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Plan for course

Time Topic

Monday Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Tuesday Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.



Material  

• Eidsvik, J., Mukerji, T. and Bhattacharjya, D., Value of information in the Earth sciences, 
Cambridge University Press, 2015.

• Howard R.A. and Abbas, A.E., Foundations of decision analysis, 
Pearson, 2015.

• Many spatial statistics books:
- Cressie and Wikle (2011), 
Chiles and Delfiner (2012), 
Banerjee et al. (2014), 
Pyrcz and Deutsch (2014),
etc.

Relevant background reading :



Motivating VOI examples:

• Integration of spatial modeling and decision analysis. 

• Collect data to resolve uncertainties and make informed decisions.



Motivation 
(a petroleum exploration example)

Gray nodes are
petroleum 
reservoir
segments 
where the

company aims
to develop
profitable 

amounts of oil
and gas.

Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin.



Motivation 
(a petroleum exploration example)

Drill the exploration well at this segment!
The value of information is largest.

Gray nodes are
petroleum 
reservoir
segments 
where the

company aims
to develop
profitable 

amounts of oil
and gas.



Motivation 
(a petroleum development example)

Reservoir
predictions

from post-stack
seismic data!

Eidsvik, J., Bhattacharjya, D. and Mukerji, T., 2008, Value of information of seismic amplitude and CSEM 
resistivity, Geophysics.



Motivation 
(a petroleum development example)

Reservoir
predictions

from post-stack
seismic data!

Process pre-stack seismic data, or electromagnetic data?



Motivation (an oxide mining example)

Is mining profitable?

Eidsvik, J. and Ellefmo, S.L., 2013, The value of information in mineral exploration within a multi-
Gaussian framework, Mathematical Geosciences.



Motivation (an oxide mining example)

Is mining profitable?
What is the value of this
additional information?



Motivation 
(a groundwater example)

Which recharge
location is better

to prevent salt 
water intrusion?

Trainor-Guitton, W.J., Caers, J. and Mukerji, T., 2011, A methodology for establishing a data reliability 
measure for value of spatial information problems, Mathematical Geosciences. 



Motivation 
(a groundwater example)

Which recharge
location is better

to prevent salt 
water intrusion?

Is it worthwhile to acquire electromagnetic data before
making the decision about recharge?



Motivation 
(a hydropower example)

Adjusting water  
levels in 9 

hydropower
dams!

Ødegård, H., Eidsvik, J. and Fleten, S.E., 2017, Value of information analysis of snow measurements 
for the scheduling of hydropower production, Energy Systems.



Motivation 
(a hydropower example)

Acquire snow measurements?

Adjusting water  
levels in dams!



Other applications

• Environmental – how monitor where pollutants are, to minimize risk or damage. 
• Robotics - where should drone (UAV) or submarine (AUV) go to collect valuable data?
• Industry reliability – how to allocate sensors to ‘best’ monitor state of system?
• Internet of things – which sensors should be active now?



Which data are valuable?

Five Vs of big data:
• Volume
• Variety 
• Velocity
• Veracity
• Value

We must acquire and process data that has value!
There is often a clear question that one aims to answer, and 
data should help us.



Value of information (VOI)

In many Earth science applications we consider purchasing 
more data before making difficult decisions under uncertainty. 
The value of information (VOI) is useful for quantifying the 
value of the data, before it is acquired and processed.

This pyramid of conditions  - VOI is different from other 
information criteria (entropy, variance, prediction error, etc.)



Information gathering

Why do we gather data?

We will use a decision theoretic perspective, but the methods are easily adapted to 
other criteria or value functions (later in course).

To make better decisions!
To answer some kind of questions!
Reject or strengthen hypotheses!



Decision analysis (DA)

Howard, R.A. and Abbas, A., 2015, Foundations of Decision Analysis, Prentice Hall.

Decision analysis attempts to guide a decision maker 
to clarity of action in dealing with a situation where 
one or more decisions are to be made, typically in the 
face of uncertainty.



Framing a decision situation

Rules of actional thought. (Howard and Abbas, 2015)

- Frame your decision situation to address the decision makers true concerns.
- Base decisions on maximum expected utility.

