Uncertainty and statistics Part IV

Håkon Tjelmeland

CGF and Department of Mathematical Sciences Norwegian University of Science and Technology

Friday November 12th 2021

Recall the typical problem setup

* Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$

- we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
- we have observed y_1, \ldots, y_m
- distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m)=\frac{p(x_1,\ldots,x_n,y_1,\ldots,y_m)}{p(y_1,\ldots,y_m)}$$

where

$$p(y_1,\ldots,y_m)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}p(x_1,\ldots,x_n,y_1,\ldots,y_m)dx_1\cdots dx_n$$

Recall the typical problem setup

* Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$

- we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
- we have observed y_1, \ldots, y_m
- distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m)=\frac{p(x_1,\ldots,x_n,y_1,\ldots,y_m)}{p(y_1,\ldots,y_m)}$$

where

$$p(y_1,\ldots,y_m)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}p(x_1,\ldots,x_n,y_1,\ldots,y_m)dx_1\cdots dx_n$$

- common to write

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m) \propto p(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

Recall the typical problem setup

* Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$

- we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
- we have observed y_1, \ldots, y_m
- distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m)=\frac{p(x_1,\ldots,x_n,y_1,\ldots,y_m)}{p(y_1,\ldots,y_m)}$$

where

$$p(y_1,\ldots,y_m)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}p(x_1,\ldots,x_n,y_1,\ldots,y_m)dx_1\cdots dx_n$$

- common to write

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m) \propto p(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

★ Focus today:

- Monte Carlo sampling

$$(x_1,\ldots,x_n) \sim p(x_1,\ldots,x_n|y_1,\ldots,y_m)$$

- MCMC, Metropolis-Hastings algorithm, Gibbs sampling

Plan for today

- \star Introduce two example situations
 - Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
 - Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
- ★ The Metropolis–Hastings algorithm
 - the algorithm, proposal distribution
 - toy examples, intuition
 - random walk proposals, Gibbs proposals
 - what is converging?
 - reversible jump Metropolis-Hastings
- \star Metropolis–Hastings for the two example situations
 - proposal distribution
 - results

 Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.

 \star Variables in the problem:

$$- m = \{m_{ij}; i = 1, \dots, n_y, j = 1, \dots, n_x\}, m_{ij} = \left\{\frac{\Delta I_{\alpha}}{I_{\alpha}}, \frac{\Delta I_{\beta}}{I_{\beta}}, \frac{\Delta \rho}{\bar{\rho}}\right\}_{ij}$$

$$- d = \{d_{ij}, i = 1, \dots, n_y, j = 1, \dots, n_x\}, d_{ij} = \{r_{PP}(\theta), r_{PS}(\theta)\}_{ij}$$
for $\theta = 0^{\circ}(\text{only PP}), 20^{\circ}, 40^{\circ}, 55^{\circ}$

$$- \sigma_m^2: \text{ variance of } m_{ij}$$

$$- \sigma_{\alpha}^2: \text{ variance of } d_{ij}|m$$

 \star Structure of stochastic model

$$p(m,d,\sigma_m^2,\sigma_e^2) = p(\sigma_m^2)p(\sigma_e^2)p(m|\sigma_m^2)p(d|m,\sigma_e^2)$$

* Recall: $p(m, d, \sigma_m^2, \sigma_e^2) = p(\sigma_m^2)p(\sigma_e^2)p(m|\sigma_m^2)p(d|m, \sigma_e^2)$

 (σ_m^2)

m

* Model components
-
$$m|\sigma_m^2 \sim N(\mu_m, \sigma_m^2 S_m)$$

- $d|m, \sigma_e^2 \sim N(f(m), \sigma_e^2 S_e)$
 $d = f(m) + e, e \sim N(0, \sigma_e^2 S_e)$
- $\sigma_m^2 \sim IG(\alpha_m, \beta_m)$
- $\sigma_e^2 \sim IG(\alpha_e, \beta_e)$

* Recall: $p(m, d, \sigma_m^2, \sigma_e^2) = p(\sigma_m^2)p(\sigma_e^2)p(m|\sigma_m^2)p(d|m, \sigma_e^2)$

 σ_m^2

т

* Model components
-
$$m|\sigma_m^2 \sim N(\mu_m, \sigma_m^2 S_m)$$

- $d|m, \sigma_e^2 \sim N(f(m), \sigma_e^2 S_e)$
 $d = f(m) + e, e \sim N(0, \sigma_e^2 S_e)$
- $\sigma_m^2 \sim IG(\alpha_m, \beta_m)$
- $\sigma_e^2 \sim IG(\alpha_e, \beta_e)$

