
Jo Eidsvik, 
Department of Mathematical Sciences, NTNU, NORWAY

Value of Information in the Earth Sciences



Plan for course

Time Topic

Day 1 Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Day 2 Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.



Pirate example
(For motivating decision analysis and VOI)
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PoV - imperfect information



Problem: CO2 sequestration
.

.

CO2 is sequestered to reduce carbon emission in the athmosphere and defer global 
warming. 
Geological sequestration involves pumping CO2 in subsurface layers, where it will 
remain, unless it leaks to the surface.
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Expected value of Injection alternative :    0.7 (- 30) + 0.3 (- 90)   = -21 – 27 = - 48

PV = max ( - 80 , - 48 ) = -48  



VOI of Perfect information
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PoV(x) =    0.7 (- 30) + 0.3 (- 80)   = -21 - 24 = - 45 VOI (x) = -45 - ( - 48) = 3

max ( - 30 , - 80 ) = - 30

max ( - 90 , - 80 ) = - 80



Numbers for imperfect 
information

( )1 0.3p x = = ( )0 0.7p x = =

The decision maker can proceed with CO2 injection or suspend sequestration.
The latter incurs a tax of 80 monetary units. The former only has a cost of
injection equal to 30 monetary units, but the injected CO2 may leak (x=1). If
leakage occurs, there will be a fine of 60 monetary units (i.e. a cost of 90 in
total). Decision maker is risk neutral.

.

( )1| 1 0.9p y x= = =( )0 | 0 0.95p y x= = =

Data: Geophysical experiment, with binary outcome, indicating 
whether the formation is leaking or not. 

.

P(pos test ) = P ( pos test | leak) P ( leak) + P ( post test | seal ) P ( seal)  = 0.9 (0.3) + 0.05 ( 0.7) = 0.31 

P(leak | pos test ) = P ( pos test | leak) P ( leak)  / P (pos test) = 0.9 (0.3) / 0.31 = 0.88
P(leak | neg test ) = P ( neg test | leak) P ( leak)  / P (neg test) = 0.1 (0.3) / 0.69 = 0.04

Marginalization:

Bayes’ rule:



VOI of Imperfect information
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What if several projects / treasures?

P

B

C
A

Where to invest? 
All or none? Free to choose as many 
as profitable? One at a time, then 
choose again?

Where should one collect data? All or 
none? One only? Or two? One first, 
then maybe another?



Drill the exploration well at this segment!
The value of information is largest.

Gray nodes are
petroleum 
reservoir
segments 
where the

company aims
to develop
profitable 

amounts of oil
and gas.

Dependence? Does it matter?



VOI and Earth sciences

• Alternatives are spatial, often with high flexibiliy in selection of sites, control 
rates, intervention, excavation opportunities, harvesting, etc.

• Uncertainties are spatial, with multi-variable interactions . Often both discrete 
and continuous.

• Value function is spatial, typically involving coupled features, say through 
differential equations. It can be defined by «physics» as well as economic 
attributes. 

• Data are spatial. There are plenty opportunities for partial, total testing and a 
variety of tests (surveys, monitoring sensors, electromagnetic data, , etc.)



Decision situations and values
.

Assumption: Decision Flexibility Assumption: Value Function

Low decision flexibility; 
Decoupled value

Alternatives are easily 
enumerated 

Total value is a sum of value at every unit

High decision flexibility; 
Decoupled value

None Total value is a sum of value at every unit

Low decision flexibility; 
Coupled value

Alternatives are easily 
enumerated 

None

High decision flexibility; 
Coupled value

None None 
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Low versus high decision flexibility
.

High flexibility: 
Farmer can select individual
forest units.

Low flexibility: 
Farmer must select all forest
units, or none.



Problem: Two projects
.

High flexibility: 
Farmer can select individual forest units.

Low flexibility: 
Farmer must select all forest units, or none.

Problem:
1. What’s the PV for different mean values?



Flexibility is related to 
framing the decision situation.

How many options are there for feasible 
operation? 
How can one break this down into 
something that can be interpreted?

Operations of off-shore windfarm: Number 
of personell, number of ship type A, shiup 
type B. 



Decoupled versus coupled value
.

Value decouples to sum over units.