‘…systematic and repeated violations of these principles will result in inferior 
long-term consequences of actions and a diminishes quality of life…’ 

(Edwards et al., 2007, Advances in decision analysis: From foundations to applications, 
Cambridge University Press.)



Pirate example
(For motivating decision analysis and VOI)



Pirate example

• Pirate example: A pirate must decide whether to dig for a treasure, 
or not. The treasure is absent or present (uncertainty). 

Pirate makes decision based on preferences and maximum utility or value!
- Digging cost.
- Revenues if he finds the treasure . 

?



Pirate example

• Pirate example: A pirate must decide whether to dig for a treasure, 
or not. The treasure is absent or present (uncertainty). 

{ }0,1xÎ

{ }0,1aÎ

Pirate makes decision based on preferences and maximum utility or value!
- Digging cost.
- Revenues if he finds the treasure . 

{ } ( )( ){ }0,1max ,a E v x aÎ

?



Mathematics of decision situation:

• Alternatives

• Uncertainties (probability distribution)

• Values 

• Maximize expected value

( )0, 1 10000v x a= = = - ( )1, 1 100000v x a= = = ( ), 0 0v x a = =

{ }0,1a AÎ =

{ }0,1xÎ =W ( )1 0.01p x = =

( )( ){ }* argmax ,a Aa E v x aÎ=

( ),v v x a=



Decision trees

A way of structuring and illustrating a decision situation. 

• Squares represent decisions
• Circles represent uncertainties

• Probabilities and values are shown by numbers.

• Arrows indicate the optimal decision.



Pirate’s decision situation

( )( ) ( ) ( ) ( )0.01 100000 0.99 10000 8900dig digE u v E v= = + - = -



Pirate example

• Pirate example: A pirate must decide whether to dig for a treasure, 
or not. The treasure is absent or present (uncertainty). 

• Pirate can collect data before making the decision, if the
experiment is worth its price!  

- Imperfect information.
Detector!

- Perfect information.
Clairvoyant!



Value of information (VOI)

• VOI analysis is used to compare the additional value of making informed 
decisions with the price of the information. 

• If the VOI exceeds the price, the decision maker should purchase the data.

VOI=Posterior value – Prior value 



VOI – Pirate considers clairvoyant

( ) ( ) 1 0 $1VoI x PoV x PV K= - = - =

( ) ( ){ } ( )

{ }( ) { }

max ,

0.01 max 0,100 0.99 max 0, 10 $1

a A
x

PoV x v x a p x

K

Î=

æ ö= × + × - =ç ÷
è ø

å

0 $0PV K= =

Conclusion: Consult clairvoyant if (s)he charges less than $1000.



$0 K

$100 K

Treasure 
(0.01)

No treasure 
(0.99)

Dig

Don’t dig

0 K

$100 K

Dig

Don’t dig

´

$0 K

-$10 K
$1 K

PoV – decision tree, perfect information 



Pirate example - detector

• Pirate example: A pirate must decide whether to dig for a treasure, 
or not. The treasure is absent or present (uncertainty). 

• Pirate can collect data before making the decision, if the
experiment is worth its price!  

Pirate makes decision based on preferences and maximum expected value!
- Digging cost.
- Revenues if he finds the treasure . 



Pirate example - detector

• Pirate example: A pirate must decide whether to dig for a treasure, 
or not. The treasure is absent or present (uncertainty). 

• Pirate can collect data with a detector before making the decision, 
if this experiment is worth its price!  

Pirate makes decision based on preferences and maximum expected value!
- Digging cost.
- Revenues if he finds the treasure . 

{ }0,1xÎ

{ }0,1yÎ

{ }0,1aÎ

{ } ( )( ){ }0,1max , |a E v x a yÎ



Detector experiment

( 0 | 0) ( 1| 1) 0.95p y x p y x= = = = = =

Should the pirate pay to do a detector experiment?

Does the VOI of this experiment exceed the price of the test?