- \star Use three versions for f(m)
 - Zoeppritz equations
 - quadratic approximation of the Zoeppritz equations
 - linear approximation of the Zoeppritz equations

Quadratic approximation of the Zoeppritz equations

$$r_{\rm PP} = \frac{1}{2\cos^2\theta_p} \frac{\Delta I_{\alpha}}{\bar{I}_{\alpha}} - 4\sin^2\theta_s \frac{\Delta I_{\beta}}{\bar{I}_{\beta}} - \frac{1}{2}\tan^2\theta_p \left(1 - 4\gamma^2\cos^2\theta_p\right) \frac{\Delta\rho}{\bar{\rho}} + \tan\theta_p \tan\theta_s \left\{ 4\gamma^2 (1 - (1 + \gamma^2)\sin^2\theta_p) \left(\frac{\Delta I_{\beta}}{\bar{I}_{\beta}}\right)^2 - 4\gamma^2 \left[1 - \left(\frac{3}{2} + \gamma^2\right)\sin^2\theta_p \right] \left(\frac{\Delta I_{\beta}}{\bar{I}_{\beta}} \frac{\Delta\rho}{\bar{\rho}}\right) + \left[\gamma^2 (1 - (2 + \gamma^2)\sin^2\theta_p) - \frac{1}{4} \right] \left(\frac{\Delta\rho}{\bar{\rho}}\right)^2 \right\}$$

$$\begin{split} r_{\rm PS} &= \sqrt{\tan \theta_p \tan \theta_s} \Biggl\{ \Biggl[\left(1 - \cos \theta_s (\cos \theta_s + \gamma \cos \theta_p) \right) \left(2 \frac{\Delta I_\beta}{\bar{I}_\beta} - \frac{\Delta \rho}{\bar{\rho}} \right) - \frac{1}{2} \frac{\Delta \rho}{\bar{\rho}} \Biggr] \\ &+ \frac{1}{2} \Biggl[\left(1 - \cos \theta_s (\cos \theta_s - \gamma \cos \theta_p) \right) \left(2 \frac{\Delta I_\beta}{\bar{I}_\beta} - \frac{\Delta \rho}{\bar{\rho}} \right) - \frac{1}{2} \frac{\Delta \rho}{\bar{\rho}} \Biggr] \\ &\times \Biggl[\frac{1}{2 \cos^2 \theta_p} \frac{\Delta I_\alpha}{\bar{I}_\alpha} + \left(\frac{1}{2 \cos^2 \theta_s} - 8 \sin^2 \theta_s \right) \frac{\Delta I_\beta}{\bar{I}_\beta} \\ &+ \Biggl(4 \sin^2 \theta_s - \frac{1}{2} (\tan^2 \theta_p + \tan^2 \theta_s) \Biggr) \frac{\Delta \rho}{\bar{\rho}} \Biggr] \Biggr\}, \end{split}$$

* Recall: $p(m, d, \sigma_m^2, \sigma_e^2) = p(\sigma_m^2)p(\sigma_e^2)p(m|\sigma_m^2)p(d|m, \sigma_e^2)$

т

- * Model components - $m|\sigma_m^2 \sim N(\mu_m, \sigma_m^2 S_m)$ - $d|m, \sigma_e^2 \sim N(f(m), \sigma_e^2 S_e)$ $d = f(m) + e, e \sim N(0, \sigma_e^2 S_e)$ - $\sigma_m^2 \sim IG(\alpha_m, \beta_m)$ - $\sigma_e^2 \sim IG(\alpha_e, \beta_e)$
- * Use three versions of f(m)
 - Zoeppritz equations
 - quadratic approximation of the Zoeppritz equations
 - linear approximation of the Zoeppritz equations

* Recall: $p(m, d, \sigma_m^2, \sigma_e^2) = p(\sigma_m^2)p(\sigma_e^2)p(m|\sigma_m^2)p(d|m, \sigma_e^2)$

m

- * Model components - $m|\sigma_m^2 \sim N(\mu_m, \sigma_m^2 S_m)$ - $d|m, \sigma_e^2 \sim N(f(m), \sigma_e^2 S_e)$ $d = f(m) + e, e \sim N(0, \sigma_e^2 S_e)$ - $\sigma_m^2 \sim IG(\alpha_m, \beta_m)$ - $\sigma_e^2 \sim IG(\alpha_e, \beta_e)$
- * Use three versions of f(m)
 - Zoeppritz equations
 - quadratic approximation of the Zoeppritz equations
 - linear approximation of the Zoeppritz equations
- ⋆ Distribution of interest

$$p(m, \sigma_m^2, \sigma_e^2 | d) \propto p(m, d, \sigma_m^2, \sigma_e^2)$$

 Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).
 A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.

