↵erences

between myopic and RRT* strategies are again small. But for the VR metric, we see

that all plots for RRT* reach about 240 after 20 time steps, while the myopic strategies

are not so good here. This is useful to know as it indicates that RRT* with cost-valley

can sample the field in a more e�cient way. One does not always have 8 hours in the

mission duration as that can reach the maximum battery.

In Figure 14, we compare the classification error (CE) of each agent across di↵erent

cost valleys. The CE for any salinity replicate realization is calculated using

CE =
1

B

BX

b=1

1

n

nX

i=1

I[EStrue(t,ui) 6= ESb(t,ui)], (5)

where ESb(t,ui) is the excursion set determined for each of b = 1, . . . , B, B = 100,

Monte Carlo samples from the updated Gaussian distribution at this time and

EStrue(t,ui) = I(⇠true
t,ui

< ⇣) is the time-t excursion set of the true replicate salinity

field. This measure di↵ers from the IBV in the sense that it goes beyond mere point-

wise Bernoulli variance calculations, and it instead measures the uncertainty in the

random sets. The CE in equation (5) is averaged over all replicates and evaluated every

hour. Figure 14 shows that long-horizon RRT* consistently gets a lower CE early in

the operation, which is in line with our main goal. In a similar vein as for the IBV

results, the CE grows over time because the river plume front goes out with the tide.

5.5 Remarks

Our simulation study shows the value of the cost valley in directing the agent. The

EIBV cost field indicates probable river plume front locations, whereas the IVR cost

field favors unexplored regions. By adjusting the weights of each cost field, we can

29



Fig. 14: Classification error for the excursion sets over time using myopic or RRT*
strategies and three weighting schemes (left to right displays).

refine the AUV’s path planning and lose relatively little on the more focused metrics

(Figure 13).

Tra�c-flow analysis reveals the RRT* planner’s superiority over the myopic

planner. The myopic planner’s dependence on its starting point and its short-

sightedness sometimes leads to prolonged confinement in localized regions. In contrast,

the RRT* planner leverages the cost valley for broader and more e�cient sampling,

guiding the agent towards globally optimal paths.

Both myopic and RRT* planner with cost valley manage to follow the tide over

time, but the myopic strategy tends to lose one of the plume fronts because it gets too

focused on one part for too long. The long-horizon RRT* planner has been shown to

have a slightly better performance in terms of its low classification error over time.

6 Experiment in the Trondheim fjord

We present the case of river plume exploration in the Trondheim fjord, Norway. The

suggested algorithm using RRT* with a cost valley runs onboard an AUV in this field

experiment.
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Fig. 15: The LAUV named Thor is under remote operation check before its expedition.

6.1 Experimental setup

The map view in Figure 2(a) displays the calibrated prior mean model for salinity

within the spatial domain. The AUV runs its mission by utilizing Algorithm 2 for

model updating and path planning based on the statistical surrogate model.

For this field experiment, we utilize a light autonomous underwater vehicle (LAUV)

from NTNU’s applied underwater robotics laboratory (AURLab). Prior to launching

the mission, the operator conducts a standard remote control check, as depicted in

Figure 15.

The LAUV’s primary computing unit is the NVIDIA Jetson TX2. To enhance our

onboard algorithm deployment capabilities, we use the adaptive sampling framework

developed by Mo-Bjørkelund et al. (2020), which manages the messaging between

ROS and DUNE. Our algorithm interfaces directly with Robot Operating Systems

(ROS) (Quigley, 2009), and its messages are then relayed to the ROS-IMC bridge in the

vehicle, which incorporates DUNE (DUNE: Unified Navigation Environment (Pinto

et al., 2013)), as shown in Figure 16. The components within the LAUV communicate

using the Inter Module Communication (IMC) message protocol (LSTS, 2022). We
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Fig. 16: Main software components in the communication between the adaptive code
and the vehicle. DUNE (Pinto et al., 2013) is running on the main CPU of the AUV
while the IMC (LSTS, 2022) messages are transmitted via TCP (Cerf and Kahn, 1974)
to an auxiliary CPU, where ROS (Quigley, 2009) and the adaptive code is run.

implement the same integration scheme as in Ge et al. (2023), which provides further

details regarding the ROS-IMC bridge.

The LAUV is programmed to travel at a speed of 3 knots in the surface region at

a depth of 0.5 m. Additionally, it is scheduled to resurface every 10 minutes to correct

its navigational errors. The operation took place on May-11th, 2022, and it lasted

for more than 2.5 hours. The LAUV left the start location at 12:30. We received the

”Mission Complete” text message from the LAUV at 15:10, which marked the end of

the operation.

6.2 Results

Figure 17 shows the updated mean salinity field (left display) after the LAUV has

sampled data for 20-time steps (at 13:41). The associated cost valley field and excursion

probability field are shown in Figure 17 (middle-right). The path taken by the LAUV
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Fig. 17: The updated mean field for the salinity (left), the cost valley (middle), and
the excursion probability (right) after sampling the region from 12:30 to 13:41. The
remaining budget starts to take an e↵ect, shown as the red ellipse.

Fig. 18: The updated salinity (left), cost (middle), and excursion probability (right)
fields after collecting the in-situ measurements close to the obstacle area (step 30, at
14:17).

(black line) indicates that it has used the first part of its adaptive mission to explore

the area close to the river mouth.

As the AUV travels through the region, it adheres to the guidance provided by

the cost valley and endeavors to minimize expenses. The budget ellipse (red color in

Figure 17) diminishes as time goes by.

Figure 18 illustrates the same three spatial maps as in Figure 17, but now shown

at step 30 (14:17). The AUV has skillfully avoided the obstacle in the middle.

Furthermore, the map discloses the presence of a larger river plume in the western

area, which contrasts the relatively small plume forecasted by SINMOD. At this time

point, the agent’s remaining budget is dwindling, as indicated by the red ellipse.
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Fig. 19: The revealed salinity field (left) together with the updated cost valley field
(middle) and the excursion probability field (right) after that the LAUV sampled the
north region using the last budget and safely returned home in the end (step 44, at
15:10).

At step 44 (15:10), Figure 19 shows that the LAUV has discovered surpisingly low

salinity values in the western parts. The excursion probability field (right display) also

indicates a high probability of river water instead of ocean water quite far out to the

north here. Currently, the available area enclosed by the red ellipse is restricted, and

the LAUV must move along a relatively straight transect to reach the end location

without much room for deviation.

Figure 20(a) shows the discrepancy between the in-situ AUV measurements and

the SINMOD prediction. This is done by subtracting the SINMOD data at the AUV

sampling locations from the in-situ measurements at these locations. These residuals

are visualized in a map view and along the trajectory of the AUV. The plot has more

negative than positive residuals, confirming that SINMOD tends to overestimate the

salinity values in the region, resulting in a smaller river plume area. Figure 20(b)

presents the cross plot of these two data sources. The kernel density estimate shows

that SINMOD data has two modes near salinity 23 and 27, while the AUV data is

distributed around salinity 25. The majority of the SINMOD data is higher than the

actual measurements, indicating the need for practical adjustments of SINMOD data

to avoid bias stemming from the numerical solver.
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(a) (b)

Fig. 20: (a) The di↵erence between the AUV measurements and the SINMOD
prediction, referred to as the residual. The in-situ data reveal a considerable river
plume in the western part, characterized by low salinity values, which contradicts the
SINMOD prediction. (b) The cross plot between the SINMOD data and the AUV
data. Kernel density estimation is applied here and it adds the red contours to the
scatter plot. The histogram of each data source is shown on top and to the right.

6.3 Remarks

The LAUV successfully navigated through the fjord waters, overcoming various

constraints and acquiring su�cient information to reveal details of the river plume in

the east as well as the one in the western region. This successful mission highlights

the e↵ectiveness of the suggested algorithm for ocean deployment. However, the use of

auto-regressive modeling for the temporal aspect increases the system’s dependence on

SINMOD, particularly in areas where samples were collected some time ago, resulting

in greater uncertainty. While this approach is reasonable given the current mission

duration, it may limit long-term performance.
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7 Conclusion

The main contribution of this work is the development of a long-horizon adaptive

sampling system using RRT* path planning with a flexible cost valley in an informative

field. We use this system in a field deployment with an AUV running autonomously

from start location to home destination while adaptively sampling the salinity in a

river plume front. In this field experiment, we used RRT* as the path planner to

determine the next waypoint and a budget ellipse for the time restriction consideration,

all done in the context of the Gaussian random field model that is updated onboard the

AUV. Using the cost valley concept for bridging multiple objective, the path planning

achieves a balance between exploitation and exploration while the hard constraint on

safety and punctuality are all considered and well shown in the final result of the field

deployment.

In terms of the algorithm, an extensive simulation study shows the e↵ect of

weighting di↵erent objectives on the behavior of the AUV paths. In doing so, we further

notice that the AUV changes its movement adaptively with the temporal dynamics of

the river plume phenomenon. Comparing simulation results of a myopic strategy with

that of long-horizon RRT* path planning, we see that the myopic strategy is notably

more focused on local details in the salinity map rather than the potential long-horizon

benefits. Nevertheless, in terms of spatially integrated performance metrics such as

root mean square error, the myopic strategy is not significantly worse than RRT* in

our situation.

In constructing the flexible cost valley, it is imperative that each constituent cost

component exerts influence on the designated hot spot regions. As the number of

objectives augments, there is an enhanced capability to address multiple areas of

interest, contingent upon each component receiving an ample temporal allocation

for utilization. A plethora of long-horizon path planning algorithms exist, inclusive

of variants of RRT*, A* and the Probabilistic Road Map (PRM) could also be
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used here. The non-myopic capability of such planners facilitates the incorporation

of future considerations within the sampling field, but it must run robustly in the

contexts with computational or hardware constraints. We managed to run adaptive

sampling with a long-horizon planner on a two-dimensional time-varying model.

Adding depth variation would make it more computationally demanding. The system

can be improved in the future by incorporating a dynamic obstacle avoidance system

using the AIS system. Additionally, a more comprehensive temporal model can be

added to address the issue of relying too heavily on numerical data, as we currently

use a standard auto-regressive model for temporal variation. Another potential

improvement is the implementation of dynamic weighing mechanisms among the cost

valley components to enhance its flexibility.
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The coastal environment faces multiple challenges due to climate change and human

activities. Sustainable marine resources management necessitates knowledge, and

the development of e�cient ocean sampling approaches is increasingly important for

understanding the ocean processes. Currents, winds, and freshwater runo↵ make ocean

variables such as salinity very heterogeneous, and standard statistical models can

be unreasonable for describing such complex environments. We employ a class of

Gaussian Markov random fields that learns complex spatial dependencies and variability

from numerical ocean model data. The suggested model further benefits from fast

computations using sparse matrices, and this facilitates real-time model updating

and adaptive sampling routines on an autonomous underwater vehicle. To justify

our approach we compare its performance in a simulation experiment with a similar
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approach using a more standard statistical model. We show that our suggested modeling

framework outperforms the current state of the art for modeling such spatial fields.

Then the approach is tested in a field experiment using two autonomous underwater

vehicles for characterizing the three dimensional fresh-/saltwater front in the sea outside

Trondheim, Norway. One vehicle is running an adaptive path planning algorithm while

the other runs a pre-programmed path. The objective of adaptive sampling is to reduce

the variance of the excursion set to classify freshwater and more saline fjord water

masses. Results show that the adaptive strategy conducts e↵ective sampling of the

frontal region of the river plume.

Keywords: Adaptive sampling, Ocean modeling, Autonomous underwater vehicle,

Gaussian random field, Stochastic partial di↵erential equations, Surrogate model

1 Introduction

Human activities and pollution are heavily impacting the world’s oceans (Halpern

et al., 2008). Anthropogenic climate change and local intrusion from industries can lead

to fundamentally altered ocean ecosystems, challenging species distributions, loss in

biodiversity, incidence of disease, and more (Hoegh-Guldberg and Bruno, 2010; Doney

et al., 2012). The changes in ecosystem structure further influence important services

such as carbon sequestration, oxygen production and nutrient food chains. In order

to achieve a more sustainable utilization of marine resources and services we need

to enhance our insight. Developing smart technologies for e�cient monitoring of the

ocean can provide information that enables us to identify adverse e↵ects and guide

development of countermeasures, and it can hence be vital in saving or maintaining

local ecosystems. Commonly used ocean observation technologies are buoys, drifters,

satellites, unmanned surface vehicles, Argo floats, underwater gliders, cabled seafloor

observatories, autonomous underwater vehicles (AUVs), hadal landers, or some coupled

system of these technologies (see e.g. (Lin and Yang, 2020) for a overview). Ocean
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monitoring systems are advancing from simple and static single sensors systems to

dynamic and multi sensor systems that can cover a large spectrum of temporal and

spatial scales. With the drive in artificial intelligence and robotic systems, there is

also a development towards intelligent sampling systems where observations of various

kinds are gathered and processed where and when it is considered valuable.

With the improved a↵ordability and functionality of AUVs, the research literature

has seen many advances lately; Zhang et al. (2012, 2013) used deterministic algorithms

to map coastal temperature upwellings; Das et al. (2015) demonstrated AUV mission

planning for informative plankton sampling; Fossum et al. (2018) monitored large

temperature gradients by adaptively choosing surveys paths that substantially reduce

the uncertainty in the statistical temperature model; Fossum et al. (2019) conducted a

3D AUV survey for chlorophyll-a mapping; Mo-Bjørkelund et al. (2020a) employed

hexagonal grids for equilateral survey paths to adaptively explore large temperature

gradients; Foss et al. (2022) used a 2D spatio-temporal model onboard an AUV to

supervise mining waste seafill; Fonseca et al. (2023) compared satellite imagery and

adaptive AUV sampling results for predicting algal blooms. These examples from recent

research activity have advanced the field of ocean monitoring with AUVs by going

from planar (sea-surface) fields to volumetric fields, in the combination of various data

sources, or by presenting a novel algorithm for adaptive exploration.

Considering the vastness of our ocean, it is extremely di�cult to obtain su�cient

data to cover the full range of scale and resolution desired. Instead, one must rely on a

combination of di↵erent data sources and sophisticated modeling tools. To fill in the

gaps e↵ectively one can further proactively plan targeted and high precision sampling

campaigns that will improve predictions and support decision-making. At its core, these

tasks relate to statistical methods that can combine various data sources for prediction

and for evaluating data sampling designs to optimize further data-gathering e↵orts.
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In this work, we combine the fields of oceanography, statistics, and robotics to

e↵ectively monitor freshwater frontal regions of river outlets in three-dimensions (north,

east, depth) using AUVs. Specifically, we conduct sampling in the Nidelva river running

into the fjord outside Trondheim, Norway (see Figure 1). The freshwater coming from

Fig. 1: Map of the operational area in the fjord outside Trondheim, Norway. The
location of Trondheim is indicated by the red circle on the map of Scandinavia in the
top left corner. We have 3D numerical ocean model data at a high lateral and depth
resolution in these coastal waters. The blue square just north of the Nidelva river outlet
indicates the boundaries of the autonomous underwater vehicle mission in a map view.
The operation domain extends from the sea surface to 5 meter depth.

the river is mixing slowly with the more salinity fjord waters which can cause a sharp

gradient between the di↵erent water masses.