Value involves complex coupling of
drilling strategies, and reservoir

properties.

Petroleum company must decide how to 
produce a reservoir. 

Farmer must decide whether to harvest at 
forest units, or not. 



VOI - Pyramid of conditions



Information gathering
.

Perfect Imperfect

Total Exact observations are gathered for all 
locations. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering.

Noisy observations are gathered for all 
locations. This is common in situations with 
remote sensors with extensive coverage, e.g.
seismic, radar, satellite data.

Partial Exact observations are gathered at 
some locations. This might occur, for 
instance, when there is careful analysis 
of rock samples along boreholes in a 
reservoir or a mine.

Noisy observations are gathered at some 
locations. Examples include hand-held (noisy) 
meters to observe grades in mine boreholes, 
electromagnetic testing along a line, biological 
surveys of species, etc.

=y x = +y x e

,  subset=y xK K K ,  subset= +y xK K K Ke



Problem: Two projects
.

High flexibility: 
Farmer can select individual forest units.

Low flexibility: 
Farmer must select all forest units, or none.

Problem:
1. What’s the PV for different mean values?
2. How is this influencing the VOI of perfect information on both projects?



Recall VOI for Gaussian

( ) ( ) ( ) { }max 0,m mVOI x m r mr r= F + f -

Result:
Gaussian pdfGaussian cdf

The analytical form facilitates computing, and it eases the
study of VOI properties as a function of the parameters. 
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( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î

ì üï ï= = í ý
ï ïî þ
òa A a A
x

x a x a x x

Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

( ) ( ) .VOI PoV PV= -y y



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î

ì üï ï= = í ý
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òa A a A
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x a x a x x

Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

( ) ( ) .VOI PoV PV= -y y

Spatial alternatives.

Spatial uncertainties.

Spatial value function.

Spatial data.



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î
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Computation - Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

Computations :
• Easier with low decision flexibility ( less alternatives). 
• Easier if value decouples (sums or integrals split).
• Easier for perfect, total, information (upper bound on VOI). 
• Sometimes analytical solutions. Otherwise approximations and Monte Carlo.

VOI=Posterior value – Prior value 



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î

ì üï ï= = í ý
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Formula for total perfect information

( ) ( ){ } ( )max ,PoV v p dÎ= ò a Ax x a x x

( ) ( ) .VOI PoV PV= -x x
Upper bound on any 
information gathering scheme.



Low flexibility. Decoupled value

What is the value of this
additional information?

Is mining profitable?



Higher flexibility. Coupled value

Is time lapse seismic data 
valuable?

Infill drilling?



Plan for course
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Sequential decisions and sequential information gathering

Small problem sets along the way.



Joint pdfs

There are families of joint pdfs. Parametrically, or non-parametrically. 

Gaussian distribution is very common:
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For a Gaussian process, in a spatial application, the covariance entries are 
formed in a particular way.



Spatial covariance functions
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Example - Gaussian process

Model Covariance

Exponential

Matern 3/2

Cauchy-type

Gaussian
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( ) ( ) ( )2 2(   ) 1 x  e p 0C I s h h= t = + + -t t t t

( )
( )

2 2
3( ) 10 

1
 

 
C I s

h
= t = +

+
t t

t

( ) ( ) ( )22 2 2   0 expC I s h= t = + -t t t

F
Design 
matrix:

( ) ( ) ( )
( ) ( )

2

2

, ,

, t

p N N

p N

t

t

= = +

= = +

0x y Fx I

y F C C F F I

µ

µ

S ,

S



Gaussian process - model
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Norwegian wood - forestry example
.

Where to put survey lines for timber volumes information?
Typically partial, imperfect information.

Farmer must decide whether to harvest 
forest, or not. There is uncertainty about 
timber volumes and profits over the 
spatial domain.

Another decision is whether to collect 
data before making these decisions. 
If so, how and where should data be 
gathered.



Norwegian wood - posterior
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matrix:

This is Kriging prediction and associated variance.



Norwegian wood – posterior results

( ) ( ) ( ) ( )( )1 12 2,t t t tp N t t
- -

= + + - +x | y F F F I y F F F F I FS S S - S S Sµ µ



Norwegian wood – information

We can base data gathering schemes on
different criteria
• Maximum variance reduction
• Maximum entropy
• Value of information (VOI)

VOI is based on decision situation!
Others are not material – not tied to decision situation.