$\star\,$ Variables in the problem:

- $\kappa = {\kappa_{ij}; i = 1, ..., n_y, j = 1, ..., n_x}, \kappa_{ij} \in {0, 1}$ (shale, oil sand) - $m = {m_{ij}; i = 1, ..., n_y, j = 1, ..., n_x}, m_{ij} = (\text{impedance}, v_p/v_s)_{ij}$ - $d = {d_{ij}; i = 1, ..., n_y, j = 1, ..., n_x}, d_{ij} = (\text{near offset}, \text{far offset})_{ij}$ - θ : parameters vector describing stochastic model for κ (fixed)
- * Structure of the stochastic model

$$(\kappa) \rightarrow (m) \rightarrow (d)$$

$$p(\kappa, m, d|\theta) = p(\kappa|\theta)p(m|\kappa)p(d|m)$$

* Recall: $p(\kappa, m, d|\theta) = p(\kappa|\theta)p(m|\kappa)p(d|m)$

$$(\kappa \rightarrow m \rightarrow d)$$

- \star Model components
 - $-\kappa| heta\sim {
 m Markov}\ {
 m mesh}\ {
 m model}$

-
$$m_{ij}|\kappa \sim \mathsf{N}(\mu_{\kappa_{ij}}, \Sigma_{\kappa_{ij}})$$

 $- d|m \sim N(WADm, \Sigma_{\varepsilon})$

$$d = WADm + \varepsilon, \varepsilon \sim N(0, \Sigma_{\varepsilon})$$

* Recall: $p(\kappa, m, d|\theta) = p(\kappa|\theta)p(m|\kappa)p(d|m)$

$$(\kappa \rightarrow m \rightarrow d)$$

- \star Model components
 - $\kappa | \theta \sim {
 m Markov}$ mesh model

$$- m_{ij} | \kappa \sim \mathsf{N}(\mu_{\kappa_{ij}}, \Sigma_{\kappa_{ij}})$$

 $- d|m \sim N(WADm, \Sigma_{\varepsilon})$

$$d = W\!ADm + arepsilon, arepsilon \sim \mathsf{N}(0, \Sigma_arepsilon)$$

Markov mesh model

* Order the nodes in lexicographical order from 1 to $n = n_x \cdot n_y$

$$p(\kappa|\theta) = \prod_{i=1}^{n} p(\kappa_i|\kappa_{< i}, \theta)$$

* Conditional independence (Markov) assumption

$$p(\kappa|\kappa_{\langle i},\theta) = p(\kappa_i|\kappa_{\nu_i},\theta)$$

 \star Thus

$$p(\kappa|\theta) = \prod_{i=1}^{n} p(\kappa_i|\kappa_{\nu_i}, \theta)$$

Markov mesh model

★ Recall:

$$p(\kappa|\theta) = \prod_{i=1}^{n} p(\kappa_i|\kappa_{\nu_i}, \theta)$$

* Reformulation of $p(\kappa_i | \kappa_{\nu_i}, \theta)$

$$egin{aligned} heta_i(\kappa_{
u_i}) &= \ln\left(rac{p(\kappa_i=1|\kappa_{
u_i}, heta)}{1-p(\kappa_i=1|\kappa_{
u_i}, heta)}
ight) \ heta_i(\kappa_{
u_i}) &= \sum_{\lambda\subseteq\kappa_{
u_i}}eta(\lambda) \end{aligned}$$

 $\star\,$ Limit the number of model parameters by setting some $\beta(\lambda)=0$

$$\star \ \theta = (\nu_i; \beta(\lambda), \nu_i \subseteq \nu_i)$$

How to specify θ ?