Accuracy of test:



Bayes rule - Detector experiment



Bayes rule - Detector experiment

( 0 | 0) ( 1| 1) 0.95p y x p y x= = = = = =

( 1| 1) ( 1) 0.95·0.01( 1| 1) 0.16 16 /100.
( 1) 0.06

p y x p xp x y
p y

= = =
= = = = » =

=

( ) ( ) ( ) ( ) ( )1 1| 0 0 1| 1 1
0.05 0.99 0.95 0.01 0.06

p y p y x p x p y x p x= = = = = + = = =

= × + × =

( 0 | 1) ( 1) 0.05·0.01( 1| 0) 0.0005 5 /10000.
( 0) 0.94

p y x p xp x y
p y

= = =
= = = = » =

=

Likelihood:

Marginal likelihood:

Posterior:



VOI – Pirate considers detector test

( ) ( )( ){ } ( )

( ) ( ){ }( )
( ) ( ){ }( )

{ }( ) { }( )

max , |

0.06 max 0, 100 0.16 10 0.84

0.94 max 0, 100 0.0005 10 0.9995

0.06 max 0,7.71 0.94 max 0, 9.95 $0.46 .

a A
y

PoV y E v x a y p y

K

Î=

= × × + - ×

+ × × + - ×

= × + × - =

å

( ) ( ) 0.46 0 $0.46VoI y PoV y PV K= - = - =

Conclusion: Purchase detector testing if its price is less than $460.



Dig

Don’t dig

Treasure  
(0.16)

No treasure 
(0.84)

´
“Positive” 
(0.06)

“Negative” 
(0.94)

Dig

Don’t dig

Treasure 
(0.0005)

No treasure 
(0.9995)

´

$100 K

- $10 K

$100 K

- $10 K

$7.71 K

- $9.95 K

$0 K

$0 K

$0 K

$0.46 K

$7.71 K

PoV - imperfect information



PV and PoV vs Digging Cost

( ){ }
( ) { } ( )
( ) ( ){ } ( )

max 0,Rev 1 Cost

max 0,Rev Cost 1

max 0,Rev 1| Cost
y

PV p x

PoV x p x

PoV y p x y p y

= × = -

= - =
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Plan for course

Time Topic

Monday Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Tuesday Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.



Problem: CO2 sequestration
.

.

CO2 is sequestered to reduce carbon emission in the athmosphere and defer global 
warming. 
Geological sequestration involves pumping CO2 in subsurface layers, where it will 
remain, unless it leaks to the surface.



VOI for CO2 sequestration

Problem:

( )1 0.3p x = = ( )0 0.7p x = =

The decision maker can proceed with CO2 injection or suspend sequestration.
The latter incurs a tax of 80 monetary units. The former only has a cost of
injection equal to 30 monetary units, but the injected CO2 may leak (x=1). If
leakage occurs, there will be a fine of 60 monetary units (i.e. a cost of 90 in
total). Decision maker is risk neutral.

.

1. Compute the VOI of perfect information. 
2. Compute conditional probabilities, expected values and the VOI of

geophysical data. 
(MATLAB)

( )1| 1 0.9p y x= = =( )0 | 0 0.95p y x= = =

Data: Geophysical experiment, with binary outcome, indicating 
whether the formation is leaking or not. 

.



Value of information (VOI)
- More general formulation

• VOI analysis is used to compare the additional value of making informed 
decisions with the price of the information. 

• If the VOI exceeds the price, the decision maker should purchase the data.

VOI=Posterior value – Prior value 



Risk and utility functions

( )
( )

''
'

u v
u vg = -

Exponential and linear utility have 
constant risk aversion coefficient:



Certain equivalents (CE)

Utilities are mathematical. The certain equivalent is a measure of how much 
a situation is worth to the decision maker. (It is measured in value).

( )( ) ( )( ){ }( )1
'  max ,dig don t digCE u E u v E u v-=

What is the value of indifference? How much would 
the owner of a lottery be willing to sell it for?



VOI - Clairvoyance

( ){ } ( ) ( )( ){ }
( ){ } ( ) ( )( ){ }

max , max ,

max , max ,

a A a A
x

a A a A
x

v x a P p x E v x a

P VOI v x a p x E v x a

Î Î

Î Î

- =

® = = -

å

å

VOI=Posterior value – Prior value

Price P of experiment makes 
the equality. 