Spatial design

• Geometric criterion (space-filling design).
o Minimize average distance between data locations.
o Set a threshold on minimum distance to nearest data location. 

Challenging to compare various data accuracies. 
• Variance reduction criterion.
• Kriging-related criteria (slope and weight of mean).
• Entropy reduction criterion.
• Prediction error.



Variance reduction

Expected variance reduction:

( )
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Could use a weighted sum, or choose a subset of variables for prediction. 



Variance reduction (Kriging)

Overall variance 
reduction is larger for 
the random design.

( ) ( ) ( ) ( )( )1 12 2,t t t tp N t t
- -

= + + - +x | y F F F I y F F F F I FS S S - S S Sµ µ



Entropy (Shannon)

( ) ( ) log ( )Ent p p d= -òx x x x

( ) ( ) log ( )Ent p p d= -òx | y x | y x | y x

( )EMI ( ) ( | ) ( )Ent Ent p d= - òy x x y y y

Expected mutual information: 



Entropy of a Gaussian

( ) ( ) log ( )Ent p p d= -òx x x x

( ) ( )( ) 11 log 2 log
2 2
nEnt p= + +x S

Very commonly used in the design of spatial experiments 
(air quality monitoring, river monitoring networks, etc.)



Entropy blind-spot
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VOI - Pyramid of conditions

Pyramid of conditions  - VOI is different from other information criteria (entropy, 
variance, prediction error, etc.)



VOI
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VOI – Gaussian models
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.

Results - Forestry example

Total: all cells. Partial: Every cell along center lines. Aggregated partial: sums along center lines.

Low flexibility: 
Must select all units, or none.

(Results are normalized for area).



.

Norwegian wood - Insight in VOI

• Total test does not necessarily give much higher VOI than a partial test. It depends on 
the spatial design of experiment as well as the prior model (mean and dependence).

• VOI increases with larger dependence in spatial uncertainties. 

• VOI is largest when we are most indifferent in prior (mean near 0 and large prior 
uncertainty.

• VOI increases with higher accuracy of measurements. 



Implementation : Norwegian wood

- Consider profits, modeled as a Gaussian random field represented on a 25 
x 25 grid for the 625 units. The mean is m=0 at all cells, the covariance is 
exponential with st dev r=1 and correlation range r=40. Draw a random 
realization of this Gaussian process.

- One can gather imperfect data at 100 random design locations, giving 
unbiased profit measurements, and independent error with st dev 0.5. 
Draw a random dataset. 

- Compute the Kriging prediction and the associated variances.  

- Compute the VOI (using the same data design) of the decision situation 
where the farmer harvest all units or none. 

(MATLAB)

Problem:



I love rock and ore – mining example

What is the value of this
additional information?

Is mining profitable?



VOI workflow

• Low decision flexibility. De-coupled 
value function.

• Gather information by XRF or 
XMET in boreholes. No 
opportunities for adaptive testing.

• Model is a spatial Gaussian 
process.

• VOI analysis done by exact, 
Gaussian, computations.



Decision situation and data

Mining blocks. Some waste 
rock. Some high-grade.

Planned 
boreholes.



Information gathering

Planned 
boreholes.

• Total test : 265 measurements in 21 new boreholes.
• Partial test: Drilling and sampling data only in a subset of boreholes.
• Perfect testing (XRF: done in lab). Imperfect testing (XMET: handheld meter).



Prior model



Model



Prior and likelihood model
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( ){ }ma C ,0x osttEPV -= w x

VOI

( ) ( ){ } ( )Cma | ,0ox sttPoV E p d-= òy y yw yx

( ) ( ) .VOI PoV PV= -y y

Analytical solution under the Gaussian modeling assumptions.

Weights set from block model(waste or ore).



VOI : Decision regions XRF,XMET.



VOI : Decision regions, partial data.



.

I love rock and ore - Take home:

• Information connected to partial perfect testing can be less/more than total 
imperfect testing.