- $\star\,$ Values in $\theta\,$ does not have a simple interpretation
 - difficult to set values consistent with prior knowledge
- \star Use a training image
 - hand drawn or from area with similar geological origin
 - contain information about typical spatial structures

 $\star\,$ Let θ be a Monte Carlo sample from

 $p(heta| ext{training image}) \propto p(heta) p(ext{training image}| heta)$

* Recall:
$$p(\kappa, m, d|\theta) = p(\kappa|\theta)p(m|\kappa)p(d|m)$$

 $\kappa \rightarrow m \rightarrow d$

- \star Model components
 - $\kappa | \theta \sim {
 m Markov}$ mesh model

-
$$m_{ij}|\kappa \sim \mathsf{N}(\mu_{\kappa_{ij}}, \Sigma_{\kappa_{ij}})$$

 $- d|m \sim N(WADm, \Sigma_{\varepsilon})$

$$d = W\!ADm + arepsilon, arepsilon \sim \mathsf{N}(0, \Sigma_arepsilon)$$

* Recall:
$$p(\kappa, m, d|\theta) = p(\kappa|\theta)p(m|\kappa)p(d|m)$$

 $\kappa \rightarrow m \rightarrow d$

- \star Model components
 - $\kappa | \theta \sim {
 m Markov}$ mesh model

-
$$m_{ij}|\kappa \sim \mathsf{N}(\mu_{\kappa_{ij}}, \Sigma_{\kappa_{ij}})$$

 $- d|m \sim N(WADm, \Sigma_{\varepsilon})$

$$d = W\!ADm + arepsilon, arepsilon \sim \mathsf{N}(0, \Sigma_arepsilon)$$

 \star Distribution of interest

$$p(\kappa, m|\theta, d) \propto p(\kappa, m, d|\theta)$$

– can analyticall integrate over m to find formula for $p(\kappa|\theta,d) \propto p(\kappa,d|\theta)$

- \star Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$
 - we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
 - we have observed y_1, \ldots, y_m
 - distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m) \propto p(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

 \star Note: The y's are observed numbers

- \star Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$
 - we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
 - we have observed y_1, \ldots, y_m
 - distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m) \propto p(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

- \star Note: The y's are observed numbers
- \star We now simplify the notation and write

$$p(x) = p(x_1, \dots, x_n) = c \cdot h(x)$$
 in stead of $p(x_1, \dots, x_n | y_1, \dots, y_m)$

- we have a formula for $h(x) = p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
- we don't know the value of c

- \star Have a model for stochastic variables, $x_1, \ldots, x_n, y_1, \ldots, y_m$
 - we have a formula for $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$
 - we have observed y_1, \ldots, y_m
 - distribution of interest

$$p(x_1,\ldots,x_n|y_1,\ldots,y_m) \propto p(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

- \star Note: The y's are observed numbers
- \star We now simplify the notation and write

$$p(x) = p(x_1, \dots, x_n) = c \cdot h(x)$$
 in stead of $p(x_1, \dots, x_n | y_1, \dots, y_m)$

- we have a formula for $h(x) = p(x_1, \ldots, x_n, y_1, \ldots, y_m)$

- we don't know the value of c

* So the goal is to generate a Monte Carlo sample

$$x \sim p(x) = c \cdot h(x)$$

 $\star\,$ Want a Monte Carlo sample from

$$x \sim p(x) = c \cdot h(x)$$

- \star Metropolis–Hastings algorithm: Generate x^1, x^2, \ldots as follows
 - 1. Generate/set x^1 somehow

2. For
$$k = 2, 3, \ldots, K$$

- (a) Generate a potential new values $z^k \sim q(z^k | x^{k-1})$
- (b) Compute acceptance probability

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

3. End

 $\star\,$ Want a Monte Carlo sample from

$$x \sim p(x) = c \cdot h(x)$$

- \star Metropolis–Hastings algorithm: Generate x^1, x^2, \ldots as follows
 - 1. Generate/set x^1 somehow

2. For
$$k = 2, 3, \ldots, K$$

- (a) Generate a potential new values $z^k \sim q(z^k | x^{k-1})$
- (b) Compute acceptance probability

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

(c) Generate
$$u^k \sim \text{Uniform}[0, 1]$$

(d) If $(u^k \leq \alpha(z^k | x^{k-1}))$
 $x^k = z^k \text{ (accept } z^k)$
else
 $x^k = x^{k-1} \text{ (reject } z^k)$

3. End

* For k large enough, x^k is (approximately) from p(x)

Random walk proposal

- * Target distribution: p(x)
- \star Proposal distribution: $z^k \sim q(z^k | x^{k-1})$
- \star Acceptance probability:

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

Random walk proposal

- * Target distribution: p(x)
- \star Proposal distribution: $z^k \sim q(z^k | x^{k-1})$
- \star Acceptance probability:

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

★ Random walk proposal:

$$z_i^k = x_i^{k-1} + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma^2)$$

- formula for the proposal distribution

$$q(z^{k}|x^{k-1}) = \frac{1}{(2\pi\sigma^{2})^{\frac{n}{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(z^{k}-x^{k-1})^{T}(z^{k}-x^{k-1})\right\}$$

- acceptance probability

$$\alpha(z^k|x^{k-1}) = \min\left\{1, \frac{p(z^k)}{p(x^{k-1})}\right\}$$

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=1.0$
- * Run K = 100 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=1.0$
- * Run K = 100 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=1.0$
- * Run K = 1000 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=0.1$
- * Run K = 100 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=0.1$
- \star Run K = 1000 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=10.0$
- * Run K = 100 iterations

- * Target distribution: p(x)
- * Start with $x^1 = (4, -2)$
- $\star\,$ Random walk proposal with $\sigma=10.0$
- \star Run K = 1000 iterations

Gibbs sampling

- * Target distribution: p(x)
- \star Proposal distribution: $z^k \sim q(z^k | x^{k-1})$
- \star Acceptance probability:

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

Gibbs sampling

- * Target distribution: p(x)
- \star Proposal distribution: $z^k \sim q(z^k | x^{k-1})$
- * Acceptance probability:

$$\alpha(z^{k}|x^{k-1}) = \min\left\{1, \frac{p(z^{k})}{p(x^{k-1})} \cdot \frac{q(x^{k-1}|z^{k})}{q(z^{k}|x^{k-1})}\right\}$$

- ★ Gibbs proposal:
 - sample $i \sim \text{Uniform}\{1, \ldots, n\}$
 - sample $z_i^k \sim p(x_i | x_1^{k-1}, \dots, x_{i-1}^{k-1}, x_{i+1}^{k-1}, \dots, x_n^{k-1})$
 - set $z_j^k = x_j^{k-1}$ for $j \neq i$
 - acceptance probability

$$\alpha(z^k|x^{k-1})=1$$

Toy example: Gibbs sampling

- * Target distribution: p(x)
- * Run K = 100 iterations

Toy example: Gibbs sampling

- * Target distribution: p(x)
- \star Run K = 100 iterations

Toy example: Gibbs sampling

- * Target distribution: p(x)
- * Run K = 1000 iterations

Toy example: Combine Gibbs and random walk

- * Target distribution: p(x)
- \star Gibbs proposal for x_1
- \star Random walk proposal for x_2

$$z_2^k = x_2^{k-1} + \varepsilon, \ \varepsilon \sim \mathsf{N}(0,1)$$

* Run K = 100 iterations

Toy example: Combine Gibbs and random walk

- * Target distribution: p(x)
- \star Gibbs proposal for x_1
- \star Random walk proposal for x_2

$$z_2^k = x_2^{k-1} + \varepsilon, \ \ \varepsilon \sim \mathsf{N}(0,1)$$

* Run K = 100 iterations

Toy example: Combine Gibbs and random walk

- * Target distribution: p(x)
- \star Gibbs proposal for x_1
- \star Random walk proposal for x_2

$$z_2^k = x_2^{k-1} + \varepsilon, \ \varepsilon \sim \mathsf{N}(0,1)$$

Convergence of the Metropolis-Hastings algorithm

- \star Note: It is <u>not</u> x^k that is converging
 - it is the distribution of x^k that is converging
 - we can only look at and plot x^k

 \star Common to evaluate convergence by plotting trace plots, i.e. h(x)

Convergence of the Metropolis-Hastings algorithm

- * Note: It is <u>not</u> x^k that is converging
 - it is the distribution of x^k that is converging
 - we can only look at and plot x^k
- \star Common to evaluate convergence by plotting trace plots, i.e. h(x)
- ★ Experience:
 - for many distributions p(x) simple proposal distribution gives reasonable quick convergence
 - the convergence can be extremely slow not useful!
 - to choose a good proposal distribution for a given distribution often requires experience
 - typically a proposal distribution modify only a few components in x^k

Convergence of the Metropolis-Hastings algorithm

- * Note: It is <u>not</u> x^k that is converging
 - it is the distribution of x^k that is converging
 - we can only look at and plot x^k
- \star Common to evaluate convergence by plotting trace plots, i.e. h(x)
- ★ Experience:
 - for many distributions p(x) simple proposal distribution gives reasonable quick convergence
 - the convergence can be extremely slow not useful!
 - to choose a good proposal distribution for a given distribution often requires experience
 - typically a proposal distribution modify only a few components in x^k
- * Reversible jump Metropolis-Hastings
 - also the dimension of x is stochastic
 - the number of stochastic variables is a stochastic variable