Assuming risk neutral decision maker!



VOI- Imperfect

( )( ){ } ( ) ( )( ){ }
( )( ){ } ( ) ( )( ){ }

max , | max ,

max , | max ,

a A a A
y

a A a A
y

E v x a P y p y E v x a

P VOI E v x a y p y E v x a

Î Î

Î Î

- =

® = = -

å

å

Assuming risk neutral decision maker!

( )( ){ } ( ) ( )( ){ }max , | max ,a A a A
y

E v x a P y p y E v x aÎ Î- =å

VOI=Posterior value – Prior value 

Price of indifference.



Properties of VOI

a) VOI is always positive 
• Data allow better, informed decisions.

b) If value is in monetary units ,VOI is in monetary units.

c) Data should be purchased if VOI > Price of experiment P.

d) VOI of clairvoyance is an upper bound for any imperfect information 
gathering scheme.

e) When we compare different experiments, we purchase the one with 
largest VOI compared with the price: 

{ }max 0, max 0,i i
i i
v vì ü £í ý

î þ
å å

{ }1 1 2 2argmax ,VOI P VOI P- -



Gaussian model for profits

( ) ( )2
22

1 exp
22

x
p x

rr

m

p

æ ö-
ç ÷= -
ç ÷
è ø

Gaussian, m=2, r=3

Uncertain profits of a project is Gaussian distributed. 



VOI for Gaussian

( ) ( )PosteriorValue PriorValueVOI x x= -

Uncertain project profit is Gaussian distributed. 
Invest or not?
The decision maker asks a clairvoyant for perfect 
information, if the VOI is larger than her price.

( ){ } ( )max 0, ,PV E x E x m= =

( ) { }( ) { } ( )max 0, max 0,PoV x E x x p x dx= = ò



VOI for Gaussian

{ }( ) { } ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )

0

max 0, max 0,

1

,

m
r

m m
r r

E x x p x dx xp x dx m rz z dz

m mm z dz r z z dz m rr r

m mm rr r

f

f f f

¥ ¥

-
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- -
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= F + f

ò ò ò
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Result:



VOI for Gaussian

( ) ( ) ( ) { }max 0,m mVOI x m r mr r= F + f -

Result:
Gaussian pdfGaussian cdf

The analytical form facilitates computing, and it eases the
study of VOI properties as a function of the parameters. 

( ) ( )

0,

0
2

m
rVOI x r
p

=

= f =

The more uncertain, the more valuable is information.



Problem: VOI for Gaussian

( ) ( ) ( ) { }max 0,m mVOI x m r mr r= F + f -

Result:
Gaussian pdfGaussian cdf

Problem:
1. Set mean to 0. Compute the VOI. Does it depend on variance?
2. Set variance 1. Compute the VOI. Does it depend on mean?
3. Plot VOI as a function of mean and variance.
(MATLAB)



What if several projects / treasures?



What if several projects / treasures?

P

B

C
A

Where to invest? 
All or none? Free to choose as many 
as profitable? One at a time, then 
choose again?

Where should one collect data? All or 
none? One only? Or two? One first, 
then maybe another?



VOI and Earth sciences

• Alternatives are spatial, often with high flexibiliy in selection of sites, control 
rates, intervention, excavation opportunities, harvesting, etc.

• Uncertainties are spatial, with multi-variable interactions . Often both discrete 
and continuous.

• Value function is spatial, typically involving coupled features, say through 
differential equations. It can be defined by «physics» as well as economic 
attributes. 

• Data are spatial. There are plenty opportunities for partial, total testing and a 
variety of tests (surveys, monitoring sensors, electromagnetic data, , etc.)



Dependence? Does it matter?

Gray nodes are
petroleum 
reservoir
segments 
where the

company aims
to develop
profitable 

amounts of oil
and gas.

Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin, 95, 1423-1442.



Drill the exploration well at this segment!
The value of information is largest.

