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Introduction

Topics

I Sequential methods for data conditioning

I State space models

I Bayesian filtering

I Kalman filter, ensemble Kalman filter
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Conditioning model to data

Model and inversion

Model for x and y is
p(x , y) = p(x)p(y |x)

For the analysis, the main interest is in the conditional p(x |y).
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Conditioning model to data

Bayes rule

p(x) from a priori knowledge, p(y |x) from data acquisition. Bayes’ rule
gives the posterior:

p(x |y) =
p(x)p(y |x)

p(y)
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Conditioning model to data

Inversion of multiple data
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Sequential estimation

Inversion of multiple data

Model for x , and y 1 and y 2 is

p(x , y 1, y 2) = p(x)p(y 1, y 2|x)

p(x) from a priori knowledge, p(y 1, y 2|x) from data acquisition.
Bayes’ rule gives the posterior:

p(x |y 1, y 2) =
p(x)p(y 1, y 2|x)

p(y 1, y 2)
∝ p(x)p(y 1, y 2|x)
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Sequential estimation

Conditional independence

p(y 1, y 2|x) = p(y 1|x)p(y 2|x)

Bayes’ rule gives the posterior:

p(x |y 1, y 2) =
p(x)p(y 1|x)p(y 2|x)

p(y 1, y 2)
∝ p(x)p(y 1|x)p(y 2|x)
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Sequential estimation

Inversion of multiple data
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Sequential estimation

Sequential Bayesian inversion

p(x |y 1, y 2) =
p(x |y 1)p(y 2|x)

p(y 2|y 1)
∝ p(x |y 1)p(y 2|x)

Generalization, t = 1, . . . ,T data sources:

p(x |y 1, . . . , y t) ∝ p(x |y 1, . . . , y t−1)p(y t |x)

This is often called sequential updating or data assimilation.
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Sequential estimation

Approaches for sequential Bayesian inversion

I Monte Carlo samples from p(x |y 1, . . . , y t−1) are updated or
re-weighted to get samples from p(x |y 1, . . . , y t).

I Closed form solution for
p(x |y 1, . . . , y t) ∝ p(x |y 1, . . . , y t−1)p(y t |x). Gaussian-linear
situation, or a discrete set of classes for x .
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Sequential estimation

Example of sequential assimilation of multiple data

I Seismic experiment with 50 receiver depths in well and 1 source on
surface (known locations).

I Use traveltime data to predict slowness in the subsurface.
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Sequential estimation

Example with traveltime data

I Traveltime = Distance
Velocity = Distance · Slowness.

I Assimilate traveltime data y1, . . . , y50 sequentially.

I Predict distribution for slowness. Initial slowness ensembles from
prior model p(x), x = (x1, . . . , x100).
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Sequential estimation

Example : Inversion after 10, 30 and 50 steps
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State space models and filtering

State space models

I Variable x t can change with index t. Index t is often time, but could
be along a road, along a well, etc.

I We have a model for how x t change with time (often assuming
dependence only on the previous time).

I We have a model for how data y t relates to x t (often assuming
conditional independence in the data).
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State space models and filtering

A Common Type of State space model

Conditional independence in process (state) model:

p(x t |x t−1, y 1, ....y t−1) = p(x t |x t−1)

Conditional independence in measurement model:

p(y t |y 1, ....y t−1, x t , . . . , x1) = p(y t |x t)
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State space models and filtering

Filtering and Prediction

Filtering goal:
p(x t |y 1, ....y t)

Prediction goal s > t:
p(x s |y 1, ....y t)
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Filtering approach

Filter
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Filtering approach

One step prediction
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Filtering approach

Filter
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Filtering approach

Predict
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Filtering approach

Filter
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Filtering approach

Predict
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Filtering approach

Predict
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Bayesian filtering

Prediction, filtering and smoothing

p(x t |y 1, ....y t−1) =

∫
p(x t−1|y 1, . . . , y t−1)p(x t |x t−1)dx t−1

p(x t |y 1, ....y t) =
p(x t |y 1, . . . , y t−1)p(y t |x t)

p(y t |y t−1, . . . , y 1)

p(x t |y 1, ....yT ), p(x |y 1, . . . , yT )

Exact closed-form solutions:

I Discrete state space models (Markov chain)

I Gaussian linear models (Kalman filter, smoother)

Not so easy for other models. Need Monte Carlo methods.
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Bayesian filtering

Special case: Linear Gaussian model assumptions

Conditional independence in process (state) model:

x t |x t−1 ∼ N(F tx t−1,Qt)

Simplest setting (static model): x t = x t−1

Conditional independence in measurement model:

y t |x t ∼ N(G tx t ,Rt)
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Kalman filtering

Kalman filter

Elegant form for building the Gaussian distribution for prediction and
filtering/analysis/assimilation:

p(x t |y 1, ....y t−1) =

∫
p(x t−1|y 1, . . . , y t−1)p(x t |x t−1)dx t−1

x t |y 1, ....y t−1 ∼ N(µt|t−1,Σt|t−1)

x t |y 1, ....y t ∼ N(µt|t ,Σt|t)
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Kalman filtering