At our availability, we have output from a complex numerical ocean model Slagstad

and McClimans (2005), henceforth referred to as SINMOD. Along with many other

physical oceanography variables, SINMOD outputs salinity at every grid node in a

dense spatial (3D) and temporal grid. Even though this model carries much physical

insight, the salinity output can be systematically biased, and we will calibrate and

update the salinity by deploying an AUV. In this way, the SINMOD data is used

to form a prior model for the salinity trends and variations at the time of the AUV
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deployment. We fit a Gaussian process prior as a surrogate model to the numerical

ocean model SINMOD. This surrogate model has the advantage that it can be updated

onboard the AUV, and it can hence assimilate in-situ data e�ciently. Moreover, this

surrogate model enables fast evaluation of various AUV sampling designs in real-time

while it is maneuvering in the water. Fossum et al. (2021) used similar methods to fit

a surrogate model from SINMOD, but only in 2D space. Ge et al. (2023) used a 3D

Gaussian surrogate prior model, but only for a small-size grid and assuming a much

simpler spatial dependency structure.

This paper brings together many elements, and the novelty lies in a more realistic

description of spatial correlations with a complex model learned from SINMOD data

(Berild and Fuglstad, 2023). The approach is made computationally feasible through

modern techniques using a 3D Gaussian random fields with a Markov property, and

this enables adaptive AUV sampling based on the new surrogate model in a large-size

3D waypoint graph used during AUV deployments. Additionally, we

• fit the more realistic 3D statistical model to 3D numerical ocean data, and develop

a fast algorithm for updating this model onboard an AUV during field deployment,

• develop methods for adaptive path-planning in the context of 3D space with the

more realistic model onboard the AUV,

• show through a simulation study, based on SINMOD, that the more realistic statistical

model allows an AUV to sample and map the ocean domain better than with a

standard statistical model,

• run two AUVs simultaneously in the ocean and show that the combination of

an intelligent adaptive survey design and the more realistic model outperforms a

standard pre-scripted AUV sampling plan.

In Section 2, we describe the numerical ocean model and its statistical surrogate

model. In Section 3, we present the data assimilation part and our approach for adaptive

AUV sampling designs. In Section 4, we study properties of the suggested methods in
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a simulation study. In Section 5, we show results of deployments with one adaptive

AUV mission and one pre-programmed mission. In Section 6, we conclude and point

to future work.

2 Prior model for salinity

Consider a three-dimensional ocean domain D ✓ R3, where x(s) represents the salinity

field at a specific location s = (latitude, longitude, depth)T 2 D. The salinity in this

ocean domain exhibits both spatial and temporal variations. However, we focus on

short-term AUV deployments and simplify our analysis by excluding temporal e↵ects.

2.1 Numerical Ocean model

An approximation of the salinity field is achieved using the complex numerical ocean

model SINMOD, developed by SINTEF ocean (Slagstad and McClimans, 2005).

SINMOD is a three-dimensional model based on the primitive equations, solved using

finite di↵erence methods on a regular grid with horizontal cell sizes of 20km ⇥ 20km,

which are nested in several steps down to 32m ⇥ 32m for the bay outside Trondheim.

The model employs varying vertical resolution, allowing for higher resolution near

the dynamic surface and more uniform resolution in deeper waters. Atmospheric

forces (obtained from forecasts available at https://www.met.no), freshwater outflows

(data from HBV model (Beldring et al., 2003) provided by the Norwegian Water

Resources and Energy Directorate (NVE)), and tides (https://www.tpxo.net/) drive

the model. SINMOD o↵ers numerical simulations of multiple ocean variables, including

temperature and currents as well as salinity. It is a multi-purpose tool that has been used

for instance in the prediction of Arctic ocean primary production by leveraging physical-

biologically coupling (Slagstad et al., 2015; Vernet et al., 2021), in quantifying the e↵ects

of the aquaculture structures for large-scale cages by specifying and incorporating drag

parameters in SINMOD (Broch et al., 2020), and coupled with the particle dispersion
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of waste from fish farming (Broch et al., 2017), oil production (Nepstad et al., 2022)

or mine tailings (Berget et al., 2018; Nepstad et al., 2020; Berget et al., 2023). For a

more comprehensive explanation of the SINMOD methodology, readers are directed to

Slagstad and McClimans (2005).

In the current paper, we are only using the salinity outputs from SINMOD. Figure 2

shows an example of SINMOD salinity data and an excursion set (salinity  25.4 g/kg)

separating water masses into freshwater/saltwater in the fjord outside Trondheim. We

notice that the river plume has lower salinity than the surrounding brackish water.

There are very low salinity levels (about 5 � 10 g/kg) in the river outlet, while the

salinity increases further out in the fjord (about 31 g/kg). Salinity is measured in

grams salinity per kilogram water (g/kg) which is dimensionless and equal to ‰and

sometimes referred to as the practical salinity unit (PSU).

(a) Salinity data from SINMOD (b) Excursion set for salinity  25.4 g/kg

Fig. 2: Simulation from the numerical ocean model SINMOD for September 8th, 2022.

2.2 Surrogate model with spatially varying anisotropy

In-situ salinity observations made with an AUV are assumed to be more accurate than

the forecast provided by SINMOD. However, an AUV measurement only characterizes

the salinity at the specific location where the measurement was taken, whereas a model
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like SINMOD or similar is required to extrapolate variables in space and time. For

onboard computing, SINMOD is however too computationally intensive, and it is

challenging to assimilate AUV observations in real-time with a full-fledged numerical

ocean model. Instead, a surrogate model can be trained from the numerical model. It

forms an approximate representation of the underlying physical model and is highly

applicable for di↵erent tasks that require fast updating. Statistical models with spatial

e↵ects have shown very suitable for such a task (Gramacy, 2020), and we employ a

particular statistical surrogate model for the numerical ocean model salinity data here.

We use the spatial statistical model presented in Berild and Fuglstad (2023), where

the 3D salinity field is modeled as a Gaussian Markov random field (GMRF) that

allows sparse matrix computations and realistic modeling via spatial variability in the

directional dependencies and the variance components. This model is an extension of

Lindgren et al. (2011) and Fuglstad et al. (2015).

Assuming that the 3D discretization of the domain D ✓ R3 consists of n1 ⇥n2 ⇥n3

grid cells, the salinity field, x(s), is represented by a vector of concatenated field values

of size n = n1n2n3. In the application, we have n1 = 50, n2 = 45, n3 = 6 with 32 ⇥ 32

m2 lateral resolution and 1 m depth resolution. The vector x of salinity values is

modeled by a Gaussian distribution, i.e.

x ⇠ Nn(µ,⌃), ⌃ = Q�1. (1)

Here, the ⇠ symbol means ’distributed according to’, and Nn(µ,⌃) refers to the n-

variate Gaussian (or normal) distribution with mean vector µ and covariance matrix

⌃, where its inverse, namely the precision matrix, is denoted Q.

There is much flexibility in choosing the mean vector and covariance matrix in

Equation (1), and the Gaussian distribution can hence form quite realistic surrogate

models. The mean vector µ of the salinity field captures the spatial trends of the field,
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which in our case entails fresher water near the river gradually getting more saline

going out in the fjord. To form a realistic covariance structure, the idea of Berild and

Fuglstad (2023) is to form a random process for u = x� µ via di↵erential operators

and Gaussian noise forming a stochastic partial di↵erential equation (SPDE) as

(2(s) �r ·H(s)r)u(s) = W(s). (2)

Here, s is a location in the domain of interest D ✓ R3, u(s) is the spatially varying

deviation from the trend, and W(s) is a Gaussian white noise process (with zero mean

and statistically independent values), while (s) = (s;✓) > 0 and H(s) = H(s;✓) > 0

is di↵erentiable are model components controlled by parameters ✓ that regulate the

variability and dependency within the process.

Equation (2) is solved locally for the zero-mean random field u(s) using numerical

integration and di↵erentiation on a discretization of the domain of interest D. The

solution is u ⇠ Nn(0,Q�1), where the precision matrix Q = Q(✓) inherits the sparsity

of the di↵erential operators in Equation (2) and it describes the Markov structure

in the GMRF model. This structure is very important for our purposes because it

enables fast matrix factorization and matrix-vector computations. Hence, the GMRF

formulation means that we can update the model onboard the AUV. It is also used in

the sampling design evaluations. Without this sparsity, the Gaussian surrogate model

could not scale up the magnitude of the ocean mass in 3D (Berild and Fuglstad, 2023).

A detailed description of the model is provided in the Supplemental material.

2.3 Parameter estimation for salinity field

In order to estimate the parameters and components of the statistical GMRF model

for salinity, we utilize numerical ocean model data from SINMOD as the training

dataset. This data is denoted as y(si, tj), where si 2 D represents the location of cell
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i 2 [1, . . . , n] at time tj for SINMOD realization j = 1, . . . , T . The surrogate data

model is then

y(si) ⇠ N (x(si),�
2

S
), i = 1, . . . , n, (3)

where �2

S
is an unstructured noise variance of the SINMOD dataset.

We estimate a location-dependent mean µ(si) of the GMRF using the empirical

average across all replicates tj as:

µ̂(si) =
1

T

TX

j=1

y(si, tj), 8si 2 D. (4)

We compute an estimate ✓̂ of the covariance parameters of the GMRF by maximizing

the likelihood function L(✓), given residual data from an autoregressive model fitted to

the SINMOD data (See Supplemental material and (Berild and Fuglstad, 2023)). The

covariance parameters for the models used in Sections 4 and 5 are fit on 144 timesteps

SINMOD data of the whole field. Optimizing the likelihood of this rather sophisticated

covariance model is not straightforward, but it gets less di�cult with more data and at

this also improves the accuracy of estimates. Berild and Fuglstad (2023) suggest that

at least 10 timesteps of the whole field should be used to find reasonable parameters

values for such a flexible model.

Figure 3 shows the prior mean (Equation (4)), the prior variance of the n-variate

Gaussian distribution x and the corresponding spatial correlation of the marked location.

The mean salinity clearly increases going north in the fjord, away from the river outlet.

The salinity variance is larger near the river. For the correlation, we notice non-circular

contours indicative of anisotropy. Here, the correlation appears to be stronger in the

directions where salinity is expected to be similar to that of the reference location.
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Fig. 3: Prior expectation (a), the variance of the process model (b), and the spatial
correlation of the location highlighted (c). The N-arrow is the cardinal north.

3 Adaptive AUV sampling

We now delve into our approach for adaptive AUV exploration. One part of this involves

continuous updates of the GMRF surrogate model through onboard data assimilation

of the in-situ AUV salinity data. Another part is the strategic planning of the next

AUV sampling locations.

3.1 Conditioning to AUV data

Assume that the AUV gathers in-situ data at m locations or design points d =

{d1, . . . ,dm}, where dj 2 D. In practice these locations form an AUV design (a

trajectory). Data y(dj), j = 1, . . . ,m, are noisy measurements of the salinity x(dj)

at the location dj where they are made. We organize the data in a length-m vector

y, and we allocate these observations to the correct grid locations by using a size

m⇥ n selection matrix A. This matrix has a single 1 entry in each row, and otherwise

only 0 entries. With this structure, it selects the m indices in the length-n vector x of
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discretized salinity field variables in Equation (1). The measurement model is then

y = Ax + ✏, ✏ ⇠ Nm(0,�2

auv
Im). (5)

Here, the variance �2
auv

of the independent additive noise terms aggregates the AUV

positioning error and measurement noise. This variance parameter is specified from

existing AUV data.

The conditional model for salinity x, given measurements y, is Gaussian distributed

with updated precision matrix

QC = Q + ATA/�2

auv
, (6)

and conditional mean

µC = µ + Q�1

C
AT (y �Aµ) /�2

auv
. (7)

With the sparse precision matrices, the updating in Equation (6) and (7) can be

computed very fast.

Given a series of observations collected with the AUV along a straight line from

the river plume and straight north we calculate the conditional precision matrix and

mean using Equation(6)-(7) of the model estimated in Section 2.3. Using the precision

we calculate the inverse diagonal (the conditional variance of the field), and from

this the correlation about a location in space. We demonstrate the e↵ect of data

conditioning using a visualization of the conditional expectation, conditional variance,

and conditional correlation given a series of updates are shown in Figures 4, 5, and 6.

Figure 4 indicates that the river water is going further north than anticipated in the

prior mean. In Figure 5 we see that the variance is reduced where the AUV has visited,
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Fig. 4: Conditional expectation given AUV measurements along a fixed transect path
at 0.5 meter depth.

and as a consequence the correlation range shown in Figure 6 gets lower. Dense data

sampling tends to reduce the spatial correlation.

3.2 Excursion sets and plume mapping criterion

One goal of the AUV sampling is to improve the characterization of the plume front

defined in our case as the zone separating fresh river waters and more saline fjord

waters. Following Fossum et al. (2021) and Ge et al. (2023), we use the uncertainty in

the random set of excursions below a salinity threshold ` to distinguish river and fjord

water. The excursion set is defined by

ES = {s 2 D : x(s) < `}. (8)

The associated excursion probability (EP) and the Bernoulli variance (BV) is

EP(s) = P (x(s) < `), BV(s) = EP(s)[1 � EP(s)] s 2 D. (9)
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Fig. 5: Conditional variance in the process model given AUV measurements along a
fixed transect path at 0.5 meter depth.

The BV is near 0 at locations where the EP is near 0 or 1, while it is at its maximum

value 0.25 at locations which have EP equal to 0.5.

When AUV salinity data y are available, we get a conditional GMRF, and

conditional EPs and BVs. E↵ective AUV sampling designs get salinity data that can

pull these EPs closer to 0 or 1 and in doing so one reduces the uncertainty of the river

plume front. Conditional on salinity data y = yd according to design d 2 D. The

conditional EPs and BVs are

P (x(s) < `|yd), P (x(s) < `|yd)[1 � P (x(s) < `|yd)]. (10)

Design plans must be made before the data yd is revealed, and we take the expectation

over the data when calculating the most e↵ective design. Focusing on improved spatial

mapping of the river plume front, it is natural to integrate the objective criterion over

all locations in the domain. The expected integrated Bernoulli variance (EIBV) of a
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Fig. 6: Conditional correlation of the marked point given AUV measurements along a
fixed transect path at 0.5 meter depth.

design d is then defined by

EIBVd(µ,Q) =

Z

D
Eyd

{P (x(s) < `|yd)[1 � P (x(s) < `|yd)]} ds. (11)

For the GMRF surrogate model specified by mean µ and precision Q, the EIBV for a

design d has a closed form involving sums of bivariate cumulative distribution functions

�2 for the Gaussian distribution. In this expression, the design is here involved via

1-entries structure of the selection matrix A = Ad. The closed-form solution facilitates

very fast computations of multiple sampling designs. The complete derivations of the

closed forms are in the Supplemental material. See also Fossum et al. (2021) and Ge

et al. (2023). In our approach with the sparse GMRF model, we use Monte Carlo

sampling from the conditional model to approximate the variance reduction components

that are required in the EIBV (see Supplemental material).
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3.3 Adaptive AUV sampling algorithm

The AUV cannot navigate to all possible design locations. Rather, its continued path

is constrained by the current location and the possible maneuvers it can perform. We

let P ⇢ D denote the possible designs the AUV can choose from, defined by directions

(straight, left, right, up, down) from the current AUV location. The chosen design is

the one that minimizes the EIBV in Equation (11). This means that

d⇤ = argmaxd2PEIBVd(µ,Q). (12)

During the AUV operation this kind of design choice is done at many time points, and

with an updated model that is conditional on all the data gathered up to this point. In

this way we utilize the benefits of robotic intelligence to navigate the uncertain ocean

plume zone.