Inversion of seismic reflection coefficients

- Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
- ⋆ Distribution of interest

$$p(m, \sigma_m^2, \sigma_e^2 | d) \propto p(m, d, \sigma_m^2, \sigma_e^2)$$

Inversion of seismic reflection coefficients

- Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
- * Distribution of interest

$$p(m, \sigma_m^2, \sigma_e^2 | d) \propto p(m, d, \sigma_m^2, \sigma_e^2)$$

* Simulation example: Reference contrasts

Simulation example: Observations

★ "Observed" PP and PS reflection coefficients using the Zoeppritz model

-0.04

-0.06

-0.08

-0.08

-0.10

-0.12-0.14

-0.16

-0.10

-0.12

-0.14

-0.16

-0.18

Proposal distributions

★ Target distribution:

$$p(m, \sigma_m^2, \sigma_e^2 | d) \propto p(m, d, \sigma_m^2, \sigma_e^2)$$

- * Proposal distributions:
 - Gibbs proposal for σ_m^2
 - Gibbs proposal for $\sigma_{\rm e}^2$
 - proposal for m_A based on a linearised model

$$p^{\text{lin}}(m_A|m_B,\sigma_m^2,\sigma_e^2)$$

note: the acceptance probability is correcting the error done when proposing from a linearised model and by not conditioning on m_c

Inversion of seismic reflection coefficients: Results

- $\star\,$ Resulting bias in inverted reflection coefficients
 - recall: results for three forward functions

Inversion of seismic reflection coefficients: Results

* Distribution of σ_m^2 and σ_e^2 - recall: results for three forward functions

Lithology/fluid class prediction using a Markov mesh prior

- Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).
 A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
- \star Distribution of interest

 $p(\kappa| heta, d) \propto p(\kappa, d| heta)$

Lithology/fluid class prediction using a Markov mesh prior

- Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).
 A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
- ⋆ Distribution of interest

$$p(\kappa| heta, d) \propto p(\kappa, d| heta)$$

 \star Near (left) and far (right) offset seismic data

Lithology/fluid class prediction using a Markov mesh prior

- Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).
 A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
- ⋆ Distribution of interest

$$p(\kappa| heta, d) \propto p(\kappa, d| heta)$$

* Near (left) and far (right) offset seismic data

 \star First: Construction of the prior, $p(\kappa|\theta)$

Prior $p(\kappa)$

* Recall: Markov mesh, $\theta = (\nu_i; \beta(\lambda), \nu_i \subseteq \nu_i)$

 \star Training image

 \star Use reversible jump Metropolis–Hastings to sample from $p(\theta|\text{training image}) \propto p(\theta)p(\text{training image}|\theta)$

The fitted prior

★ Training image

 $\star\,$ Neighbourhood and Monte Carlo samples

•

Proposal distributions

★ Target distribution:

 $p(\kappa|\theta, d) \propto p(\kappa, d|\theta)$

* Proposal distributions

- Gibbs proposal for $\kappa_i = (\kappa_{ij}, j = 1, \dots, nx)$

Lithology/fluid class prediction: Results

 \star Monte Carlo samples from posterior

Lithology/fluid class prediction: Results

 $\star\,$ Marginal probabilities and most probable value

Markov mesh prior

Simpler prior

Lithology/fluid class prediction: Results

* Probabilities for connectivity

Markov mesh prior

Simpler prior

Markov chain Monte Carlo summary

- $\star\,$ Metropolis–Hastings is extremely flexible
 - can sample from almost any distribution
- \star Metropolis–Hastings can be reasonable fast or extremely slow
- \star If you can sample without using Metropolis–Hastings:
 - do not use Metropolis–Hastings
- ★ If you cannot sample without using Metropolis–Hastings:
 - use Metropolis-Hastings

Markov chain Monte Carlo summary

- ★ Metropolis–Hastings is extremely flexible
 - can sample from almost any distribution
- \star Metropolis–Hastings can be reasonable fast or extremely slow
- \star If you can sample without using Metropolis–Hastings:
 - do not use Metropolis–Hastings
- ★ If you cannot sample without using Metropolis–Hastings:
 - use Metropolis-Hastings

 Next Friday: Alternatives to MCMC for specific classes of models