Gray nodes are
petroleum 
reservoir
segments 
where the

company aims
to develop
profitable 

amounts of oil
and gas.

Dependence? Does it matter?



Plan for course

Time Topic

Monday Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Tuesday Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.



Joint modeling of multiple variables

B

CA

Spatial variables are often not independent!

To study if dependence matter, we need to model the joint
properties of uncertainties.

• What is the probability that variable A is 1 and, at the
same time, variable B is 1 ?

• What is the probability that variable C is 0, and both A 
and B are 1 ?



Joint pdf
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1 1
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p
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Discrete sample 
space:

Continuous 
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1x
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( ) ( )1,..., np p x x=x

Probability mass function (pdf)

Probability density function (pdf)



Multivariate statistical models

( ) ( )

( ) ( )( ) ( )
( )( ) ( ) ( )

,

,

.

t

E p d

Var p d

E f f p d

= =

= = - -

=

ò
ò
ò
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x x x x x

x x x x

µ

µ µS

The joint probability mass or density function (pdf) 
defines all probabilistic aspects of the distribution!
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Marginal and conditional probability

( , )=x x xK L

( ) ( )p p d= òx x xK L

( ) ( )
( )

( )
( )

|
p p

p
p p d

= =
ò

x x
x x

x x xK L
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| | ,
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E p d

Var E E p d

=
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ò
ò

x x x x x x
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K L K K L K K L K L K

Conditioning in joint pdf.

Marginalization in joint pdf.

Conditional mean and variance



Marginalization

( , )=x x xK L

( ) ( )p p d= òx x xK L

1x

( )1p x



Conditional probability

Venn diagram

B

A
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Conditional probability

A

( ) ( )
( )

( )
( )

|
p p

p
p p d

= =
ò

x x
x x

x x xK L
L K

( ) ( )|p p¹x x xK K L

( ) ( )|p p=x x xK K L

Independence!

Must hold for all outcomes and 
for all subsets!

Unrealistic in most applications!



Modeling by conditional probability

A

( ) ( ) ( ) ( )1 2 1 1 1| ... | ,...,n np p x p x x p x x x-=x

Holds for any ordering of variables. 

The joint pdf can be difficult to model directly. 
Instead we can build the joint pdf from conditional distributions. 

( ) ( ) ( )|p p p= K L Lx x x x



Modeling by conditional probability

A

( ) ( ) ( )|p p p= K L Lx x x x

Modeling by conditionals is done by conditional statements, not joint assessment: 

• What is likely to happen for variable K when variable L is 1?
• What is the probability of variable C being 1 when variables A and B are both 0?

Such statements might be easier to specify, 
and can more easily be derived from physical principles.



Modeling by conditional probability

A

( ) ( ) ( ) ( )1 2 1 1 1| ... | ,...,n np p x p x x p x x x-=x

Holds for any ordering of variables. Some conditioning variables can often be skipped. 
Conditional independence in modeling. 

This simplifies modeling and interpretation! And computing!



Modeling by conditional probability

A

( )
( )

1| 1 0.9

1| 0 0
B P

B P

p x x

p x x

= = =

= = =

• What is the chance of success at B, when there is success at parent P? 
• What is the chance of success at B, when there is failure at parent P?

P

B

CA
Conditional independence:

( ) ( )
{ }, ,

, , | |A B C P i P
i A B C

p x x x x p x x
Î

= Õ

Must set up models for all nodes, using marginals for root nodes, and 
conditionals for all nodes with edges.



Bayesian networks and Markov chains



Bayesian networks and Markov chains

( ) ( ) ( ) ( ) ( )1 2 3 1 2 1 3 1, , | |p p x x x p x p x x p x x= =x



Bayesian networks and Markov chains

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 1 3 2 4 3, , , | | |p p x x x x p x p x x p x x p x x= =x



.

Bivariate petroleum prospects example

Conditional 
independence between 
prospect A and B, given 
outcome of parent!

Similar network models 
have been used in 
medicine/genetics, and
testing for heritable 
diseases.