We outline a myopic adaptive sampling algorithm in the 3D domain. This is a

sequential selection of waypoints or grid nodes where the AUV sample data and update

the model. The myopic approach represents a heuristic optimization strategy for the

AUV operation that does not anticipate potential data or navigation choices beyond

the current time. It makes the optimal choice based on the expected values at the

current time alone.

Figure 7a shows the idea of adaptive sampling in a sketch with a cycle of tasks

where one leads to the next. Here, the AUV senses the salinity, updates its onboard

model, and plans where to navigate to, and then it continues on the next cycle.

Hence, at the planning stage, the computer onboard the AUV solves Equation (12)

to navigate in promising 3D directions Figure 7b. To compensate for the time it takes

to do the computation, and to make the system near real-time, asynchronous parallel

computing is applied to compensate for the excessive computing time onboard.

Algorithm 1 shows the main steps of this adaptive AUV sampling approach. In
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(a) Caption for the first subfigure (b) Caption for the second subfigure

Fig. 7: Illustration of adaptive sampling mechanism. Visualization of the adaptive
sampling design (a). The AUV evaluates the potential high-value locations to determine
the next visiting waypoint (b). Red colors represent more interesting next waypoint.

Algorithm 1 Myopic EIBV minimizing sampling with a GMRF surrogate model.

Initialization: Prior model µC,0 = µ, QC,0 = Q. Set start location d0. Set t = 1.
while True do

Plan:
Choose design that reduces EIBV the most

dt = arg min
d2Pt

EIBVd(µC,t�1,QC,t�1)

Form selection matrix At = A(dt).
Act/sense:

Move according to design dt collecting measurements yt

Model Update:
With the collected measurements, update the GMRF

QC,t = QC,t�1 + AT
t At/�2

auv

µC,t = µC,t�1 + Q�1

C,tA
T
t (yt �AtµC,t�1)/�

2
auv

Set t = t + 1.
end while

this algorithm we use t to indicate subsequent stages of AUV sampling. At stage t,

the updated mean in the onboard surrogate model is denoted µC,t and the updated

precision is QC,t. The selection matrix At = A(dt) is formed based on the most

promising design dt at each stage. This design dt is chosen among several possible

designs Pt ⇢ D that vary depending on where the AUV is at the current stage and the

operational navigation opportunities it has according to the grid. In our implementation,
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the AUV can continue from its current location to go straight ahead, or turn left, right,

up, down. It cannot return back to its previous grid location (Figure 7b). There are

natural exceptions at the grid boundary.

4 Simulation study

In this section, we conduct a simulated experiment to evaluate the performance of

our approach for monitoring the three-dimensional freshwater plume of the Nidelva

river in Trondheim, Norway. The operational area is outlined in Figure 1. Specifically,

we will compare the e↵ectiveness of the suggested complex GRF model and a more

standard model. The complex model is discretized with a resolution of 32m x 32m

square cells in the horizontal plane and the standard model with a hexagonal grid with

a lateral neighbor distance of 120m. Both models have 1m depth increments ranging

from 0.5 m to 5.5 m, resulting in a total of n = 50 ⇥ 45 ⇥ 6 spatial location for the

complex model and 1098 for the standard model. This is inline with the capabilities of

the AUVs’ onboard computer.

Initially, both models are estimated on the SINMOD data within the operational

area in order to form a prior field. The standard model is specified using a standard

variogram analysis, resulting in a Matérn covariance with lateral correlation range of

550 m, vertical range of 2 m, a prior marginal variance of 1, and a nugget e↵ect of 0.4

(see Section 2.4 of Cressie (1993) for a description of this spatial data analysis method).

The parameters of the complex model are estimated through the approach described

in Section 2.3, and detailed in the Supplemental material and Berild and Fuglstad

(2023). Both models use the empirical average across all timesteps (replicates) of the

SINMOD data, Equation (4), as its prior expectation.

In order to obtain performance statistics, we ran L = 100 simulated field experiments

where the AUV is equipped with either one of the models estimated above and tasked

with monitoring the salinity field according to Algorithm 1. The AUV is in this
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simulation environment exploring a SINMOD dataset from the 9th of November 2022

with an assumed additional Gaussian noise term with standard deviation 0.12. This

noise represents positional error and measurement error in a real experimental setting.

Moreover, the AUV is set to travel at 1 m/s and each simulated field experiment is

run for T = 25 sequential steps of Algorithm 1, i.e. visiting 25 spatial locations, where

the starting location is kept the same for each run.

Within the lth simulated experiment and after visiting tth location, the following

three metrics are calculated: integrated Bernoulli variance (IBV), root mean squared

error (RMSE), and classification error (CE). Let xl be the ground truth (SINMOD

data) in the lth experiment. Then, we calculate the metrics as

IBVl,t =
nX

i=1

EPl,t(si)[1 � EPl,t(si)], (13)

RMSEl,t =

vuut 1

n

nX

i=1

[xl(si) � µC,l,t(si)]2, (14)

CEl,t =
1

n

nX

i=1

I(El(si) 6= Êl,t(si)), El(si) = I(xl(si)  `) Êl,t(si) = I(µC,l,t(si)  `),

(15)

where I is the indicator function, t 2 [0, T ] where T = 25 indicates the sequential step,

and l = 1, . . . , L with L = 100 replicate field experiment. Summary statistics of these

metrics from the L replicated experiments are shown in Figure 8. The solid lines are

the average across all L replicates at time t for each metric, e.g.

[IBVt =
1

L

LX

l=1

IBVl,t, (16)
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Fig. 8: Variation in integrated Bernoulli variance (a), root mean square error (b),
and classification error (c) over the 100 replicate runs with the standard model (blue)
and the complex model (orange). The solid lines show the averages and the vertical
errorbars show the empirical standard deviations of the respective metrics.

and similarly the errorbars show the empirical standard deviation at time t across all

L replicates as

SD (IBVt) =

vuut 1

L� 1

LX

l=1

⇣
IBVl,t � [IBVt

⌘2

. (17)

Each display has one of the metrics on the second axis and time stages on the first

axis. For the IBV and CE criteria, the percentages reduction compared to the starting

value are shown since the models are constructed di↵erently and therefore will also

di↵er prior to the mission as can be seen in the middle RMSE display.

The IBV reduction (Figure 8a) indicates the ability of the AUV to capture the river

plume boundary. A lower IBV means that the AUV is better at sampling the frontal

salinity region separating river and fjord water masses. In this spatial example the IBV

has a tendency of going down, even though it could increase at some stages (because

data pull probabilities closer to 0.5). The complex GMRF model clearly achieves lower

IBV than the simpler model. After some stages, the curve for the complex GMRF

model declines rapidly, indicating that the AUV is e�cient at exploring the boundary.

This means that incorporating a more realistic covariance structure helps the AUV

choose the best designs and it tends to move in the right direction.

The RMSE plot (Figure 8b) reflects the similarity between the ground truth and

the updated field. The ground truth is here the same as what the AUV is sampling, i.e.
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the SINMOD dataset from the 9th of November 2022, but without the added noise

term. A lower RMSE means that the AUV is gathering data that helps in predicting

the salinity field. Again, the complex model is performing much better than the simpler

one. For CE (Figure 8c), a lower value means that the updated model is good at

classifying the excursion set associated with the ground truth. The complex model

has CE results that are declining faster than the simpler model. The complex model

performs better than the standard model due to its versatile capability and flexibility.

However, we do realize that training such models often requires expert knowledge and

it can be a laborious process to fine-tune the parameters for such a complex model.

In all displays of Figure 8, we observe larger metric variability for the complex

GMRF model. The underlying reason for this is the Monte Carlo variance in the EIBV

calculation for the GMRF model (see Section 3.2). With the relatively small sampling

size, the Monte Carlo error is still not negligible and, influenced by this estimate, the

directional sampling decision made by the AUV exhibit more small-scale variability

than that of the standard model which has a closed form variance expression. Over

many replicates, the variability in metrics then gets larger for the GMRF model,

especially for the IBV which relates directly to the AUV sampling decision criterion.

5 Results of Nidelva Mission

The field experiment was executed in the Nidelva river plume outside Trondheim,

Norway, on the 8th of September, 2022. The duration of this field deployment spanned

1.5 hours. Figure 1 shows the operational area.

5.1 Experimental set-up

For this experiment two AUVs are deployed. This is intended to not only increase

the amount of data collected, but also enable us to compare the performance of our

embedded system under similar conditions. One of the AUVs was programmed with
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the adaptive sampling algorithm, while the other was running with a pre-programmed

path plan onboard.

LAUV (Light Autonomous Underwater Vehicle) Harald and LAUV Roald (Figure 9)

from the Applied Underwater Robotics Laboratory at NTNU were employed for this

mission. LAUV Roald was programmed to carry out the adaptive experiment and LAUV

Harald was programmed to conduct the pre-designed plan. To measure the salinity in

the water LAUVs Harald and Roald uses CTD sensors, or conductivity, temperature,

and depth sensor. Harald uses a SeaBird SBE 49 FastCAT and Roald a AML OEM

SV Xchange. Despite being from di↵erent manufacturers, the specifications from the

suppliers indicate that they should have the same level of precision and accuracy. All

the essential scripts were integrated onboard on the backseat NVIDIA Jetson TX2

CPU. For hardware and software in the loop testing and the actual deployment, we

relied on the framework developed by Mo-Bjørkelund et al. (2020b). The onboard

implementation of Algorithm requires Robot Operating Systems (ROS) Quigley (2009)

and a software bridge to the LAUV, running DUNE (DUNE: Unified Navigation

Environment Pinto et al. (2013)) embedded and communicating over the Inter Module

Communication (IMC) message protocol (LSTS, 2022).

The software bridge between ROS and IMC was adapted from the Swedish Maritime

Robotics Centers implementation of a ROS-IMC bridge Bhat et al. (2020)(https:

//github.com/smarc-project/imc ros bridge) to include messages going from ROS to

the vehicle. In addition, a wrapper for the vehicle IMC messages was used, facilitating

interaction between the adaptive software and the vehicle. The communication bridge

and framework between ROS and IMC use the same back-seat interface as Pinto et al.

(2018), with IMC messages being transmitted over Transmission Control Protocol

(TCP) (Cerf and Kahn, 1974) between the main CPU and the auxiliary CPU in the

AUV. The adaptive code was running on the auxiliary CPU in order to preserve the
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Fig. 9: LAUV Roald is on expedition with an adaptive sampling algorithm onboard.
The AUV is about 2 m long and runs at about 1 m/s. It is doing a 3D sampling mission
at depths ranging from 0.5 to 5.5 m.

integrity of the main CPU. For illustration, a flowchart containing the main software

components is presented in Figure 10.

Before conducting the principal deployment, we gained understanding of the sea

conditions via a preliminary survey. We first launched the pre-survey adaptive mission

with a reasonable threshold based on our belief field and then updated the threshold

to be 25.4 g/kg after observing the updated salinity field from the pre-survey run.

5.2 Field operation

The AUVs started moving from their starting location around 12:50am. We received

the ”Mission Complete” message from the AUVs around 14:15pm which marks the

end of the operation.

In Figure 11, the results of the AUV conducting adaptive sampling are displayed.

Here, we plot the AUV path (black) and the updated posterior mean salinity field over

time steps. The AUV began near the river mouth and gradually moved towards the

frontal region, occasionally diving to the deeper layers. In total the AUV traveled approx
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Fig. 10: The diagram of the software component in the adaptive sampling system.
The main CPU of the AUV is running DUNE (Pinto et al., 2013), while IMC (LSTS,
2022) messages are sent through TCP (Cerf and Kahn, 1974) to a secondary CPU,
where the adaptive code and ROS (Quigley, 2009) are executed.

9.734 km, with a coverage of 6.9% of the field at 0.5m, 6.3% at 1.5m, 1.6% at 2.5m, and

0.1% at 3.5m. Both the AUVs was set to travel at 1.5 m/s, but the speed varies widely

because of conditions in the ocean. During the mission the plume expanded due to the

tidal e↵ect, so the AUV attempted to follow the front more closely. Interestingly, the

AUV did not dive deeper than 2.5m. This can be attributed to the fact that the water

becomes more homogeneous and saline when it is too deep, and the river plume tends

to stay close to the upper layers. Also this can be an e↵ect of the model learning from

observation closer to the surface. Note that the path in Figure 11 appear somewhat

disjointed because the viewed measurements are assigned to the nearest grid cell to

their actual location and the grid cell center of each measurements are shown here.

In Figure 12, the salinity prediction results of the AUV’s pre-planned sampling are

displayed. The path was designed to maximize the sampling coverage and consequently

reduce the variance of the field. The AUV was programmed to move along the path

with a consistent YoYo pattern. This pattern involves the AUV moving between 0.5m

and 5.5m repeatedly. The pre-programmed path approach ensures a more systematic
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Fig. 11: Salinity prediction during the adaptive sampling mission September 8th 2022.
The AUV (black) began close to the river mouth and gradually moved towards the
frontal region and dived to deeper layers occasionally.

Fig. 12: Salinity prediction during the fixed path mission September 8th 2022. The
AUV (black) aims to cover the spatial domain.

and exhaustive coverage of the volume, providing a broader perspective but lacks the

pinpoint accuracy on such a large and the rapidly changing ocean volume. The path

the AUV traveled along was approx 9.346km with a coverage of 7.9% at 0.5m, 8.3% at

1.5m, 9.1% at 2.5m, 8.6% at 3.5m, 7.9% at 4.5m, and 7.2% at 5.5m.

Given the unpredictable nature of the location of the freshwater front, it is virtually

impossible to pre-plan precise sampling paths. The shifts and movements of the plume

demand a real-time responsive approach like adaptive sampling. This is also evident
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when comparing Figure11 and 12. On the other hand, if a broad overview of the ocean

volume is the goal, then a pre-planned design likely is useful to ensure a systematic

coverage of the region, leaving minimal gaps in the data collection. Also, note that

diving 1 m is significantly more time e�cient than moving 32 m in the horizontal plane

for the AUV, this can be viewed by the coverage in each layer by two missions. The

fixed path mission has good coverage within each layer whilst the adaptive mission

mostly considered the top two layers. Because of this it could be interesting in future

work to consider adaptive sampling in only the horizontal plane and to always move in

a YoYo pattern.

5.3 SINMOD and AUV data comparison

Even though salinity is only one state variable in SINMOD, it is useful and interesting

to compare the AUV salinity measurements with the predictions made by SINMOD, as

it will give information on the overall performance of the hydrodynamic model. Using

all the data collecting by both AUVs, we compare the location-specific observations

made by the AUVs with the associated SINMOD predictions for this day.