• Information criteria depend on design and data accuracy.
• Entropy appears to like perfect information.
• VOI can be connected with decisions and prices (not so easy for other criteria).
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Computation - Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

Computations :
• Easier with low decision flexibility ( less alternatives). 
• Easier if value decouples (sums or integrals split).
• Easier for perfect, total, information (upper bound on VOI). 
• Sometimes analytical solutions, otherwise approximations and Monte Carlo.

Main challenge.



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î

ì üï ï= = í ý
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Techniques – Computing the VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

Techniques :
• Fully analytically tractable for two-action, linear Gaussian models. 
• Analytical or partly analytical for Markovian models, graphs.

(Monte Carlo sample over data, analytical for inner expectation.)
• Various approximations and Monte Carlo usually applicable.
• Should avoid double Monte Carlo (inner and outer). Too time consuming.

Outer integral.Inner integral.



{ }max 0, wPV µ=

Fully analytical 
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Linear combination of data.



{ }max 0, wPV µ=

Partly analytical, Monte Carlo for rest 
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Use sampling.

Inner integral solved.  
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Reservoir dogs - petroleum example

• Decisions about drilling 
alternatives.

• Seismic information. Which kind?

• Model is a represented by spatial 
process, obtained by simulations. 

• VOI analysis done by a simulation-
regression approach.



Reservoir flow in heterogeneous media

Injection of 
water, pushing 
oil out.

Flow in the reservoir depends on 
the composition of rocks, 
porosity, permeability, faults, etc.

Seismic data can help identify 
these important reservoir 
properties.

Very non-linear relations!



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î
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Computation - Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

Computationally challenging:
• No decoupling in space. Joint optimization over all alternatives. 
• Non-linear value function and seismic data.



Prior - Reservoir uncertainty

This distribution of reservoir 
variables is usually represented by 
multiple Monte Carlo realizations 
from the prior distribution. 

Sample 1

Sample 1000………….

( )p xPrior is            .



.
Flow simulation and value

( ), , 1,...,1000bv b =x a

Flow simulation gives 
amount of recoverable oil, 
for each realization, with 
the development cost 
subtracted.



.
Likelihood - Seismic data

, 1,...,1000,b b =yThe likelihood is non-linear, but we 
can generate synthetic seismic data 
from the likelihood model, given 
realizations of reservoir properties.

( ) ( )( )| ,p N=y x g x T



Linking variables

Complex geology

Seismic model
Fluid flow model



.
Value and seismic data

, 1,...,1000,b b =y

- Random draws of geologic scenario 
(meandering channels or delta):
- Draw rock-type realizations
- Draw porosity realizations
- Draw permeability realizations
- Draw value by fluid flow simulation and 

economics
- Draw seismic data using physics

We next use these samples for VOI approximation.



Computation

( ) ( )VOI PoV PV= -y y

• Monte Carlo (outer) and simulation-regression for inner expectation! 

( ) ( )( ){ } ( )max , |PoV E v pÎ=å a A
y

y x a y y

Inner expectation: |x y

Outer expectation: y



Simulation-regression algorithm

( ) ( )( ){ } ( )max , |PoV E v pÎ=å a A
y

y x a y y

Inner expectation

Outer expectation

1. Simulate uncertainties:

2. Simulate values, for all alternatives:

3. Simulate data:

4. Regress samples to fit conditional mean:  
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Illustration -regression of samples

( )( ,a = 2)vE x

( )( ,a =1)vE x

( )( ,a = 2) | 1E v y =x
( )( ,a =1| 1)E v y =x

( )( ,a = 2) | 2E v y = -x

( )( ,a =1| 2)v yE = -x

y

( ),v x a



Time after time – 4D seismic case

• Decisions about infill drilling.
- Uncertainty, heterogeneity and dependence make this choice difficult.

• Data gathering decisions about time-lapse seismic data.
- Which kind of data are likely to be valuable? How much data is enough?



Time after time

• Decisions about infill drilling.
- Uncertainty, heterogeneity and dependence make this choice difficult.

• Data gathering decisions about time-lapse seismic data.
- Which kind of data are likely to be valuable? How much data is enough?

Wells drilled at the Gullfaks field, North Sea.

Well data

Geological 
knowledge

time

Production

Time lapse 
seismic

Baseline 
seismic

Infill drilling



Gullfaks case (infill drilling and 4D)

- Decisions tied to infill drilling.

