EXERCISE : Value of information calculations for a Gaussian example

Part I:

Assume the profit of a project has a univariate Gaussian pdf,

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right),-\infty<x<\infty .
$$

A decision maker will invest in a project which has positive expected value.
a. Use a transformation of variables: $z=g(x)=\frac{x-\mu}{\sigma}, x=g^{-1}(z)=\mu+\sigma z$, and the transformation formula $p(z)=\left|\frac{d g^{-1}}{d z}\right| p\left(g^{-1}(z)\right)$ to show that the variable z is standard normal distributed.
b. Use integration by parts; i.e. $\left(\int u \cdot v^{\prime}=u \cdot v \mid-\int u^{\prime} \cdot v\right)$ to show that $\int_{a}^{b} z \phi(z) d z=\int_{a}^{b} 1 \cdot z \phi(z) d z=\phi(a)-\phi(b)$, where the standard normal pdf is $\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right)$.
c. Suppose a decision maker is considering getting perfect information about the profit. The posterior value of perfect information is $\operatorname{PoV}(x)=\int \max \{0, x\} p(x) d x=\int_{0}^{\infty} x p(x) d x$. Use the results from a. and b . along with symmetry properties of the standard normal $\operatorname{pdf} \phi(z)$ and its cumulative distribution $\Phi(z)$ to show that $\operatorname{PoV}(x)=\mu \Phi(\mu / \sigma)+\sigma \phi(\mu / \sigma)$.
d. Plot the analytical VOI as i) a function of the mean in the range $\mu \in(-2,2)$ and ii) as a function of standard deviation $\sigma \in(0.1,2)$. Interpret results.

Part II:

Consider the bivariate Gaussian pdf $p(\boldsymbol{x})=N(\mathbf{0}, \boldsymbol{\Sigma})$ for profits $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ at two projects. Assume variance 1 for both projects, and correlation $-1<\rho<1$.

The decision maker selects a project (alternative $a_{i}=1, i=1,2$) if its expected profit is positive, otherwise avoids investment (alternative $a_{i}=0, i=1,2$). We consider a decision situation with a free selection of projects, without constraints. Assume the decision maker can purchase total imperfect information, $y_{j}=x_{j}+N\left(0, \tau^{2}\right), j=1,2$, i.e. conditional model for
the data is then $p(\boldsymbol{y} \mid \boldsymbol{x})=N(\boldsymbol{x}, \boldsymbol{T}), \boldsymbol{T}=\tau^{2} \boldsymbol{I}$. It can be shown that the posterior model for project profits, conditional on observations \boldsymbol{y}, is $p(\boldsymbol{x} \mid \boldsymbol{y}) \propto p(\boldsymbol{x}) p(\boldsymbol{y} \mid \boldsymbol{x})=N\left(\boldsymbol{\mu}_{\boldsymbol{x} \mid \boldsymbol{y}}, \boldsymbol{\Sigma}_{x \mid \boldsymbol{y}}\right)$, where $\boldsymbol{\mu}_{\boldsymbol{x} \mid \boldsymbol{y}}=\boldsymbol{\Sigma}(\boldsymbol{\Sigma}+\boldsymbol{T})^{-1} \boldsymbol{y}$ and $\boldsymbol{\Sigma}_{\boldsymbol{x} \mid \boldsymbol{y}}=\boldsymbol{\Sigma}-\boldsymbol{\Sigma}(\boldsymbol{\Sigma}+\boldsymbol{T})^{-1} \boldsymbol{\Sigma}$.
a. Use the formula for linear combinations of Gaussian variables to show that $p(\boldsymbol{y})=N(\mathbf{0}, \boldsymbol{\Sigma}+\boldsymbol{T})$ and $p\left(\boldsymbol{\mu}_{x \mid y}\right)=N\left(\mathbf{0}, \boldsymbol{\Sigma}(\boldsymbol{\Sigma}+\boldsymbol{T})^{-1} \boldsymbol{\Sigma}\right)$.
b. Use the result from a. and from Part I to compute the posterior value of total imperfect information: $\operatorname{PoV}(\boldsymbol{y})=\sum_{j=1}^{2} \int \max \left\{0, \mu_{x \mid y, j}\right\} p(\boldsymbol{y}) d \boldsymbol{y}$. (Note: the only part of the data which is informative of the decision is $\mu_{x \mid y}$, so the expression simplifies to: $\left.\operatorname{PoV}(\boldsymbol{y})=\sum_{j=1}^{2} \int \max \left\{0, \mu_{x \mid y, j}\right\} p\left(\mu_{x \mid y, j}\right) d \mu_{x \mid y, j}.\right)$
c. Cross-plot the VOI results as a function of the correlation ρ and for standard deviation $\tau=0.5$ and $\tau=1$ of the imperfect test. Interpret results.
d. Assume next that the decision maker can gather information about only one of the projects (partial testing), say $y_{1}=x_{1}+N\left(0, \tau^{2}\right)=\boldsymbol{F} \boldsymbol{x}+N\left(0, \tau^{2}\right)$, where $\boldsymbol{F}=(1,0)$. Calculate the posterior value of this partial test. Note that the conditional mean now becomes $\boldsymbol{\mu}_{x \mid y}=\boldsymbol{\Sigma} \boldsymbol{F}^{t}\left(\boldsymbol{F} \boldsymbol{\Sigma} \boldsymbol{F}^{t}+\tau^{2}\right)^{-1} y_{1}$.
Plot results as in c. and interpret and compare results.