As illustrated in Figure 13, there is a clear inclination of SINMOD to overpredict

salinity values. This trend is evident as a majority of the AUV measurements are

situated below the zero error line (dotted line). In shallow water regions, both SINMOD

and the AUV measurements exhibited high salinity variability which is reasonable

considering the freshwater influx from the river and local disturbances. For deeper

waters the salinity is higher for both models and more concentrated, with a bias about

3.5 g/kg between the SINMOD predictions and AUV measurements. The highest

measured salinity value by the AUV was 28.0 g/kg, while the highest value from

SINMOD was 31.5 g/kg. Further confirming that the numerical model overestimates

salinity both for the water in the river plume and in the brackish layer in the fjord.
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Fig. 13: Comparison of salinity values estimated from the numerical ocean model
(x-axis) and salinity measurements collected with the AUV on the 8th of September
2022 (y-axis) where the color shows the corresponding depths. The dotted line shows
the zero error line.

While this discrepancy between SINMOD and the actual salinity field is evident,

this will not impact the learning of the covariance structure, which captures the spatial

correlation and variability within the data, and is independent of any systematic bias.

That said, the observed overestimation in SINMOD does set a prior expectation in

our model that is skewed slightly high and will initial impact the adaptive sampling

algorithm.

6 Conclusions

We have presented an approach for e↵ective 3D (north, east, depth) sampling of the

salinity in a river plume front with a realistic flexible spatial covariance model running

onboard the AUV in real-time. Results of a deployment in the Trondheim fjord show

that prior inputs from the SINMOD numerical ocean model are e↵ectively calibrated

with the in-situ AUV measurements. In a mission focusing on mapping the frontal

27



region, the AUV adapts naturally to the updated situation and zig-zags near the plume

front to improve its spatial characteristics. Moreover, it is evident that the adaptive

approach holds a distinct advantage over the pre-planned method when it comes to

accurately monitoring dynamic zones like the river plume front.

Although our focus in this study is centered on separating ocean masses of low

(freshwater plume) and high (brackish water) salinity concentrations, we believe that

this approach transfers to other applications in physical or biological oceanography,

such as polar melting water, high chlorophyll concentrations, or pollution detection.

The statistical model, while promising, does necessitate further refinement to

fully realize its potential in this context. Firstly, refining its parameterization

slightly to simplify the likelihood surface can potentially improve the optimization

process significantly. Furthermore, estimating the covariance structure to innovations

constructed from the SINMOD data, as described in Berild and Fuglstad (2023), is

not guaranteed to be very accurate in removing the temporal e↵ect in the data. Thus,

making it challenging to ascertain if the final structure is only capturing the spatial

e↵ect.

The prior models used in this work included 3D space with no temporal variation. A

natural extension is to include temporal variation in the prior, which could be done in

a Gaussian framework assuming known advection and di↵usion (Foss et al., 2022). But

more research is required to develop realistic space-time models for frontal regions, such

as that associated with river plumes, while maintaining the computational e�ciency

required to conduct expansive field surveying as considered in this study. Lastly, our

exploration was confined to a near-sighted myopic sampling scheme. Future avenues

might explore more sophisticated strategies (Bai et al., 2021), using longer sampling

horizons where one can look ahead and anticipate the information gained by traversing

longer distances with the AUV while also accounting for operational constraints.
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Supplementary Material

Describing GMRFs through SPDEs

Whittle (1954) showed that the solution, u(s), of the stochastic partial di↵erential

equation (SPDE)

((s)2 �r ·H(s)r)u(s) = W(s), s 2 D ✓ R3, (18)

is a Gaussian Markov random field (GMRF) with a Matérn covariance function. The

approach was popularized by Lindgren et al. (2011); then, extended to non-stationary

and anisotropic 2D fields in Fuglstad et al. (2015,?), and recently to 3D fields by Berild

and Fuglstad (2023).

In Equation (18), W(s) is Gaussian white noise, while  is a parameter controlling

both variance and range of the GMRF. The component H is also used to regulate the

variance and the range, but more importantly, it is controlling the anisotropy of the

Laplacian, r ·Hr, and thus the anisotropy of the resulting field. With this anisotropy,

the model can account for varying properties depending on directions. Also, note that

(s) and H(s) in Equation (18) are allowed to vary through space.

In the following, we will describe the parametrization of the anisotropy (Section 6),

the non-stationarity (Section 6), properties of the GMRF described through the SPDE

(Section 6), and how we infer parameters from data (Section 6).
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Parametrizing Anisotropy

The spatially and directionally varying covariances are described by controlling the

eigenvalues and eigenvectors of the matrix H in the anisotropic Laplacian. Berild and

Fuglstad (2023) proposed the following parsimonious and interpretable parameterization

H(s) = �(s)I3 + v(s)v(s)T + !(s)!(s)T, (19)

where �(s) > 0, v = (vx, vy, vz)T 2 R3 and ! = (!x,!y,!z)T 2 R3 whereby v ? !.

Thus, the eigenvalues are �1 = �, �2 = � + kvk2, and �3 = � + k!k2 with eigenvectors

v1 = v ⇥ !, v2 = v, and v3 = !.

The vector v is simply parametrized with its Cartesian components, vx, vy, and vz.

Further, ! is parametrized by two scalars, ⇢1 and ⇢2, controlling the linear combination

of two orthogonal vector, !1 = (�vy, vx, 0)T and !2 = v ⇥ !1, in the plane with v as

normal vector such that

! = ⇢1
!1

k!1k
+ ⇢2

!2

k!2k
. (20)

Parametrizing non-stationarity

The non-stationarity is obtained by allowing the parameters , �, vx, vy, vz, ⇢1 and ⇢2

to vary throughout space. This is achieved by describing these parameters as spline

functions:

g(s) = (s)T↵g. (21)

Here, ↵g 2 Rp is a vector of weights or the new parameters for the spline function

g(·) or the old parameter, and (s) = (f1(s), . . . , fp(s))T is a p-dimensional vector of

B-spline basis functions evaluated at location s. These basis splines are constructed as

a tensor product of three clamped 1D second-order B-splines in each dimension as

fijk(s) = Bx,i(x) ·By,j(y) ·Bz,k(z), s = (x, y, z)T 2 D, (22)
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where Bx,i is the i � th component in the x-direction and similarly for the other

directions. Thereby, the number of parameters for each spline function g(·) is p = 27

which in total is 189 parameters or B-spline weights for all spline functions in our

model. We collect them as

✓ =
�
↵log(2),↵log � ,↵vx ,↵vy ,↵vz ,↵⇢1 ,↵⇢2

�
.

General properties

As mentioned in Section 6 the parameters controlling the covariance structure in the

spatial e↵ect are learned from the residuals of an autoregressive model of order one fit

to the SINMOD dataset y. This gives the underlying process

xR|✓ ⇠ Nn

�
0,Q�1(✓)

�
, (23)

with zero mean and the inverse covariance matrix Q(✓). In this case xR = u, where u

is the random variable specified through the SPDE.

The marginal variance for the solution u of the SPDE, can be derived through a

series of calculations. The transfer function for Equation (18) is g(w) = (2+wTHw)�1

and given the spectral density of Gaussian white noise in R3 is (2⇡)�3 the spectral

density of the solution of the SPDE is

fS(w) = (2⇡)�3(2 + wTHw)�1. (24)

Lastly, the variance of the solution is found by integrating its spectral density over the

whole domain R3, and thus, the variance of the process we are trying to describe is

Var (x(s)) =
1

8⇡(s)
p

det(H(s))
. (25)
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Moreover, in a stationary case where (s) =  and H(s) = H for all s the covariance

of the process between two locations s1 and s2 in R3 can be written as

Cov (x(s1), x(s2)) =
1

8⇡
p

det(H)
exp

⇣
�||H�1/2(s1 � s2)||

⌘
, (26)

or namely an exponential covariance function.

Parameter inference

Following the notation from the process defined in Equation (23) the data model for

the innovations are

yR|xR,�
2

S
⇠ Nm

�
AxR,�

2

S
In
�
. (27)

Here, matrix A is a m by n matrix linking the locations of the observation yR to our

discretization in the process xR, and �2

S
is the independent noise in the innovations.

To find the optimal parameters such that our models best describe the innovations

we will maximize the likelihood function of the parameters. Specifically, the parameters

have a multivariate Gaussian distribution, and following common practice we will

optimize the logarithmic transformation of this likelihood, thereby the log-likelihood:

`(✓,�2

S
|y) = Const + log ⇡(✓,�2

S
) +

1

2
log det (Q) � m

2
log(�2

S
)

� 1

2
log det (QC) � 1

2
µT

C
QCµC � 1

2�2

S

(y �AµC)T(y �AµC).
(28)

The reader is referred to the supplementary material of Berild and Fuglstad (2023) for

a full derivation of the log-likelihood. In Equation (28), QC is the conditional precision

matrix, i.e. the precision matrix given that the model has seen y,

QC = Q + ATA/�2

S
. (29)
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Similarly, the conditional mean is

µC = Q�1

C
ATAy/�2

S
. (30)

Note that this is similar to the equations used in the model updating, but with µ = 0

as assumed by our process of these innovations.

The parameter space is quite challenging to explore so we use an analytical

expression for the gradient to determine the search directions. In order to speed up the

gradient calculations a stochastic version is calculated, and therefore, ultimately the

optimization strategy is a stochastic gradient descent algorithm. Furthermore, we have

employed a root mean square propagation (RMSprop) in the optimization to improve

the stability and convergence.

EIBV design criteria

For any design d at stage t giving data y = yd, the EIBV reduction in can be rephrased

as

EIBV(µC,t�1,QC,t�1) =

Z
Ey|Yt�1

{ps(y,Yt�1)[1 � ps(y,Yt�1)]} ds,

ps(y,Yt�1) = P (x(s)  `|y,Yt�1), (31)

where Yt�1 denotes all the data gathered at stages before t. The probability ps(y,Yt�1)

is a Gaussian cumulative distribution function (CDF) with linear conditioning to y in

the mean and with a variance that does not depend on the outcome of the data.

The conditional mean at stage t� 1 is µC,t�1 with entries µC,t�1(si), i = 1, . . . , n.

The conditional covariance matrix is ⌃C,t�1 = Q�1

C,t�1
with diagonal entries �2

C,t�1
(si),

and after the updating we have ⌃C,t = Q�1

C,t with diagonal entries �2

C,t(si). Based on

results of Chevalier et al. (2014) and Fossum et al. (2021), the EIBV in Equation (31)
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can be evaluated in closed form as a bivariate Gaussian CDF depending on these

parameters.

EIBV(µC,t�1,QC,t�1) =
nX

i=1

EBV(µC,t�1(si),�
2

C,t�1
(si),�

2

C,t(si)) (32)

EBV(⌘, v2, w2) = �2

0

B@

2

64
`

�`

3

75 ;

2

64
⌘

�⌘

3

75 ,

2

64
v2 (w2 � v2)

(w2 � v2) v2

3

75

1

CA ,

where �2 denotes the bivariate Gaussian cumulative distribution function.

We note that this closed form EIBV calculation in equation (32) relies on the

variance terms and their reduction in the updating step (w2 = �2

C,t(si) compared with

v2 = �2

C,t�1
(si)). In the formulation with the precision matrix, these terms are not

immediately available. Matrix recursions exist for computing the marginal variance

terms from the precision matrix, see e.g. Zammit-Mangion and Rougier (2018), but

the solution can be computationally challenging in 3D because of rather large fill-in of

non-zeros in the sparse matrix structure during the recursion. We instead approximate

the required variance terms by Monte Carlo sampling from the GMRF model.

Conditional samples are here generated by a trick known as conditioning by Kriging

equation (see e.g. Wackernagel (2003)). This relies on the following steps; first an

unconditional sample xb
C,t�1

of the field is generated. In our case this comes from

the Gaussian distribution with mean µC,t�1 and precision matrix QC,t�1. Next, a

synthetic data sample yb = Axb
C,t�1

+ ✏b, ✏b ⇠ N(0,�2
auv

Im) is generated according to

the specified design. Finally, a conditional sample is formed by solving the equation for

the conditional mean (also known as the Kriging equation), given the synthetic data:

xb
C,t = xb

C,t�1
+ Q�1

C,t�1
AT

�
yb �Axb

C,t�1

�
/�2

auv
. (33)
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This procedure is repeated for b = 1, . . . , B independent Monte Carlo samples. We

used B = 100 in our implementation. Equation (33) requires matrix-vector solves with

the sparse precision matrix which can be done very fast.

When the optimal design is selected, the AUV acts to move in the direction of

the selected design. It senses salinity data y, and then Equation (33) is used with

these in-situ observations in place of yb to get the conditional samples for time stage

t. The resulting Monte Carlo sample xb
C,t, b = 1 . . . , B forms the basis for the EIBV

evaluation at the next time step, when t ! t + 1.
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Abstract

We study opportunities for dynamic sampling designs in spatio-temporal random

field. Considering a situation with a robotic agent, we develop an algorithm that

enables autonomous exploration of spatial domains with large gradients. The mod-

eling assumptions rely on a spatio-temporal Gaussian random field, which means

that the directional derivatives of the field are Gaussian distributed. Using computa-

tional tricks at the dimension of relatively sparse data, the robot updates its on-board

Gaussian random field model in real-time. Moreover, it computes the expected im-

provement in directional derivatives along a set of possible paths in a spider-leg search

space to choose intelligent exploration designs over time stages. We study statistical

properties of this suggested approach in a simulation study, where we compare the

design criterion with several other viable design selection criteria. The new algorithm

is embedded on an autonomous underwater vehicle which is deployed for characteriz-

ing a river plume frontal system in a Norwegian fjord. Using expected improvement

for the salinity field derivatives, the vehicle successfully sampled the river front for

more than two hours without intervention.

Keywords: Expected improvement; Gaussian Random Field; Spatial design; Robotics;

Oceanography
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1. Introduction

Inspired by new sensor technology and small-size computing units, there is cur-

rently a drive to develop intelligent monitoring systems. This development is pushed

by engineers and multi-disciplinary visions on how to put innovative solutions into

practical use. Recent examples include internet-of-things for smart sensor networks

monitoring air pollution (Dhingra et al., 2019), embedded systems and AI for agricul-

ture (Shadrin et al., 2019), robotic systems for understanding environmental processes

(Dunbabin and Marques, 2012) and cyber-physical systems that can re-configure

themselves for ecological monitoring (Schranz et al., 2021).

The capabilities of such embedded systems can clearly be improved by leveraging

knowledge from spatio-temporal statistics and design of experiments, see e.g. Mateu

and Müller (2012), Wang et al. (2012, 2020) or Brus (2022). In doing so, one can

develop more principled approaches for what, where and when to gather additional

data samples, and integrate this new information in a consistent statistical modeling

framework. Even so, solutions to these situations tend to be case-specific, and often of

a heuristic type as the search space is too large to find the optimal solution. Impactful

examples of spatial statistics and design for embedded systems include Krause et al.

(2008) who studied the NP-hard problem of sensor placement using Gaussian random

fields (GRFs) with the goal of finding designs that optimize the mutual information

and Manohar et al. (2018) who suggested using machine learning methods to facilitate

the search for constructive design patterns.