{ }0,1 , 1,2,3ix iÎ =



Problem: 
Bivariate petroleum prospects example

1. Compute the conditional probability at prospect A, when one knows the 
success or failure outcome of prospect B.

2. Compare with marginal probability.

{ }0,1 , 1,2,3ix iÎ =

Problem:



Bivariate petroleum prospects example
.

Joint Failure prospect B Success prospect B Marginal probability

Failure prospect A 0.85 0.05 0.9

Success prospect A 0.05 0.05 0.1

Marginal probability 0.9 0.1 1



.

Bivariate petroleum prospects

Collect seismic data :VOI - Should data be collected at both prospects, or 
just one of them? Partial or total? Imperfect or perfect?



.

Need to frame the decision situation: 
• Can one freely select (profitable) prospects, or must both be selected. 
• Does value decouple? 
• Can one do sequential selection? 

Need to study information gathering options: 
• Imperfect (seismic), or perfect (well data)? 
• Can one test both prospects, or only one (total or partial)? 
• Can one perform sequential testing? 

Bivariate petroleum prospects



.

Need to frame the decision situation: 
• Can one freely select (profitable) prospects, or must both be selected. Free selection.
• Does value decouple? Yes, no communication between prospects.
• Can one do sequential selection? Non-sequential.

Need to study information gathering options: 
• Imperfect (seismic), or perfect (well data)?  Study both.
• Can one test both prospects, or only one (total or partial)? Study both.
• Can one perform sequential testing? Not done here.

Bivariate petroleum prospects



Bivariate prospects example - perfect
.

Assume we can freely select (develop) prospects, if profitable.

( ){ }
{ }

{ }
,
max 0,Rev 1 Cost

2max 0,0.3 Cost

i
i A B

PV p x
Î

= × = -

= -

å

1 2Rev Rev Rev 3= = =

( ) ( ) { }
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{ }
,

1 max 0,Rev Cost

0.2max 0,3 Cost

i
i A B

PoV p x
Î

= = × -

= -

åx

( ) ( )VOI PoV PV= -x x

Total clairvoyant 
information



Bivariate prospects example - perfect
.

Assume we can freely select (develop) prospects, if profitable.

( ){ }
{ }

{ }
,
max 0,Rev 1 Cost

2max 0,0.3 Cost

i
i A B

PV p x
Î

= × = -

= -

å

1 2Rev Rev Rev 3= = =

( ) ( ) { }
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{ }
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max 0,Rev 1| Cost

0.1 max 0,3 Cost 0.1 max 0,Rev 0.5 Cost

0.9 max 0,3 0.055 Cost
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l

PoV x p x

p x l p x x l

= = × -

+ = × × = = -

= × - + × × -

+ × × -

å

Partial
clairvoyant 
information



.

( )|j jp y k x k k= = = g = 0.9, =1,2

Bivariate prospects example - imperfect

Define sensitivity of seismic test (imperfect):



Bivariate prospects example - imperfect
.

Assume we can freely select (develop) prospects, if profitable.

( ){ }
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{ }
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max 0,Rev 1 Cost
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= -

å
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i A B

PoV p x p
Î

= = -å å
y

y y y

( ) ( )VOI PoV PV= -y y

Total imperfect
information

Can also purchase imperfect partial information i.e. about one of the prospects?
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VOI for bivariate prospects example

Imperfect total 
better then 
partial perfect.

Partial perfect 
is better than 
imperfect 
total. 
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VOI for bivariate prospects example

Price of test is 0.3



.

Insight in VOI – Bivariate prospects

• VOI of partial testing is always less than total testing, with same accuracy. 

• Total imperfect test can give less VOI than a partial perfect test. Difference depends
on the accuracy, prior mean for values, and correlation in spatial model. 

• VOI is small for low costs (easy to start development) and for high cost (easy to avoid
development). We do not need more data in these cases. We can make decisions
right away.



Plan for course

Time Topic

Monday Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Tuesday Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.



Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin, 95, 1423-1442.

Larger networks - computation

Algorithms have been developed for efficient 
marginalization, conditioning.



VOI workflow

• Develop prospects separately. 
Shared costs for segments within 
one prospect. 

• Gather information by exploration 
drilling. One or two wells. No 
opportunities for adaptive testing.