- Time-lapse seismic has shown useful 
here. But no formal VOI analysis was 
conducted up-front.
- We consider this case in retrospect.

Well data

Geological 
knowledge

time

Production

Time lapse 
seismic

Baseline 
seismic

Infill drilling

5 decision alternatives.



Gullfaks case (values)

Production for 5 different infill drilling alternatives.
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Uncertainties: saturation, pressure, porosity, permeability and fault 
transmissibilities.  (Conditioned on existing data.) 



Gullfaks case (likelihood of AI data)

Synthetic time-lapse seismic:
Use rock physics relations connecting reservoir properties to AI,
(constant cement model + Gassmann’s equation). 

Simulations indicate some information about saturation from AI for 
this case. 



Gullfaks case (likelihood of R0,G data)

Synthetic time-lapse seismic:
Use rock physics relations connecting reservoir properties to (R0,G).

Simulations indicate limited information about saturation from (R0, G). 



Gullfaks case (PLS for expected values)

( )( ,ˆ | )vE x a y Fit regression model from Monte Carlo samples.
12 regressor components in the PLS regression. 



Gullfaks case (predictive performance) 

Fit of regression models is reasonable (based on AI data here). 



Gullfaks case (VOI results)

Acoustic impedance (AI) Angle information, (R0,G)

VOI of time-lapse data is about $50 million. 
No big differences in VOI of processing methods 
(but the price of these likely differ). (Bootstrap used to get distribution.)



Take home from Gullfaks case

• VOI for useful time-lapse seismic data gathering plans.
• AVO not necessarily much more informative than AI.

• Frame decision situation - alternatives and uncertainties. 
What is the key question? Here infill drilling plans. 

• Computationally difficult - require approximations.
Simulation-regression : i) generate realizations of values and data, 

ii) fit conditional expectation of values.

Future : Continuous monitoring. (Johan Sverdrup field – digitalization)
But the processing requires calibration , when/where/how is it most valuable.



Related example on CO2 monitoring:

Anyosa et al. (2021), IJGGC.



Related example on CO2 monitoring:

Use simulation and machine learning approaches to approximate the VOI.



Related example on CO2 monitoring:



Related example on CO2 monitoring:
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Related example on CO2 monitoring:

Machine learning algorithms to study seismic monitoring times.



Take home from CO2

• VOI is small early in injection program.
• VOI is small late in program (too late to change decision). 

• VOI peaks in-between (10 y)

• Trends similar, but actual values depend on regression method

Future : Real time monitoring decision support



Project case : alternatives

Suppose there is a 25 x 25 grid of reservoir variables. We want to flood the reservoir 
either from the west, or from the south. 

Alternative 1 inject.

Alternative 2 
inject.

Produce.

Problem:
Where to inject



Project case : models

There is uncertainty in the reservoir properties, possibly a channel with larger 
permeability in the middle, and some heterogeneity.  

We can sample from the model as follows: 

• Draw a regression parameter:

• Draw a Gaussian process on the 25 x 25 grid:

• Permeability is log-Gaussian:

1,...,b B=

( ) ( )2
0 0

13
| ,

144
b b b Nort
p

h
Nb b
æ ö
ç ÷= - ×

ø

-
ç ÷
è

!x x S

( ) Gamma(1,1)b pb b =!

( )0expb b=x x



Project case : models
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s s Variability due to the regression 
uncertainty and the spatial 
heterogeneity.

Two permeability realizations



Project case : values

Value is set as the time-of-flight: time it takes a particle to travel from the injector to 
the producer. Smaller is better, larger ‘value’. (This is used as a proxy for fluid flow.)

For each alternative (west or south), we compute time-of-flight as follows: 
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b
a

i

il

d
xv

Î

=å
Distance is 1 for ‘west’ 
alternative, 1.5 for ‘south’ 
alternative. 

Sum inverse permeability variables along the line.
Large permeability, smaller time of flight.



Project case : data

Data is the log-ratio of the variability in the center N-S line compared with the center E-
W line. (This might be a result of processing seismic data.)
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Large data.
Small data.

Problem:
Is data helpful?