As robotic units and sensor systems often have limited computing, storage and

communication capabilities, one must often simplify the modeling to guide the opti-

mization challenge. Ideas from designing computer experiments and building surro-

gate models (Gramacy, 2020; Fuhg et al., 2021) are hence also highly relevant in this

context of optimal spatio-temporal design and fast integration of data.
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In this article we focus on an application of underwater robotics. An autonomous

underwater vehicle (AUV) with onboard computing units uses a GRF surrogate model

to plan where and when to explore various parts of an ocean domain. The AUV

is hence a dynamic agent that can navigate to extract informative samples in an

uncertain dynamic environment. In particular, the goal here is to find large derivatives

of the field which are indicative of important frontal zones between di↵erent water

masses. The spatio-temporal variable that we target here is ocean salinity, and via

the real-world deployment, we show results of an AUV deployment characterizing

salinity changes in a river plume front in a Norwegian fjord.

The main contributions of this paper are

• A spatio-temporal sampling approach with a dynamic agent searching for large

derivatives in the field.

• A fast scalable algorithm for updating and planning based on GRFs and sparse

observation points in the vicinity of the current position.

• A field deployment with an AUV adaptively sampling a river plume front for 2

hours and 10 minutes.

In Section 2, we describe the motivation for our work and define the necessary

notation. In Section 3, we set up the required building blocks from theory on spatio-

temporal GRFs and the properties of their derivatives. In Section 4, we present

the method and algorithm for adaptive sampling of large directional derivatives. In

Section 5, we demonstrate properties of the suggested algorithm in a simulation study.

In Section 6, we show results of the AUV deployment in the Trondheim fjord in

Norway. In Section 7, we provide conclusions and point to future work.
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2. Background and notation

Fronts are important in meteorology and oceanography as they tend to be key

drivers of the physical dynamic behavior, see e.g. Fedorov (1986) and Catto and

Pfahl (2013). Frontal zones in the ocean are further known to be biological hot-spots

that shape parts of the marine ecosystem (Belkin et al., 2009). In this paper, the

spatio-temporal variable of interest is ocean salinity and its derivatives which capture

the frontal zone near river plumes.

Ocean fronts can be detected from satellite data, see e.g. Hopkins et al. (2010), but

this is only on the surface and not available on a cloudy day. Numerical ocean models,

see e.g. Lermusiaux (2006), can mimic fronts at various scales, but even though they

are incredibly useful at predicting ocean variables, they tends to be biased in space

and time. AUVs have become an important tool for oceanographic in-situ sampling,

and they are commonly used to detect frontal zones. These vehicles can navigate

autonomously underwater and can hold a range of sensors such as a standard tool that

provides salinity measurements. Many AUVs also have an onboard computer that

enables for instance data assimilation in a model, and using this to adapt its trajectory

and move in more interesting directions. This is important because communication

is limited under water, and the full benefits of an AUV are gained only when it acts

on its own as an intelligent agent.

To further motivate the detection of fronts in the ocean, we highlight a few exam-

ples. Figure 1 shows three di↵erent deployments where researchers aimed to map the

frontal zone between water masses. Zhang et al. (2019) used temperature data from

satellites along with in-situ AUV measurements to follow the zone of mixing cold and

warm water masses in the Monterey Bay, California. Fossum et al. (2021) used an

AUV to understand the frontal zone near the ice shelf in Arctic waters. Fonseca et al.

(2023) compared satellite imagery and AUV samples to map the front of chlorophyll
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a)
b)

c)

Figure 1: Examples of AUV exploration of fronts. a) Zhang et al. (2019) characterizing the Monterey
Bay front between water masses using temperature information processed from satellites and that
gathered by an AUV. b) Fossum et al. (2021) conducting frontal AUV sampling in water masses in
the Arctic. c) Fonseca et al. (2023) showing an AUV path zig-zagging the chlorophyll front in the
Baltic sea as extracted from satellite data.

in the Baltic sea. These studies attempt to find the gradient or derivative in the

ocean variable of interest. In doing so, the AUV reacts to data, but none of them

use spatio-temporal statistical models or approaches from spatial design, which would

likely have improved the mapping performance.

We next define the notation used in our statistical model and sampling design

approach. Let s = (se, sn, sd, t) be a point in space and time. Here, se, sn and sd

represent east, north and depth coordinates, respectively, while t > 0 is a temporal

index. A spatial operational domain is defined so that (se, sn, sd) 2 D ⇢ R3. The

spatio-temporal variable of interest is denoted x(s) 2 R. In our application this is

ocean salinity.

In this paper, we are primarily interested in detecting large derivatives or changes

in this spatio-temporal variable in the lateral plane close to the sea surface. In our

application this would indicate ocean front zones. We define the directional di↵erence
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from location s to s0 by

g(s, s0) =
x(s0)� x(s)

d(s, s0)
, (1)

where d(s, s0) is the Euclidean distance between the two locations. Letting this dis-

tance go to 0, we obtain the field derivative at s in the direction towards s0. In

practice, we instead consider the distance d(s, s0) as a tuning parameter that can be

specified in the context of the application and the operational constraints.

An observation made at space-time location s is denoted y(s). Because of sensor

noise and positioning error, this observation does not carry perfect information about

the salinity. Observations from a set of sampling points S = {s1, . . . , sN} are denoted

by y(S) = (y(s1), y(s2), ..., y(sN)). AUV data are gathered sequentially. At stage k,

the AUV gathers a batch of data size Nk, and we denote batch sampling locations

by Sk = {s(k)1 , . . . , s(k)Nk
} with associated data yk = {y(s(k)1 ), . . . , y(s(k)Nk

)}. This means

that we at stage k have measured at N1:k =
Pk

l=1 Nl points. We denote the set of

sampling locations by

S1:k = {S1,S2, . . . ,Sk�1,Sk}, k = 1, 2, . . . , (2)

with associated salinity measurements

y(S1:k) = y1:k =
�
y1,y2, . . . ,yk�1,yk

�
, k = 1, 2, . . . . (3)

At each stage k, the agent computes expected rewards for staying on the same

trajectory and for changing its path to another direction. Higher rewards are attained

for design directions that have large expected derivatives. Design paths form transects

consisting of M j
k new locations in a set Pj

k = {pj
k,l; j = 1, . . . , J, l = 1, . . . ,M j

k} with

single locations pj
k,l 2 D. For the number of directions J , we use a spider-leg formation

in the lateral domain. The number of transect points M
j
k is fixed at all stages and

for all designs, except at boundary locations. The spacing between single locations

along each design direction is also fixed, and it is determined by the agent�s speed
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and sampling frequency. In doing so, measurements and plan evaluations are easily

comparable.

Figure 2 shows the situation with an agent path consisting of 5 stages. At the

current location (blue circle), it makes a decision about where to go next for stage 6.

The agent is not constrained to travel the entire segment of length Mj. Instead, it

AUV start 
location

Current
location

AUV 
trajectory

Potential
AUV paths

Horizon

Step
length,
selected
path

Figure 2: Illustration of an AUV trajectory made up of segments over 5 earlier stages. At the current
location, the AUV will choose one of the 7 possible designs. The design selection criteria is expected
improvement (EI) for the salinity derivative.

conducts new design evaluations after moving one step-length down the best segment.

In this illustration, design 6 is selected and the agent moves a step-length in this

direction (marked by a star).

In summary, bringing the model and design choices back to the context of AUV

sampling, we assume that:

• The AUV moves significantly faster than the ocean phenomenon develops over

time, and this means that the AUV is able to detect changes in space. Hence

we focus on di↵erences in space, and not time.
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• Salinity changes are often most di�cult to characterize in the lateral domain,

so without loss of generality, we focus on di↵erences in the east, north plane,

assuming the AUV is at a fixed depth (set to 1 meter in the field deployment).

• The AUV is able to maintain a nearly constant velocity. Because the sensors

are sampling at a constant frequency, the relatively close locations s and s0 are

at the same distance during the operation.

Note that the suggested approach does not rely on the usual concepts of a prede-

fined waypoint graph or grid for the path-planning. Instead, data points and variables

are allocated to continuous space-time locations, and this occurs when the design cri-

terion is computed according to a spider leg design. Hence, the discretization occurs

only along transect lines, and it is formed during the mission, not before the deploy-

ment starts. One benefit of this approach is that the AUV maintains a model with

relatively few points compared to a waypoint graph, but we can still have a high level

of detail close to where we sample. In practice, one might miss the phenomenon by

placing a strict waypoint graph onboard the AUV model. Here, the AUV is more free

to follow where it is most interesting to sample.

3. Spatio-temporal Gaussian random fields

The agent has an onboard spatio-temporal model which is updated with the data

that is gathered. The model is also used to compute the expected rewards along

potential design trajectory and decisions for adaptive sampling. For ease of data as-

similation and real-time decision-making, a GRF is used onboard the agent. Notably,

derivatives or di↵erences are then also Gaussian distributed.

3.1. Gaussian random fields

A GRF is fully described by its mean µ(s) = E[x(s)], s 2 D⇥R+ and a covariance

function C(s, s0) = Cov (x(s), x(s0)), see e.g. Cressie and Wikle (2015). In our case
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study, the mean function is specified from physical oceanography modeling for the

domain of interest, which involves a spatio-temporally varying function in the initial

(prior) mean. The covariance function is specified from multiple ocean models as

well as previously acquired data from the domain of interest. For the space-time

covariance, we assume a separable model so that

C(s, s0) = �
2 exp

 
�
✓
d(s, s0)

�s

◆2
!
exp

 
�
✓
|t1 � t2|

�t

◆2
!
, (4)

and as we limit scope to a fixed operational depth, we do not incorporate any kind

spatial anisotropy which would be relevant to enhance smaller correlation in depth

than in the lateral domain.

For any set of N space-time locations S = {s1, s2, . . . , sN}, the random vector

xS = (x(s1), x(s2), . . . , x(sN)) is then Gaussian distributed with mean vector

µS = (µ(s1), µ(s2), . . . , µ(sN)), (5)

and a symmetric positive semi-definite covariance matrix

⌃S =

0

BBBBBB@

C(s1, s1) C(s1, s2) . . . C(s1, sN)

C(s2, s1) C(s2, s2) C(s2, sN)
...

. . .

C(sN , s1) C(sN , s2) C(sN , sN)

1

CCCCCCA
. (6)

In short notation, we write this as

xS ⇠ N (µS ,⌃S). (7)

3.2. Directional di↵erences and GRFs

Because g(s, s) in Equation (1) is a linear combination of two Gaussian distributed

variables, and hence g(s, s) is also Gaussian. In particular, we have mean

E[g(s, s0)] =
µ(s0)� µ(s)

d(s, s0)
, (8)
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and variance

Var (g(s, s0)) =
1

d(s, s0)2
(Var(x(s)) + Var(x(s0))� 2Cov(x(s), x(s0)))

=
1

d(s, s0)2
(C(s, s) + C(s0, s0)� 2C(s, s0)) . (9)

In doing so, one can further take the di↵erence between any pairs of variables

along a transect line in the spatial domain. Then the random vector of directional

di↵erences is multivariate Gaussian distributed.

When studying properties of such derivatives we can see one of the main benefits of

using a Gaussian covariance function. Figure 3 shows three di↵erent 1D GRF realiza-

tions, one using a Gaussian covariance function, one using an exponential covariance

function and one using a Matérn covariance function. For each of the covariance func-

tions the correlation at 300 is 0.05. The realization using the Gaussian covariance

function is the smoothest out of the three, and the gradients are also smooth. For the

exponential the derivatives are extremely large. This means that one should impose

a smooth correlation function when the goal is to search for hot-spots in gradients.

Hence, even though we regard more complicated spatial or spatio-temporal correla-

tion functions as promising models, such as the one with spatially varying anisotropy

by Berild and Fuglstad (2023) or the advection-di↵usion model of Foss et al. (2022)

that have been applied to coastal domain ocean modeling, we did not pursue complex

covariance models here.

3.3. Conditioning to in-situ observations

As the agent gathers data, it will update the on-board model. In doing so, it

needs a model for the data. The measurement model is here defined via

y(s) = x(s) + ✏(s) ✏(s) ⇠ N (0, ⌧ 2), (10)

where the errors at di↵erent locations are assumed to be independent. The Gaussian

assumption for the error terms crucially means that measurements are jointly Gaus-
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Figure 3: One realization using Gaussian, Matérn (smoothness ⌫ = 3/2) and exponential covariance
function. The Gaussian covariance function gives a much smoother realization and gradient. The
plotting scale for the gradients is truncated because the gradients for the exponential become ex-
tremely large.

sian distributed. Hence, given observations y1:k in Equation (3), we can compute the

conditional model using properties of the Gaussian distribution.

For any location set P 2 Pj
k+1 among all possible design sets at stage k + 1,

we denote the associated variable xP . Given the currently available data, the mean

vector and covariance matrix are computed as follows:

mP = µP +⌃P,S1:k
(⌃S1:k

+ T S1:k
)�1(yS1:k

� µS1:k
), (11)

 P = ⌃P �⌃P,S1:k
(⌃S1:k

+ T S1:k
)�1⌃T

P,S1:k
, (12)

where T S1:k
= ⌧

2IN1:k
is the measurement noise covariance matrix and ⌃P,S1:k

is the

cross-covariance between variables at locations P and those variables at former data
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locations S1:k.

In particular, at any two points s and s0, the variable (x(s), x(s0)) has a joint

bivariate Gaussian distribution conditional on the observations y1:k. Their scaled

di↵erence is then Gaussian distributed, similar to what we have in Equation (8)-(9),

and the same holds for variables along a transect.

3.4. E�cient matrix calculations

Matrix inversion or factorization can take a considerable amount of time when the

number of data increases. Say, in Equation (11) and (12), one must invert the matrix

⌃S1:k
+T S1:k

of dimension N1:k⇥N1:k, which is of order O(N3
1:k) calculations, and could

quickly stall the agents�s computing performance. We utilize the structure with batch

data collection, and then rely on a block version of the Sherman-Woodbury-Morrison

formula for e�cient matrix factorization (Petersen et al., 2008). In particular, we

have that
2

4 ⌃S1:k
+ T 1:k ⌃S1:k,P

⌃P,S1:k
⌃P

3

5
�1

=

2

4 B �A⌃S1:k,PC

�C⌃P,S1:k
A C�1

3

5 , (13)

where A = [⌃S1:k
+ T 1:k]�1 is assumed to be available from the previous stage, and

B = A+A⌃S1:k,PC
�1⌃P,S1:k

A, C = ⌃P �⌃P,S1:k
A⌃S1:k,P .

This calculation is used both to evaluate many designs {Pj
k+1}j=1,2,...,J and to update

the mean and covariance in the data assimilation step. The required inversion is for C

is of moderate size as it only involves the variables at the new batch or the potential

transect locations.

This trick in Equation (13) allows e�cient computing onboard an agent. However,

over time the mere size of the covariance matrix leads to evaluation challenges. To

approach this challenge further, we implement an on-board algorithm that reduces

the data size over space-time by thinning data from far away/long ago. The agent
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needs to make a decision in a reasonable amount of time, therefore we set a threshold

time for how long the data assimilation and prediction stage should take. If the total

time is larger than this threshold time then we thin the data points in memory. This

will remove half the points in memory. The points that are thinned are mostly points

that are far away in time because these points have a low correlation with the points

we want to predict. After the thinning the inverse must be re-computed without

using the recursive formula in Equation (13), but with the reduced number of data

points this will take a shorter time than the threshold time.