• Model is a Bayesian network 
model elicited from expert 
geologists in this area.

• VOI analysis done by exact 
computations for Bayesian 
networks (Junction tree algorithm 
– efficient marginalization and 
conditioning). 
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Bayesian networks, Kitchens

Model elicited from 
experts. 

Migration from kitchens.
Local failure probability 
of migration.
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Prior marginal probabilities

Three possible
classes at all 
nodes:
• Dry
• Gas
• Oil
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Prior values

( )
13

1 Pr
max 0, i

r i
PV IV x DFC

= Î

ì ü= -í ý
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å å

( ) ( ) ( )( )
3

, , ,0
1
Rev Cost Costi i k i i k i i

k
IV x p x k p x k

=
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Development fixed cost.
Infrastructure at prospect r.

Revenues of oil/gas, 0 
otherwise.

Cost if dry, 0 
otherwise.

Cost of drilling 
segment i.
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Values

Most lucrative. But might not 
be most informative.
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Posterior values and VOI

( ) ( ) ( )
3 13

1 1 Pr
max 0, |i

l r i
PoV x IV x x l DFC p x l

= = Î

ì ü= = - =í ý
î þ

åå åK K K

Data acquired at single well.

( ) ( )VOI x PoV x PV= -K K
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VOI single wells

Development fixed cost.
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VOI for different costs

Development fixed cost.
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VOI for different costs

• For each segment VOI starts at 0 (for 
small costs), grows to larger values, 
and decreases to 0 (for large costs).

• VOI is smooth for segments 
belonging to the same prospect. 
Correlation and shared costs.

• VOI can be multimodal as a function 
of cost, because the information 
influences neighboring segments, at 
which we are indifferent at other 
costs. 



.

Take home from this example:

• VOI is not largest at the most lucrative prospects. 
• VOI is largest where more data are likely to help us make better decisions.
• VOI also depends on whether the data gathering can influence neighboring 

segments – data propagate in the Bayesian network model.

• Compare with price? Or compare different data gathering opportunities, and provide 
a basis for discussion. 
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Training BN models:

Simulated 
example 
using 
Petromod.
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Training BN models:

Build network 
from 
hydrocarbon 
generation and  
accumlations 
over several 
runs.
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Conditional probabilities:
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VOI results:



Never break the chain - Markov models  

Markov chains are special graphs, defined by initial probabilities and 
transition matrices.
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P é ù
= ê ú
ë û
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Independence Absorbing

2d =



Markov chains (perfect information)



Avalanche decisions and sensors

Suppose that parts along a road or railroad are at risk of avalanche. 
- One can remove risk by cost.
- If it is not removed, the repair cost depends on the unknown risk class.

Data, typically putting out sensors, can help classify the risk class and hence improve the 
decisions made at different locations.



Avalanche decisions - risk analysis

n=50 identified locations, at risk of avalanche. 
At every location one can remove risk by cost 10.
If it is not removed, the repair cost depends on the unknown risk class:

{ }
1 2 3 4

, 1,2,3,4 ,
C 0,C 5,C 20,C 40,
jC jÎ
= = = =

( )
50 4

1 1
max 10, j i

i j
PV C p x j

= =

ì ü
= - - =í ý

î þ
å å

Decision maker can secure, or not, at each location. The decisions are 
based on the minimization of expected costs. 

Prior value:



Results – different tests

All sites Only 10 
first

Only 11-
20

Only 21-
30

Only 31-
40

Only 41-
50

126 36 69 87 91 82

Partial tests can be very valuable! Especially if they are done in 
interesting subsets of the domain.



Results – different tests

All sites Only 10 
first

Only 11-
20

Only 21-
30

Only 31-
40

Only 41-
50

126 36 69 87 91 82

Partial tests can be very valuable! Especially if they are done in 
interesting subsets of the domain.

Only every second (5 measurements) 
gives VOI=83.



.

Take home from this example:

• VOI varies with data gathering location
• Plan sensor locations wisely. 

• VOI is largest when data are likely to help us make better decisions.



Plan for course

Time Topic

Monday Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Tuesday Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.