Project case : regression

Estimate the conditional expected values by simple linear regression, using the 
samples of values and data. Do this for both ‘west’ and ‘south’ alternative.
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Project case : VOI approximation
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Best alternative seems 
to depend on high or 
low data. This should 
give positive VOI.



Plan for course

Time Topic

Day 1 Introduction and motivating examples

Elementary decision analysis and the value of information

Multivariate statistical modeling, dependence, graphs

Value of information analysis for models with dependence

Day 2 Examples of value of information analysis in Earth sciences

Statistics for Earth sciences, spatial design of experiments

Computational aspects

Sequential decisions and sequential information gathering

Small problem sets along the way.
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Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

( ) ( ) .VOI PoV PV= -y y

The analysis is usually done for static decisions and static tests:
- We make the one-time decisions here and now.
- We can only collect the data here and now.

Sequential decisions or sequential tests can give benefits.
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Sequential decision (prior value) 
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Solution is a discrete optimization method called dynamic programming: 
- Go through all possible decision paths, moving forward. 
- Find the optimal values winding backwards in the tree of paths .

This is costly for large systems, and several approximations exists.
Suboptimal strategies, using heuristics, are often used in practice, with success.
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Must now use dynamic programming for different data outcomes.

VOI is difference between posterior and prior value. 
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Sequential decisions (VOI)
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Exploration drilling example

Optimal decision can be solved exactly
when there are only a few variables (small
size problem). 

Otherwise heuristic solutions are sought.



Hydropower

Lower limit constraint.

No money for 
water going
over the dam.

Is acquiring and 
processing snow
data worthwhile?
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How to optimise reservoirs with 
- stochastic inflow
- stochastic prices

Inflow and hydro scheduling



Snow data Map view

- Data is snow level : {low, medium, high} for base case.
(Dramatic reduction of data dimension.)

Spatio-temporal datasets.



Scheduling (with information)
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- Alternative is control variable (production).
- Uncertainty is inflow, represented by scenarios. 

- Data is snow level : {low, medium, high} for base case.



Least squares Monte Carlo

Algorithm:
- Simulate inflow scenarios (10 000 models from data and time series fitting)
- Wind-up optimal solution backward in time, by least-squares fitting of

surfaces from simulated values as a function of inflow and reservoir level. 
- Optimal controls are decided by forward selection, based on largest

regression surface for current reservoir level and inflow.  



Simulation regression

Linking forward runs and backward algorithm using Markov assumption.

Reservoir
levels: 

Value is function of inflow and reservoir level. 



Regression surfaces

Highest surface sets control.

Quadratic components in regression fitting. 



Results – scheduling (prior)
Base case has two controls. 



Scheduling with snow data

Base case has three levels for snow measurements à three scenario groups. 

Data split scenarios in sub-groups.



VOI (relative numbers)

More discrimination in snow measurement – larger VOI. 

More flexibility in production controls – larger VOI
(of course also depends on time  - here week)

3 snow
classes

6 snow
classes

9 snow
classes

12 snow
classes

Two production
controls

0 0 9 21

Four production
controls

0 23 47 100



VOI and decision regions

Data costs can be divided in acquisition and processing
(type 1 or 2 – better or worse).

{ }1 2 1 2argmax 0, , / 5A BVOI P P VOI P P- - - -



Take home

• If reservoir is large relative to inflow – not much added value of snow
measurements.

• If reservoir is relatively small, and large risk of overflow or small future
production (lower limit), there is high value of snow measurements.

• More accurate processing of snow data gives larger VOI. 
Both with more classes, and less mis-classification (imperfect information).

• VOI at 10 % of prior value is significant if there is much production.



Information gathering
.

Perfect Imperfect

Total Exact observations are gathered for all 
variables. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering.

Noisy observations are gathered for all 
variables. This is common in situations with 
remote sensors with extensive coverage, e.g.
seismic, radar, satellite data.

Partial Exact observations are gathered at 
some variables. This might occur, for 
instance, when there is careful analysis 
of some samples, or sensors at some 
locations.

Noisy observations are gathered at some 
variables. Examples include noisy sensors for 
local monitoring, testing along a survey line, 
etc.

=y x = +y x e

,  subset=y xK K K ,  subset= +y xK K K Ke

Could also have sequential (adaptive) information gathering.
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Sequential information gathering
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Decision maker has the opportunity of dynamic testing, where one can stop 
testing, or continue testing, depending on the currently available data. The 
sequential order of tests and the number of tests also depend on the data.