4. Adaptive sampling design

For adaptive selection of designs as illustrated by the spider leg design in Figure

2, this shows the agent at some stage k deciding to take one of 7 possible paths. In

order to decide what path to take one needs to have an objective function. The agent

will then make an optimal decision (direction) from the highest expected reward. We

outline expected improvement (EI) in directional di↵erences as our reward function.

The onboard algorithm is summarized with the GRF and EI calculations, and involves

some tuning parameters that we have tailored for the application.

4.1. Expected improvement for spider legs transects

The spider leg designs shown in Figure 2 illustrate potential sampling designs

for the agent at the current stage. For each of these transects, we calculate the

conditional distribution, and base the path selection on the optimal expected reward.

The expectation for a particular set of design points P is based on the conditional

mean and covariance in Equation (11)-(12). In addition, we are mainly interested in

the directional di↵erences, see Equation (8)-(9).

Let gmax denote the largest absolute directional di↵erence observed thus far in

the sampling. We first study the probability of finding a larger directional gradient

than this gmax along a transect. This probability of improvement (PoI) is chance of
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having a di↵erence that is larger than gmax. Note that the maximum di↵erence is in

the observations and not in the true field. Nevertheless, we compare designs in the

variables of interest because it is comparable between the di↵erent design transects at

this stage. For a transect path P = {p1,p2, . . .pn}, two-neigbour locations define the

di↵erence. The di↵erence is Gaussian distributed as in Equation (8)-(9). To simplify

the notation, we let the conditional distribution of the di↵erence gi = g(pi,pi+1) ⇠

N (⇣i, ⌘2i ), given the available data y1:k. Then the probability that |g(pi,pi+1)| is

larger that gmax is

PoI = P (|g(pi,pi+1)| � gmax) = 1� �

✓
gmax � ⇣i

⌘i

◆
+ �

✓
�gmax � ⇣i

⌘i

◆
. (14)

Now we compute this for all two-neighbor locations along a transect and compare

the di↵erent transects to create a decision rule for which direction the agent should

choose. The best transect according to the largest PoI is

Best directionProb = argmax
j2{1,2,...,J}

max
pi2P

j
k

P (|g(pi,pi+1)| � gmax). (15)

Note that even if gmax is the highest derivative in the field the PoI still gives a value

larger than zero along each transect provided that the variance is larger than zero.

An alternative approach that accounts for the expected gain in the di↵erence is

available via the EI which has been used much in for instance the design of complex

optimization problems (Zhan and Xing, 2020). The EI has a closed form solution for

Gaussian distributions, see e.g. Gramacy and Apley (2015). Let

I(gi) = max(|gi|� gmax, 0), (16)

then the expected value of this improvement becomes

E[I(gi)] = (⇣i � gmax)

✓
1� �

✓
gmax � ⇣i

⌘i

◆◆
+ ⌘i�

✓
gmax � ⇣i

⌘i

◆

+ (�⇣i � gmax)�

✓
�gmax � ⇣i

⌘i

◆
+ ⌘i�

✓
�gmax � ⇣i

⌘i

◆
. (17)
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Now we compute the EI for all two-neighbor locations along a transect and com-

pare the di↵erent transects to create a decision rule for which direction the agent

should choose. The best transect according to the largest EI is then

Best directionEI = argmax
j2{1,2,...,J}

max
pi2P

j
k

E(I(gi)). (18)

Later in Section 5 we will compare PoI against EI in a simulation study.

4.2. Algorithm

Along with the statistical model and the objective functions some other details

are needed to fully describe the algorithm. The algorithm works in a sequential loop;

sampling data, data assimilation, predicting gradients along possible paths and then

use the objective function to choose one of these paths. The algorithm using EI is

shown in Algorithm 1. When the AUV arrives at a waypoint (WP) it first assimilates

the new data into the model (Section 3), then it finds 7 possible new paths it can

take as defined by the spider-web legs. For each of these paths it predicts the salinity

changes for several points along this path. It uses this prediction and EI (described

in Section 4) to choose which transect is the best. The last step is to move along

this transect, and it samples salinity data with a frequency of 1 Hz. The AUV does

not move all the way until the end of the predicted transect, rather it uses a longer

horizon and then it moves a shorter step-length. This is illustrated by the star in

Figure 2. The reason for predicting far into the future and only moving a short path is

that we can react quickly to the new measurements while still looking for derivatives

far away.

Figure 4 illustrates some parts of the algorithm from the simulation study. In

the figure the AUV has sampled for 20 steps and is making a decision on where to

move next. There are 8 candidate transects for the AUV to move in. The next WP

is set back towards the where the salinity change is large. Along the observed path
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the conditional mean is closer to the true field. The conditional mean for the whole

field is not computed during the mission, but here it is included only for illustration.

The algorithm does require that we choose a step-length, horizon and a number of

transects that fit the application.

Algorithm 1 shows the main steps in the sequential procedure. The AUV is guided

by setting target waypoints (WPk) for stage k.

Algorithm 1 Sampling for derivatives.

Require:
µ(s), C(s, s0), operational domain D.
S0 = ;, y0 = ;, gmax = 0, WP0 = sstart.
repeat For each time k = 1, . . .:

Define spider legs Pj
k for j = 1, . . . , J transects.

Define WPk�1 = WPk and EImax = 0
repeat For each spider-leg Pj

k, j = 1, . . . , J
Predict mPj

k
and  Pj

k
from S1:k�1 and y1:k�1 . Eq. (11)-(12).

Compute EIjk = maxpi2P
j
k
E[I(gi)] . Eq. (17).

if EIj > EImax then
EImax = EIjk
Set WPk one step-length down Pj

k

end if
until
AUV moves from WPk�1 to WPk, and it gathers data values yk at points Sk

Update y1:k = (y1:k�1,yk) and S1:k = {S1:k�1,Sk}
Update maximum derivative gmax = max(gmax, gk)
if Update time > max update time then

Points in memory are thinned.
end if

until

5. Simulation study

Before deploying the AUV in the ocean we want to test di↵erent strategies in a

simulated case. Here we generate a replicate study where we know the true salinity

field. In this section we will go over the setup of the simulation study, the di↵erent
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Figure 4: Illustration of spider leg designs over; (a) one realization of the true salinity field, (b) the
conditional mean salinity field and (c) the prior mean field. All three plots show the observed path
of the AUV in black. The conditional mean changes compared with the prior mean close to the
observed path, and becomes closer to the true field. The conditional mean for the full field is only
included for illustration here. The possible paths are shown in dark green and the best path in light
green. The next waypoint is played one step-length down the best path.

metrics used for evaluating the di↵erent strategies, and the conclusions that become

recommendations for the real-world setup.

5.1. Simulation setup

For the simulation study we use a setup with a square 2D field as shown in Figure

4, the field is of size 1km⇥1km. For the simulation we need to have a true-field and

a prior mean, both fields are static. The prior should capture some characteristics of

the true field, but will not be completely accurate. For all the tests we will run 100

replicates, where each replicate gives a unique realization of the true field.

The starting location for the AUV is di↵erent for each replicate and will always

be several step-lengths away from the interesting high gradient regions. The speed of

the AUV is set to be 1 m/s with a sampling frequency of 1 Hz. For all experiments

the AUV will run for a total of 5000 m. The step-length for the AUV is set to be 100

m, and the horizon is 500 m.

5.2. Evaluation metrics

The evaluation metrics look at how large the largest gradient observed is and how

many important regions the AUV is able to visit.
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One way to check if one strategy is better than another is to see the absolute

gradient gmax measured after sampling for a time t. Ideally we would want the gmax

to be as large as possible for each stage k. We will use this to ascertain how well a

strategy is performing. We can define gmax(t) as

gmax(t) = max
ti<t

|g(si, si�1)|. (19)

This metric will be a good indicator of whether we have found some large gradient

during the mission. But the metric will not tell us how well the AUV is able to explore

gradients in di↵erent regions of the field. For this purpose we need another evaluation

metric. The AUV should be able to explore several regions where the gradient is high.

We refer to these regions containing large gradients by important regions. One aims to

visit many important regions during the mission. We split the region D into N = 400

equal regions, and then we look at the 20 % regions with the largest absolute gradients.

In Figure 5 we illustrate the important regions (marked with red in the right plot) for

Figure 5: One realization showing absolute gradient (left plot) and the corresponding important
regions (right plot). The corresponding regions are the 20 % regions with the highest gradients.

one replicate realization of the field. These important regions are di↵erent for each
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replicate, but remain static for the whole simulation time. It is considered better if

the AUV visits more of these regions. Hence, we construct a performance measure

by counting how many of these regions the AUV visits on its exploration of the field.

We count this over distance traveled (which is proportional to time).

5.3. Simulations results

We have proposed two di↵erent objective functions that can be used in looking for

large gradients; PoI (14) and EI (17). In addition to these, we compare performance

with 3 other strategies; one goes in the direction with the largest expected gradient,

one goes to the largest variance in the derivatives and the last is a random walk. All

strategies use the same algorithm as described in Algorithm 1 with the statistical

model described in Section 3, the only di↵erence is that the objective function is

swapped.

The results for running simulations with these 5 di↵erent objective functions using

a step-length of 100 m and a horizon of 500 m are shown in Figure 6. We first study

the AUV’s ability to detect large directional derivatives. In Figure 6 Left) we show

the maximum derivative discovered by each of the five criteria over time. The thick

line is the mean over the 100 replicates while the shaded region represents 2 standard

errors in this mean. We clearly see that the PoI and EI work better than just looking

for the max gradient, the reason for this is that it might get stuck in a local maxima,

and it will not move away. This plot shows that EI does the best out of the five

objective functions, although the gap between PoI and EI closes towards the end of

the simulation. The random strategy and the one going for largest variance in the

field are not performing so well, compared with the others.

In Figure 6 right) we observe how many important regions the AUV has visited

after running a given distance. The thick lines indicate the mean number of regions

visited for a given distance, and the shaded region represents 2 standard errors in
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this mean. The ranking of the di↵erent objective functions is the same as in the

left plot. The relative performances can be viewed a bit di↵erently. Just looking

for the maximum gradients does not really explore the field all that well. Rather, it

can get stuck in local minima. Focusing on the maximum variance in the gradients,

will eventually sample in the important regions, but it spends too much time in the

exploration. Lastly, the gap between PoI and EI does not close down towards the end

here. From this test, the conclusion is that EI works best overall.

(a) (b)

Figure 6: Compare the performance of di↵erent objective functions with 100 realizations for each.
(a) increase in mean gmax and (b) increase in important regions visited. Both (a) and (b) show that
expected improvement works best, with probability of improvement following.

To inspect further we take a look at worst-case and best-case outcomes of the

simulations to see how they di↵er for the di↵erent objective functions. This can be

important because it can be di�cult to conduct many experiments in the ocean.

Table 1 shows the 5th, 50th and 95th percentiles for the two metrics at the end of

the simulation. For the 95th and 50th percentile both EI and PoI have a similar

performance, but for the 5th percentile the di↵erence is large. In the 5th percentile
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EI is able to sample in 39 (out of 80) important regions, while PoI is only able to

sample in 19. This means that EI is much better at exploring the important parts of

the field in the worst cases.

gmax Important Regions

Objective function 5 % 50% 95 % 5 % 50% 95 %

EI 1.52 1.81 2.13 39 47 56
PoI 1.49 1.83 2.18 19 45 55

Max Gradient 0.61 1.78 2.15 0 33 47
Max Variance 0.87 1.50 1.94 2 14.5 31

Random 0.61 0.81 1.54 0 1.0 13

Table 1: Percentile table for the di↵erent objective functions with the two di↵erent evaluation
metrics. These percentiles are calculated at the end of the simulations.

Regarding algorithmic parameter tuning we conducted some other tests to eval-

uate other aspects of the algorithm. One thing to test was how the horizon a↵ected

the performance, not surprisingly the longer the horizon the better. The main reason

to limit the horizon is the computational cost for each iteration. It was also impor-

tant that the step length was not too long as the AUV tends to be overstepping the

phenomena in that case. It must travel the long way back, and this wastes time.

6. Case study

The suggested algorithm was tested in the Trondheim fjord on June 22. 2023. The

AUV ran the adaptive mission for 2 hrs 10 min starting at 11:00 am. We first describe

the parameter specification in the spatio-temporal model using numerical ocean data.

We then describe the AUV setup and finally show results of the deployment.

6.1. Prior model specification based on SINMOD

We have access to a numerical ocean model for the fjord called SINMOD developed

by SINTEF Ocean (Slagstad and McClimans, 2005). In out case the model simulates

21



Figure 7: SINMOD simulation for the surface level of the river plume in the Trondheim fjord. Left
plot shows the salinity level and the right shows the absolute salinity gradient. Left plot shows that
the river has 4 outlets. The right plot shows clear river fronts in dark red. The tide is going from
high tide to low tide.

several features of the fjord like currents, temperature, and salinity, but we are mostly

interested in the salinity and the spatial salinity changes. Figure 7 shows a snapshot

from a simulation, the left plot shows the salinity level and the right plot shows the

absolute gradient. At this time in the simulation the water level goes from high tide

to low tide1 The dark red regions in the right plot show the river front. This is the

region that is most interesting to sample.

These SINMOD simulations are computationally heavy to run. Therefore we use

simulations done some time before the mission. We can use the outcome of the

simulation as the prior mean for the surrogate GRF model of the salinity field.

The spatial and temporal covariance parameters �t and �s, and the sill � in Equa-

tion (4) are estimated from a variogram analysis of SINMOD data. The parameters

are �t = 5400s, �s = 530m and � = 2. The measurement noise for the salinity sensor

is estimated from previous AUV deployments in the same location. The variance for

1Tide data gathered from https://www.kartverket.no/
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the di↵erence between two measurements is

Var[y(si)� y(si�1)] = Var[x(si)� x(si�1)] + Var[✏(si)� ✏(si�1)].

The salinity sensor has a frequency of 1 Hz and the AUV maintains a speed of

1.6 m/s, therefore two consecutive measurements are done within 1.6m and 1s of

each-other. Large depth changes are also filtered out, because that salinity change

in depth is much larger. Then we assume that Cov(x(si), x(si�1)) ⇡ �
2, therefore

Var[x(si)� x(si�1)] ⇡ 0. Then

Var[y(si)� y(si�1)] ⇡ Var[✏(si)� ✏(si�1)] = 2⌧ 2. (20)

We can also get that E[y(si)� y(si�1)] ⇡ 0 for such close measurements. This means

that we can estimate ⌧ by using

⌧̂
2 =

1

2(n� 1)

n�1X

i=1

(y(si)� y(si�1))
2
. (21)

We get ⌧ = 0.27.

The algorithm contains other tuning parameters, the step-length to be 250 m, and

the prediction horizon to be 1000 m. The AUV will evaluate at most 7 transects, and

the maximum planning time is set at 5 s. The target depth layer for the deployment

is set at 1 m.

6.2. AUV Setup

In this field experiment, a Light Autonomous Underwater Vehicle (LAUV) from

NTNU’s Applied Underwater Robotics Laboratory (AURLab) was employed. Pre-

launch protocol consisted of standard remote control verification (Figure 8).