Kalman filter : Prediction step

With linear expectation and Gaussian additive noise, the models remain
Gaussian. Need mean and covariance.
δt ∼ N(0,Qt)

µt|t−1 = E (F tx t−1 + δt |y 1, . . . , y t−1) = F tµt−1|t−1

Σt|t−1 = Var(F tx t−1 + δt |y 1, . . . , y t−1) = F tΣt−1|t−1FT
t + Qt
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Kalman filtering

Kalman filter update : Joint Gaussian

p(x t , y t |y 1, ....y t−1) is joint Gaussian

(
x t

y t

)
|y 1, . . . , y t−1 ∼ N

[(
µt|t−1

G tµt|t−1

)
,

(
Σt|t−1 Σt|t−1GT

t

G tΣt|t−1 G tΣt|t−1GT
t + Rt

)]

[x t |y t , y t−1, . . . , y 1] ∼ N(µt|t−1+K t(y t−G tµt|t−1),Σt|t−1−K tG tΣt|t−1)

K t = Σt|t−1GT
t [G tΣt|t−1GT

t + Rt ]
−1
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Kalman filtering

Example from Target Tracking

I A submarine measures the bearing to a target (frigate).

I From bearings-only data, it attempts to track the frigate.
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Kalman filtering

Example from Target Tracking : Model

Position of frigate: x t = (Northt ,Eastt ,NorthVelocityt ,EastVelocityt)
′.

x1 ∼ N(0,Q0).
Dynamical model:

x t+1 =


1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 x t + v t , v t ∼ N(0,Q)

Data equation: yt = arctan Northt−NorthSUBt

Eastt−EastSUBt
+ wt , wt ∼ N(0, r2)
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Kalman filtering

Example from Target Tracking : Filtering distribution

I The nonlinear equation model is linearized in the solution - Extended
Kalman filter.

I Filtering density p(x t |y1, . . . , yt) is approximate Gaussian.
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Kalman filtering

Example from Target Tracking : Results
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Ensemble Kalman filter

Monte Carlo sampling for filtering

Common sequential Monte Carlo methods:

I Particle filtering : re-weighting of realizations based on data-match.
Pros: exact in the asymptotic limit. Cons: challenging to make it
work for high-dimensional methods.

I Ensemble Kalman filtering : moves realizations based on correlations
with data. Pros: often works well in high-dimensional systems.
Cons: no guarantee of performance, even in the number of
ensembles go to infinity.
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Ensemble Kalman filter

Ensemble Kalman filter approach

I Method for highly nonlinear dynamical models or measurements
models.

I The forward models are black-box models. (No explicit form.)

I Using Monte Carlo realizations to represent probability distribution.

I The updating of ensembles is based on correlations between state
variables and data.
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Ensemble Kalman filter

Ensemble-based Kalman approximation

I Ensemble size B. Repeat for t = 2, . . . ,N

I xb
t−1, b = 1, . . . ,B approximately from p(x t−1|y 1, . . . , y t−1).

I Predictive realizations xb
t = f (xb

t−1; δt), b = 1, . . . ,B.

I Predictive data yb
t = g(xb

t ) + εt , εt ∼ N(0,Rt).

I Kalman weight matrix K̂ t = Σ̂xy ,t

(
Σ̂yy ,t + Rt

)−1

determined

empirically from forecast ensembles (xb
t , yb

t ), b = 1, . . . ,B.

I Kalman update of bth ensemble member at step t

xb
t = xb

t + K̂ t(y t − yb
t )



Short Course on Statistics and Uncertainty Part V

Ensemble Kalman filter

Univariate example - forecast samples

xb ∼ p(x), yb = xb + N(0, 52)
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Ensemble Kalman filter

Univariate example - regression fit
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Ensemble Kalman filter

Univariate example - observation
y = 9.
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Ensemble Kalman filter

Univariate example - analysis or update step
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Ensemble Kalman filter

Univariate example - prior and posterior
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Nonlinear examples

Geologic process models

Differential equation for sedimentation, corrected with data.
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble
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Nonlinear examples

Time evolution of ensemble

Sea level parameter - constant: θ(t) = θ0, tstart ≤ t ≤ tend
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Nonlinear examples

Reservoir simulation example

Repeated seismic data assimilation.



Short Course on Statistics and Uncertainty Part V

Nonlinear examples

EnKF approximation

I Generate B realizations of porosities, permeabilities and initial
saturation. Repeat the following over time:

I Forecast saturations with fluid flow simulator, for all realizations.

I Forecast seismic data for all realizations, using geophysical relations.

I Use forecast reservoir variables and seismic data to train the Kalman
gain.

I Update ensemble members using the Kalman update and the
observed seismic response.
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Nonlinear examples

Reservoir example results (standard and localized version)
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Summary

Course summary

I Statistical models and concepts

I Statistical dependence and graphical models

I Linear Bayesian inversion

I Markov chain Monte Carlo sampling.

I State space models and Bayesian filtering.
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