Stop testing.

Continue testing.
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Price test.
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Sequential testing– bivariate illustration
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Sequential information (bivariate data)
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Value with no more testing (after first test):

Criterion for continued testing:

Continue testing when the additional expected value of more testing excceds the price.
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Exploration drilling example

Optimal sequential information gathering 
can be solved exactly when there are only 
a few variables. 
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Exploration drilling example

Optimal sequential information gathering can be solved 
exactly when there are only a few variables. 
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Myopic strategy for information

Myopic (near-sighted) is a common strategy for sequential problems.
It considers only one-stage at a time, not looking into the ‘future’. 

1. Find best first data design, using one-stage, if any give positive VOI.
2. Collect data (by simulation) using best design.
3. Update probability distributions, conditional on the data.
4. Find second best data, using one-stage, in new model, if any give positive VOI.
5. Collect second data (by simulation from new model) using best design.
6. Update probability distributions, conditional on the data.
7. Find third best data, using one-stage, in new model, if any give positive VOI.

1 level

2 level

3 level

…..



Sequential line testing(Kriging)

Which NS line to select

( ) ( ) ( ) ( )( )1 12 2,t t t tp N t t
- -

= + + - +x | y F F F I y F F F F I FS S S - S S Sµ µ

Problem: 1. Compute the VOI of NS lines. 
2. Update in myopic way of thinking.
(MATLAB)



AUV exploration

Atonomous sampling to 
monitor environment.
(myopic strategy).

Limited computing resources 
onboard. Use Gaussian process 
representation of spatial 
variables. 
This is updated when more 
data are gathered.



Ocean temperatures and salinity

Questions: 
- Environmental challenges
- Fish farming
- Algae bloom

Prior realizations (ocean models)

Typical AUV data



Adaptive sequential algorithm

1. Find next best direction from analytic VOI (here connected to excursion sets
classification), of all possible survey lines.

2. Collect data along currently best survey line.
3. Update statisical model in entire spatial domain given survey data.
4. Go to 1.

Myopic heuristic for dynamic program.



Excursion set algorithm
Excursion sets define regions where 

variables are above threshold.



Excursion set algorithm
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Take home : on sequential elements

• Information criterion is applied to a sequential search for good data designs. 
• The design will depend on the data, and the results can be averaged over the data, 

to approximate value of different strategies.

• Sometimes connected with spatio-temporal applications.



Summary: VOI - Pyramid of conditions

Pyramid of conditions  - VOI is different from other information criteria (entropy, 
variance, prediction error, etc.)



Summary: VOI and Earth sciences

• Alternatives are spatial, often with high flexibiliy in selection of sites, etc.

• Uncertainties are spatial, with multi-variable interactions . 

• Value function is spatial, typically involving coupled features, say through 
differential equations. It can be defined by «physics» as well as economic 
attributes. 

• Data are spatial. There are plenty opportunities for partial, total testing and a 
variety of tests (surveys, monitoring sensors, seismic, electromagnetic data, etc.)



Summary: Information gathering
.

Perfect Imperfect

Total Exact observations are gathered for all 
locations. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering.

Noisy observations are gathered for all 
locations. This is common in situations with 
remote sensors with extensive coverage, e.g.
seismic, radar, satellite data.

Partial Exact observations are gathered at 
some locations. This might occur, for 
instance, when there is careful analysis 
of rock samples along boreholes in a 
reservoir or a mine.

Noisy observations are gathered at some 
locations. Examples include hand-held (noisy) 
meters to observe grades in mine boreholes, 
electromagnetic testing along a line, biological 
surveys of species, etc.

=y x = +y x e
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Frame decision situations and values
.

Assumption: Decision Flexibility Assumption: Value Function

Low decision flexibility; 
Decoupled value

Alternatives are easily 
enumerated 

Total value is a sum of value at every unit

High decision flexibility; 
Decoupled value

None Total value is a sum of value at every unit

Low decision flexibility; 
Coupled value

Alternatives are easily 
enumerated 

None

High decision flexibility; 
Coupled value

None None 
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Summary: VOI workflow