The primary computational unit of the LAUV is the NVIDIA Jetson TX2. The

vehicle’s onboard algorithmic capabilities are augmented through the integration of

an adaptive sampling framework (Mo-Bjørkelund et al., 2020), which mediates mes-

sage exchange between the Robot Operating Systems (ROS) (Quigley, 2009) and

23



Figure 8: The AUV named Thor is heading towards the river mouth area where potential high
gradient might exist.

DUNE (DUNE: Unified Navigation Environment(Pinto et al., 2013)). Communica-

tion among the vehicle’s components utilizes the Inter-Module Communication (IMC)

protocol (LSTS, 2022). The integration follows the scheme outlined in Ge et al.

(2023), providing additional insights into the ROS-IMC bridge.

The AUV maneuvered at a depth of 1 m, where the salinity variance is large.

Also, the AUV is less prone to colliding with small boats when keeping this depth,

so it induces less risk. The AUV is programmed to try to maintain a speed of 1.6

m/s, which is much faster than the dynamics of the plume phenomenon observed

in the SINMOD results. It was configured to re-surface at 10-minute intervals for

navigational adjustments.

6.3. Results

The trajectory made by the AUV is shown in Figure 9. The left plot shows

the measured salinity along the path, the middle plot shows the absolute directional
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(a) (b) (c)

Figure 9: (a) Observed salinity along the AUV trajectory. (b) The observed absolute gradient along
the trajectory. (c) The mission accomplished in time steps. The AUV takes 39 steps, each step is
around 250m.

derivatives, and the right plot shows where the AUV is at any point in the mission.

We notice that the AUV spends most of the time close to the river outlet, this is

where the salinity change is expected to be the largest. The AUV measures the

largest salinity changes in the south-west region of the map, this is around mid-way

through the mission.

How the maximum gradient changes over time is shown in Figure 10. This display

shows the increase in gmax, the observed absolute gradient and the predicted absolute

gradients. There are four distinct increases in the gmax, in the start, 0.2 hours, 0.75

hours and 1.1 hours into the mission. At around 1 hour to 1.5 hours into the mission

the AUV samples a region with a lot of salinity change, this is where the largest

gradient is found. After this the AUV does not measure any very large salinity

gradients. It is also interesting to look at what gradients the AUV predicts during

the mission. The figure shows that when the AUV observes a large gradient, it also

predicted a large gradient, however the prediction is often much larger. There are

also some points where the model predicts a large gradient, but no large gradient is

observed. This means that the model does perform one of the most important tasks

which is to guide the agent towards large salinity changes
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Figure 10: Increase in maximum derivative for the duration of the mission. The display also shows
the measured absolute derivative during the mission and the predicted derivative.

During the mission the AUV takes 39 steps. In Figure 11 the value for the EI for

each of the transects for a given step. The EI usually starts out with large values while

the as gmax is low, this can be seen in step 4. Towards the end the EI drops closer

to zero, the AUV will start to explore di↵erent regions where it does not necessarily

predict that the gradient will be large, but rather that the variance is large.

We next study how predictions for the gradients correlate with the measured

gradients. For each step k we predict the salinity distribution along the path Pk, but

because of currents and other navigational errors the points we measure Sk will not

be exactly the same, and it can be a large di↵erence. We use the model estimated

in step k � 1 to predict the points Sk that will be measured in step k. Then we look

at how well the model can predict the next transect, these contain 160 - 300 data

points. The results from this are shown in Figure 12. There is a correlation between

the predicted gradient and the observed gradient. Ideally we would like the values to
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Figure 11: Expected improvement for each step of the mission. The red line represents the highest
expected improvement, and this will be the direction the AUV moves in. The blue dots are the
expected improvement values for the other possible directions.

lay along the 1:1 line, but the model tends to predict larger gradients than what is

observed. This might be because the variance in the salinity for the prior model is

larger than what is observed, leading the model to predict larger gradients.

In summary, the AUV was able to sample and measure salinity changes in the river

plume. EI worked rather well at finding large gradients and for exploring di↵erent

parts of the river plume. The onboard model gives a reasonable prediction for the

gradients that are going to be observed, but the gradients predicted by the model are

larger than what is observed.

7. Closing remarks

We have presented an approach for constructing sampling designs by an agent

moving in a spatio-temporal domain. The goal is to provide valuable designs, which

in our case involves locating regions that exhibit large spatial changes. For our ap-

plication in oceanography, such locations could indicate transitional zones in water

masses which are potentially indicative of much biological activity. The approach for

adaptive sampling is based on a Gaussian random field model, and the directional
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Figure 12: Correlation between the predicted and observed salinity gradients. There is a correlation
between the predicted and the observed gradients, but the model predicts larger gradients than what
is observed.

changes in the field are then also Gaussian distributed. By using a Gaussian model,

one facilitates e�cient calculations on the agent’s limited computing resources. With

the sampling design setting of a moving agent, we suggest a spider leg design at each

stage of the adaptive operation, and we use expected improvement in directional dif-

ferences to guide the adaptive sampling. There is hence no operational grid such as

a waypoint graph. Instead, the prior model assumption is e↵ectively updated with

data at each stage, limited only by the size of the data vector. In long-term opera-

tions, storage problems can occur, and we suggest to fade distant data (in space and

time). This allows long-time operations in large spatial domains. We demonstrate

the merits of the approach in a simulation study and in a field deployment running

an autonomous underwater vehicle in a Norwegian fjord.
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The field of robotics and embedded computing is growing quickly with the tech-

nological advances in small-size computing units and the current societal focus on

AI. Statistics should play a substantial role in the development of new algorithms

in this field. We have shown one example of added value in using spatial statistics

and spatial design for underwater robotics. There are plenty of other applications

where statistics can contribute. In our experience working on this, the engineers see

much merit in more formalized statistical methodologies. They are however striving

for e�ciency and real-time operation, so rather than overly complex statistical mod-

els or methods, there seems to be a need for fast and robust systems that still have

reasonably good statistical properties.

For future work, we want to investigate more nuanced algorithms where one can

tune the distance and design parameters to automatically capture the right scales on

the fly. We also aim to look at multivariate fields which requires a re-formulation of the

derivatives used here. Rather than just derivatives, one is often interested in volumes

(spatial integrals). In oceanographic applications volumes of relevance include high

biomass, oxygen production, net primary production, etc., see e.g. Wu et al. (2022).

Integral expressions are linear operators and it is hence Gaussian distributed if the

variable of interest is Gaussian. Many of the methods described in this paper can

hence be used for such applications. We used a relatively standard spatio-temporal

model here. It can be extended to more complex temporal dynamics as well as non-

stationary spatial elements. Staying within the Gaussian model class, we can for

instance build on advection-di↵usion processes (Sigrist et al., 2015; Foss et al., 2022)

or use links to stochastic partial di↵erential equations in the spatial domain (Berild

and Fuglstad, 2023).
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1. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have been used
extensively for the investigation of di↵erent oceanographic
phenomena (Hwang et al., 2019). AUV adaptive sam-
pling has gained more interest in oceanographic survey-
ing (Zhang et al., 2020; Fossum et al., 2019). Plume
and ocean front investigation with AUVs has formed sce-
narios to validate adaptive sampling methods and algo-
rithms (Fossum et al., 2021; Berget et al., 2018; Fossum
et al., 2018). In using only one AUV to conduct the
adaptive sampling, dominating methods can be grouped
into either myopic (greedy) or non-myopic approaches.
Myopic schemes guide the agent (AUV) towards the most
informative location selected from a subset of candidate
locations within the myopic neighborhood radius (Fossum
et al., 2021; Berget et al., 2018). The greediness of such
algorithms can make it too short-sighted, and it can fail
at revealing other interesting areas. Non-myopic strategies
can alleviate such challenges by expanding its horizon to
a longer-stage (Bai et al., 2021). Xiao and Wachs (2022)
show the e↵ectiveness of such algorithms in a small-scale
case where the shapes of the unknown objects are revealed
by a robot arm, using global kriging variance reduction
as the main criterion. However, the computational cost
associated with such non-myopic algorithms is usually
very high, and it might not apply to larger-scale onboard
computation in the ocean. Suh et al. (2017) provide an
idea of using cost-aware RRT* to generate sampling paths
using cross-entropy as the cost function.

In our case, we want the agent to continuously determine
a path for collecting valuable information from the salinity

field to reveal the river plume front, with the goal being
to map unknown ocean properties while considering the
remaining distance budget and avoiding the potential risks
of collision with mapped obstacles. Going beyond common
pre-scripted planners and greedy strategies, we propose
a long-horizon path planner to solve this problem by
constructing a cost valley built on multiple penalty and
reward fields.

In Section 2 we describe the background and the simula-
tion case which motivates the study of long-horizon path
planning for sampling the river plume front. In Section 3
we outline our modeling approach and the statistical meth-
ods for informative sampling with operational constraints.
In Section 4 we present the algorithms associated with
long-horizon path planning. In Section 5 we show results
from a simulation study comparing standard pre-scripted
lawnmower and myopic (greedy) strategies. In Section 6
we conclude and point to future research directions.

2. PROBLEM STATEMENT

We consider the challenge of AUV adaptive sampling to
map a spatial salinity field to uncover the river plume
front in a specified domain. The focus is on the ability
of the AUV to conduct adaptive sampling when there are
constraints at the start and end point of the deployment,
limited distance budget for the mission, and static obsta-
cles in the field.

In this simulated case, we consider a two-dimensional do-
main. The variable of interest is salinity, which is assumed
to vary smoothly in the domain. Fig. 1 illustrates a syn-

Keywords: Path Planning, Autonomous underwater vehicles, Gaussian Random Field, and
adaptive sampling
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Fig. 1. Exemplary true salinity field on the unit square
domain. The starting point is (0, 0) and the endpoint
is (0, 1). The obstacle is in the center, marked by red
dashed lines.

thetic case for the unit square domain. Here, the surface
salinity field is generated from a Gaussian random field
(GRF) model. In this salinity realization, there is a very
low salinity region to the east and also some low salinity
values to the north. In a practical case, such regions could
represent water masses from river plumes. The red polygon
inside the field shows an obstacle that might represent an
island. The agent is deployed at the red dot in the south-
west corner (coordinates (0, 0)), and one must retrieve
the agent after a certain time at the black star in the
north-west corner (coordinate (0, 1)). The perimeter of the
domain is 4 units, and the distance budget for the AUV is
set to be 5 units. To achieve its task, the agent needs to
conduct adaptive path-planning and make sure that it is
maximizing information-gathering objectives while getting
back to the desired destination in time and avoiding the
collision.

3. STATISTICAL MODELS AND METHODS FOR
AUV SAMPLING

3.1 On-board computing with GPs

We denote the salinity variable by ⇠u, with spatial variable
u 2 M ⇢ R2, where M denotes the domain of interest.
We assume that the salinity field is represented by a GRF.
Similar assumptions of Gaussianity on salinity variables
have been used in e.g. Das et al. (2013) and Binney
et al. (2010). The initial specification then includes the
estimation of underlying trends, variability, and spatial
dependence. We assume that they can be extracted from
ocean model data (Slagstad and McClimans, 2005).

The GRF modeling assumptions enable fast onboard
data assimilation and AUV adaptive sampling e↵orts.
For onboard implementation and computing, the domain
is M which is discretized to a set of n grid locations;
{u1, . . . ,un}. The prior GRF model at these grid locations
is denoted by

⇠ = (⇠u1 , . . . , ⇠un)T , ⇠ ⇠ N(µ,⌃), (1)

with mean vector µ and covariance matrix ⌃. We assume
a Matern correlation function so that ⌃(i, i0) = �2(1 +
�h(i, i0)) exp(��h(i, i0)), with variance �2, correlation de-

cay parameter � and Euclidean distance h(i, i0) between
sites ui and ui0 .

The measurement yj at each stage j = 1, . . . , Nsteps is
modeled by

yj |⇠ ⇠ N(fT
j ⇠, r

2), (2)

where the vector f j defines the sampling indices at this
stage of operation and r is the salinity measurement noise
standard deviation. The sampling design Dj at this stage
j, say directions north, east, west, or south, determines the
0 and 1 structure in vector f j because it directly defines
the measurement location. This aspect will be important
for design evaluation in what follows.

Starting with m0 = µ and S0 = ⌃, Bayes’ rule is used
to achieve data assimilation at stages j = 1, . . . , Nsteps.
This gives the updated Gaussian model with mean and
variance given by

Gj = Sj�1f j(f
T
j Sj�1f j + r2)�1

mj = mj�1 + Gj(yj � fT
j mj�1)

Sj = Sj�1 �Gjf
T
j Sj�1.

(3)

3.2 Information criterion for sampling

Based on our problem statement in Section 2, we have cho-
sen to use numerous information criteria in the objective
function which determines the AUV sampling design. The
overall function is defined by a sum of normalized versions
of the following criteria that we describe next:

Integrated variance reduction (IVR) uses the latter
part of the posterior covariance calculation in (3). As an
information criterion, the goal now is to provide maximum
reduction of the marginal variances at all spatial locations
in the grid, see also Binney et al. (2010) and Fossum
et al. (2018). For a particular AUV sampling design Dj ,
defined via the sampling design vector f , the variance
reductions at this stage are given by the diagonal entries
of Rj = Sj�1f j(f

T
j Sj�1f j + r2)�1fT

j Sj�1. The sum of
these represents an information measure.

Expected integrated Bernoulli variance reduction
(EIBV) uses the classification of salinity above and below
a threshold t according to an excursion set ES = {u 2
M : ⇠u  t}, and the goal is to increase the classification
accuracy of salinity levels according to this threshold.
The Bernoulli variance (BV) at location u is pu(1 � pu),
pu = P (⇠u  t), which we aim to reduce by the data
gathering. The goal of a sampling design for data yi is then
to minimize the expected spatially integrated Bernoulli
variance, and for the Gaussian model, there is a closed-
form solution (Fossum et al., 2021).

Obstacle avoidance ensures that the AUV does not
crash into land or islands. There is an infinity cost penalty
if the AUV runs into an obstacle. In practice, a finite cost
penalty can be applied to account for uncertainty.

Directional change sets a penalty for sharp AUV turns.
Beyond the 90o limit, there is an increasing penalty for
high turning angles, so only very rarely (in situations with
conflicting objectives), will we see abrupt angle changes in
the AUV path.
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Budget limitations include constraints that make sure
that the AUV gets to its destination in time. The budget
penalty will start when the mission approaches the end,
and form an elliptical region away from the current AUV
location towards its destination. There is infinity loss
outside this region. The cost can be finite in practice as
mentioned above.

The objective function guiding the AUV sampling is com-
posed of all these measures. In doing so, we aim to balance
exploration for uncertainty and salinity boundaries with
operational constraints for the vehicle. At each stage j =
1, . . . , Nsteps, the AUV updates its calculation of a Cost
Valley based on evaluating all these criteria for feasible
designs. The results are used to compare designs and for
selecting the optimal sampling design Dj at the current
stage. The procedures involving model updating, design
criterion calculation, and data gathering are summarized
in Algorithm 1.

Algorithm 1 Informative sampling algorithm

Require: Initial mean m0 and covariance S0

Set start waypoint D1 = {u1}
Y0 = ;
j = 1
while j  Nsteps do

Act :
Go to waypoint Dj .

Sense :
Gather data yj . Yj = (Yj�1, yj).
Gj = Sj�1f j(f

T
j Sj�1f j + Rj)�1

mj = mj�1 + Gj(yj � fT
j mj�1)

Sj = Sj�1 �Gjf
T
j Sj�1

j = j + 1
Plan :
Budget = Budget - ||Dj �Dj�1||2
CV = updateCostValley(mj ,Sj ,Budget,uj ,uj�1)
uj = argminu2M(CV)
T j = RRT*(CV,Dj�1,uj)
Dj = T j1

end while

4. PATH PLANNER

We design a path planning algorithm to find the cheapest
path through a cost valley. This path should take the
AUV from the current location to the lowest point in
the cost valley. The cost valley is defined by combining
information criteria, direction criteria, and budget limita-
tions. The cost valley is updated with data as the AUV
gathers salinity information from the field. The cost valley
philosophy relies on a long-horizon path plan, which is
not only considering the next step but anticipating future
steps.

We build such a cost valley based on the overlay of five
di↵erent information criteria. The weights among them
are equal, but before merging them, all the costs are
normalized to be within range [0, 1], except those costs
which are 1. The RRT* path planner, see e.g. Karaman
and Frazzoli (2011) and Hollinger and Sukhatme (2014),
is used to determine the optimal least-cost path from
the current AUV location to the end destination. From

this calculation, the agent selects the next optimal design
location. It measures the salinity yj at this design location
and the entire GRF model is updated. This means that
the cost valley is also updated, and hence the new starting
location will be fed to the RRT* path planner.

The building blocks of the core algorithm are presented in
Algorithm 2-8.

Algorithm 2 RRT*, called by Algorithm 1

Require: CV,Dj�1,uj

for k 2 1 . . .K do
Generate random location urand within constraints.
unearest  Nearest(G = (V,E),urand)
unew  Steer(unearest,urand)
if ObtacleFree(unearest,unew) then

Unear  Near(G = (V,E),unew, R)
Add new node: V ! V [ {unew}
umin  unearest

cmin  getPathCost(CV,umin,unew)
end if
for unear 2 Unear do

cnear  getPathCost(CV,unear,unew)
if cnear < cmin then

umin  unear

cmin  cnear
end if

end for
Add new edge: E  E [ {(umin,unew))}
for unear 2 Unear do

ctemp  getPathCost(CV,unew,unear)
if ctemp < cnear then

cnear  ctemp

uparent  Parent(unear)
E  (E\{(uparent,unear)})[{(unew,unear)})

end if
end for
if isArrived then

Parent(uj) unew

end if
end for
T = []
while Parent(uk)! = ; do

T .append(Parent(uk))
uk = Parent(uk)

end while
return T

Algorithm 3 getPathCost, called by Algorithm 2

Require: CV,u1,u2

Cost1 = CV(u1)
Cost2 = CV(u2)
Costpath = Cost(u1)+||u1�u2||2+(Cost1+Cost2)/2·
||u1 � u2||2

5. SIMULATION RESULTS

To present the performance of the algorithm, we dis-
cuss the step-wise behavior of the algorithm to better
demonstrate the capability of achieving the information-
gathering goal while keeping an eye on the remaining
distance budget and avoiding obstacles throughout the
entire process.

Algorithm 4 updateCostValley, called by Algorithm 1

Require: mj ,Sj ,Budget,uj ,uj�1

CostEI = getEIField(mj ,Sj)
CostBudget = getBudgetField(Budget,uj)
CostObstacle = getObstacleField
CostDirection = getDirectionalField(uj ,uj�1)
CostValley =

P
CostEV,Budget,Obstacle,Direction

return CostValley

Algorithm 5 getEIField, called by Algorithm 4

Require: mj ,Sj

EIBV = 0n⇥1

IVR = 0n⇥1

for i 2 1 . . . n do
f j = 0n⇥1, and f j [i] = 1

Rj = Sj�1f j(f
T
j Sj�1f j + r2)�1fT

j Sj�1

IVR[i] =
Pn

i=1
diag(Rj)

EIBV[i] =
Pn

i=1
�2

✓
t
�t

�
;


mj�1(i)
�mj�1(i)

�
,W j(i, i)

◆
,

where, W j(i, i) =


T (i, i) �Rj(i, i)

�Rj(i, i) T (i, i)

�

given, T (i, i) = Sj�1(i, i) + Rj(i, i)
end for
CostEI = norm(EIBV) + 1 � norm(IVR)
return CostEI

Algorithm 6 getBudgetField, called by Algorithm 4

Require: Budget,uj

Form a budget ellipse with a, b, c
a = Budget/2
c = ||ugoal � uj ||2/2
b =

p
a2 � c2

CostBudget = 1n⇥1

for i 2 1 . . . n do
! = uix

a
2 + uiy

b
2

if ! <= 1 then CostBudget[i] = 0
end if

end for
return CostBudget

Algorithm 7 getObstacleField, called by Algorithm 4

Costobstacle = 1n⇥1

for i 2 1 . . . n do
if ui 2 Cfree then

Costobstacle[i] = 0
end if

end for
return Costobstacle

We first show the results of the algorithm for one realized
salinity field. We then study the performance of the algo-
rithm over replicate data from the GRF model, where we
also compare results with that of a lawnmower algorithm
and a myopic exploration algorithm with time operation
constraints.

5.1 Simulation setup

The prior mean is produced by Equation (4), with a lower
expected salinity near location u = (u1, u2) = (1, 0.5)

Algorithm 8 getDirectionalField, called by Algorithm 4

Require: uj�1,uj

b1 = uj � uj�1

Costdirection = 10n⇥1

for i 2 1 . . . n do
b2 = ui � uj

if b1 · b2 >= 0 then
Costdirection[i] = 0

end if
end for
return Costdirection

Fig. 2. The prior mean of the salinity at the initial stage.

and visualized in Fig. 2. At each step, the cost valley will
be reconstructed based on the overlay of five cost fields
including the EIBV cost field, IVR cost field, directional-
changing cost field, budget cost field, and obstacle cost
field. Then a new tree will be built based on the new cost
valley. The ending location will be the place where it has a
minimum value in the cost valley. Then the path planner
will decide where to go next.

µ0(u) = 31 � exp (� (u1 � 1)2 + (u2 � 0.5)2

0.07
) (4)

5.2 Simulation results

In this part, the ground truth is as shown in Fig. 1. Results
at several stages of the AUV operation are displayed in
Fig. 3 ⇠ Fig. 5. In each figure, four illustrations are
showing various parts of the cost valley calculation. The
conditional mean in salinity is shown to the left (in
[mg/g]). The normalized cost field based on EIBV and the
normalized cost field based on IVR are in the middle. The
cost valley with random tree paths for the RRT* algorithm
is shown to the right. Over the di↵erent data gathering
stages j = 1, . . . , 55, the sequence of figures shows the
balance between di↵erent cost fields contributing to the
cost valley calculations. The EIBV and IVR cost fields are
important when there are no obstacles nearby or still much
budget left. EIBV plays a more important role than IVR
sometimes when it is more important to exploit, whereas
IVR plays a more important role than EIBV when it is
more important to explore. When the budget is running
out, the other parts of the cost valley calculation are
undoubtedly dominating, since it has 1 penalty outside
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Algorithm 4 updateCostValley, called by Algorithm 1

Require: mj ,Sj ,Budget,uj ,uj�1

CostEI = getEIField(mj ,Sj)
CostBudget = getBudgetField(Budget,uj)
CostObstacle = getObstacleField
CostDirection = getDirectionalField(uj ,uj�1)
CostValley =

P
CostEV,Budget,Obstacle,Direction

return CostValley

Algorithm 5 getEIField, called by Algorithm 4

Require: mj ,Sj

EIBV = 0n⇥1

IVR = 0n⇥1

for i 2 1 . . . n do
f j = 0n⇥1, and f j [i] = 1

Rj = Sj�1f j(f
T
j Sj�1f j + r2)�1fT

j Sj�1

IVR[i] =
Pn

i=1
diag(Rj)

EIBV[i] =
Pn

i=1
�2

✓
t
�t

�
;


mj�1(i)
�mj�1(i)

�
,W j(i, i)

◆
,

where, W j(i, i) =


T (i, i) �Rj(i, i)

�Rj(i, i) T (i, i)

�

given, T (i, i) = Sj�1(i, i) + Rj(i, i)
end for
CostEI = norm(EIBV) + 1 � norm(IVR)
return CostEI

Algorithm 6 getBudgetField, called by Algorithm 4

Require: Budget,uj

Form a budget ellipse with a, b, c
a = Budget/2
c = ||ugoal � uj ||2/2
b =

p
a2 � c2

CostBudget = 1n⇥1

for i 2 1 . . . n do
! = uix

a
2 + uiy

b
2

if ! <= 1 then CostBudget[i] = 0
end if

end for
return CostBudget

Algorithm 7 getObstacleField, called by Algorithm 4

Costobstacle = 1n⇥1

for i 2 1 . . . n do
if ui 2 Cfree then

Costobstacle[i] = 0
end if

end for
return Costobstacle

We first show the results of the algorithm for one realized
salinity field. We then study the performance of the algo-
rithm over replicate data from the GRF model, where we
also compare results with that of a lawnmower algorithm
and a myopic exploration algorithm with time operation
constraints.

5.1 Simulation setup

The prior mean is produced by Equation (4), with a lower
expected salinity near location u = (u1, u2) = (1, 0.5)

Algorithm 8 getDirectionalField, called by Algorithm 4

Require: uj�1,uj

b1 = uj � uj�1

Costdirection = 10n⇥1

for i 2 1 . . . n do
b2 = ui � uj

if b1 · b2 >= 0 then
Costdirection[i] = 0

end if
end for
return Costdirection

Fig. 2. The prior mean of the salinity at the initial stage.

and visualized in Fig. 2. At each step, the cost valley will
be reconstructed based on the overlay of five cost fields
including the EIBV cost field, IVR cost field, directional-
changing cost field, budget cost field, and obstacle cost
field. Then a new tree will be built based on the new cost
valley. The ending location will be the place where it has a
minimum value in the cost valley. Then the path planner
will decide where to go next.

µ0(u) = 31 � exp (� (u1 � 1)2 + (u2 � 0.5)2

0.07
) (4)

5.2 Simulation results

In this part, the ground truth is as shown in Fig. 1. Results
at several stages of the AUV operation are displayed in
Fig. 3 ⇠ Fig. 5. In each figure, four illustrations are
showing various parts of the cost valley calculation. The
conditional mean in salinity is shown to the left (in
[mg/g]). The normalized cost field based on EIBV and the
normalized cost field based on IVR are in the middle. The
cost valley with random tree paths for the RRT* algorithm
is shown to the right. Over the di↵erent data gathering
stages j = 1, . . . , 55, the sequence of figures shows the
balance between di↵erent cost fields contributing to the
cost valley calculations. The EIBV and IVR cost fields are
important when there are no obstacles nearby or still much
budget left. EIBV plays a more important role than IVR
sometimes when it is more important to exploit, whereas
IVR plays a more important role than EIBV when it is
more important to explore. When the budget is running
out, the other parts of the cost valley calculation are
undoubtedly dominating, since it has 1 penalty outside
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the budget region. The directional change penalty plays
a continuous role in path planning since it guides the
agent to move forward with a smooth path, such path
planning can avoid sharp turns in practice and hence
reduce navigational inaccuracy.

5.3 Replicate study

To remove random e↵ects, 50 replicated simulation results
are averaged and shown in Fig. 6. During each iteration,
IBV, RMSE, and EV (Expected Variance) are monitored
for the comparison of the three strategies including my-
opic(greedy), RRT*, and pre-scripted lawnmower. Myopic
strategy and the RRT* both choose the next candidate
locations based on the cost associated with them from the
cost valley, whereas the pre-scripted lawnmower just moves
along according to its pre-designed paths. The result shows
that the RRT* planner outperforms the other two, and all
the indicators for RRT* including IBV, RMSE, and EV
decrease fastest among the others.

6. CONCLUSION

In our simulated case, the agent can explore the field
adaptively, and it achieves low spatial variance and pre-
cise river plume water classification while avoiding the
island obstacle and reaching the destination in time. Via
comparison with existing approaches, we learned that the
suggested approach has good-quality performance metrics
and it satisfies our goal of achieving exploratory path
planning with a constraint.

In the future, we aim to conduct similar experiments in the
field. This entails fine-tuning the non-myopic path plan-
ning strategies requiring faster computation and cautious
implementation of such algorithms with a need to be well
designed onboard the AUV.
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Fig. 3. Step 1, at first, the agent believes the northeast side has very interesting information and hence plans a long
almost straight path towards the hotspot. At this step, both EIBV and IVR cost fields play important roles to
guide the agent. The trees are distributed in a way that the major stems tend to align along with the low-cost
areas.

Fig. 4. Step 43, at this stage, the agent moves towards the home direction while still trying to collect as much information
as it can. So it tries to reach the boundary since it still has a low cost. The red ellipse shows the remaining distance
budget. The penalty outside this budget is infinity, which induces the chaotic behavior of the trees, whereas the
trees inside the boundary remain optimally distributed.

Fig. 5. Step 55, the agent finally decides to go home, and there appears to have a sharp turn in the trajectory since it
has to prioritize the mission of going home rather than getting a high penalty from the directional restrictions.

Fig. 6. Simulation results compare myopic, RRT*, and pre-scripted lawnmower strategies in terms of IBV, RMSE, and
EV. RRT* performs better than the other two in all of those metrics.



 Yaolin Ge  et al. / IFAC PapersOnLine 55-31 (2022) 124–129 129

Fig. 3. Step 1, at first, the agent believes the northeast side has very interesting information and hence plans a long
almost straight path towards the hotspot. At this step, both EIBV and IVR cost fields play important roles to
guide the agent. The trees are distributed in a way that the major stems tend to align along with the low-cost
areas.

Fig. 4. Step 43, at this stage, the agent moves towards the home direction while still trying to collect as much information
as it can. So it tries to reach the boundary since it still has a low cost. The red ellipse shows the remaining distance
budget. The penalty outside this budget is infinity, which induces the chaotic behavior of the trees, whereas the
trees inside the boundary remain optimally distributed.

Fig. 5. Step 55, the agent finally decides to go home, and there appears to have a sharp turn in the trajectory since it
has to prioritize the mission of going home rather than getting a high penalty from the directional restrictions.

Fig. 6. Simulation results compare myopic, RRT*, and pre-scripted lawnmower strategies in terms of IBV, RMSE, and
EV. RRT* performs better than the other two in all of those metrics.


	Abstract
	Preface
	Introduction
	Background
	Project description
	Outline

	Problem Statement
	River plumes
	Adaptive AUV sampling

	Adaptive Sampling System
	Sense
	Gaussian random field
	Illustrative study

	Plan
	Boundary classification
	Planning metrics
	Path planning
	Myopic path planning
	Non-myopic path planning


	Act

	Evaluation and Testing
	Simulation
	Experiments

	Summary of papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V

	Remarks
	Bibliography

