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Recall the typical problem setup
? Have a model for stochastic variables, x1, . . . , xn, y1, . . . , ym

– we have a formula for p(x1, . . . , xn, y1, . . . , ym)
– we have observed y1, . . . , ym
– distribution of interest

p(x1, . . . , xn|y1, . . . , ym) =
p(x1, . . . , xn, y1, . . . , ym)

p(y1, . . . , ym)

where

p(y1, . . . , ym) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xn, y1, . . . , ym)dx1 · · · dxn

– common to write

p(x1, . . . , xn|y1, . . . , ym) ∝ p(x1, . . . , xn, y1, . . . , ym)

? Focus today:
– Monte Carlo sampling

(x1, . . . , xn) ∼ p(x1, . . . , xn|y1, . . . , ym)

– MCMC, Metropolis–Hastings algorithm, Gibbs sampling
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Plan for today

? Introduce two example situations
– Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear

Bayesian joint inversion of seismic reflection coefficients,
Geophysical Journal International.

– Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian
model for lithology/fluid class prediction using a Markov mesh
prior fitted from a training image, Geophysical Prospecting.

? The Metropolis–Hastings algorithm
– the algorithm, proposal distribution
– toy examples, intuition
– random walk proposals, Gibbs proposals
– what is converging?
– reversible jump Metropolis–Hastings

? Metropolis–Hastings for the two example situations
– proposal distribution
– results



Inversion of seismic reflection coefficients

? Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B.
(2008). Non-linear Bayesian joint inversion of seismic
reflection coefficients, Geophysical Journal International.



Inversion of seismic reflection coefficients

? Variables in the problem:
– m = {mij ; i = 1, . . . , ny , j = 1, . . . , nx},mij =

{
∆Iα
Īα
,

∆Iβ
Īβ
, ∆ρ
ρ̄

}
ij

– d = {dij , i = 1, . . . , ny , j = 1, . . . , nx}, dij = {rPP(θ), rPS(θ)}ij
for θ = 0o(only PP), 20o , 40o , 55o

– σ2
m: variance of mij

– σ2
e : variance of dij |m

? Structure of stochastic model

dσ2
e

m

σ2
m

p(m, d , σ2
m, σ

2
e ) = p(σ2

m)p(σ2
e )p(m|σ2

m)p(d |m, σ2
e )



Inversion of seismic reflection coefficients
? Recall: p(m, d , σ2

m, σ
2
e ) = p(σ2

m)p(σ2
e )p(m|σ2

m)p(d |m, σ2
e )

dσ2
e

m

σ2
m

? Model components
– m|σ2

m ∼ N(µm, σ
2
mSm)

– d |m, σ2
e ∼ N(f (m), σ2

eSe)

d = f (m) + e, e ∼ N(0, σ2
eSe)

– σ2
m ∼ IG(αm, βm)

– σ2
e ∼ IG(αe , βe)

? Use three versions for f (m)

– Zoeppritz equations
– quadratic approximation of the Zoeppritz equations
– linear approximation of the Zoeppritz equations

? Something here.
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Quadratic approximation of the Zoeppritz equations
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Lithology/fluid class prediction using a Markov mesh prior
? Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).

A Bayesian model for lithology/fluid class prediction using a
Markov mesh prior fitted from a training image, Geophysical
Prospecting.



Lithology/fluid class prediction using a Markov mesh prior

? Variables in the problem:
– κ = {κij ; i = 1, . . . , ny , j = 1, . . . , nx}, κij ∈ {0, 1} (shale, oil sand)
– m = {mij ; i = 1, . . . , ny , j = 1, . . . , nx}, mij = (impedance, vp/vs)ij
– d = {dij ; i = 1, . . . , ny , j = 1, . . . , nx}, dij = (near offset, far offset)ij
– θ: parameters vector describing stochastic model for κ (fixed)

? Structure of the stochastic model

κ m d

p(κ,m, d |θ) = p(κ|θ)p(m|κ)p(d |m)



Lithology/fluid class prediction using a Markov mesh prior
? Recall: p(κ,m, d |θ) = p(κ|θ)p(m|κ)p(d |m)

κ m d

? Model components
– κ|θ ∼ Markov mesh model
– mij |κ ∼ N(µκij ,Σκij )
– d |m ∼ N(WADm,Σε)

d = WADm + ε, ε ∼ N(0,Σε)

wavelet for near offset wavelet for far offset
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Markov mesh model

? Order the nodes in lexicographical order from 1 to n = nx · ny

p(κ|θ) =
n∏

i=1

p(κi |κ<i , θ)

? Conditional independence (Markov) assumption

p(κ|κ<i , θ) = p(κi |κνi , θ)

? Thus

p(κ|θ) =
n∏

i=1

p(κi |κνi , θ)



Markov mesh model
? Recall:

p(κ|θ) =
n∏

i=1

p(κi |κνi , θ)

? Reformulation of p(κi |κνi , θ)

θi (κνi ) = ln

(
p(κi = 1|κνi , θ)

1− p(κi = 1|κνi , θ)

)
θi (κνi ) =

∑
λ⊆κνi

β(λ)

? Limit the number of model parameters by setting some β(λ) = 0

? θ = (νi ;β(λ), νi ⊆ νi )



How to specify θ?

? Values in θ does not have a simple interpretation
– difficult to set values consistent with prior knowledge

? Use a training image
– hand drawn or from area with similar geological origin
– contain information about typical spatial structures

? Let θ be a Monte Carlo sample from

p(θ|training image) ∝ p(θ)p(training image|θ)



Lithology/fluid class prediction using a Markov mesh prior

? Recall: p(κ,m, d |θ) = p(κ|θ)p(m|κ)p(d |m)

κ m d

? Model components
– κ|θ ∼ Markov mesh model
– mij |κ ∼ N(µκij ,Σκij )
– d |m ∼ N(WADm,Σε)

d = WADm + ε, ε ∼ N(0,Σε)

? Distribution of interest
p(κ,m|θ, d) ∝ p(κ,m, d |θ)

– can analyticall integrate over m to find formula for

p(κ|θ, d) ∝ p(κ, d |θ)
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Markov chain Monte Carlo

? Have a model for stochastic variables, x1, . . . , xn, y1, . . . , ym
– we have a formula for p(x1, . . . , xn, y1, . . . , ym)
– we have observed y1, . . . , ym
– distribution of interest

p(x1, . . . , xn|y1, . . . , ym) ∝ p(x1, . . . , xn, y1, . . . , ym)

? Note: The y ’s are observed numbers

? We now simplify the notation and write

p(x) = p(x1, . . . , xn) = c · h(x) in stead of p(x1, . . . , xn|y1, . . . , ym)

– we have a formula for h(x) = p(x1, . . . , xn, y1, . . . , ym)
– we don’t know the value of c

? So the goal is to generate a Monte Carlo sample

x ∼ p(x) = c · h(x)
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Markov chain Monte Carlo
? Want a Monte Carlo sample from

x ∼ p(x) = c · h(x)

? Metropolis–Hastings algorithm: Generate x1, x2, . . . as follows
1. Generate/set x1 somehow
2. For k = 2, 3, . . . ,K

(a) Generate a potential new values zk ∼ q(zk |xk−1)
(b) Compute acceptance probability

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)
· q(x

k−1|zk)
q(zk |xk−1)

}
(c) Generate uk ∼ Uniform[0, 1]
(d) If (uk ≤ α(zk |xk−1)

xk = zk (accept zk)
else
xk = xk−1 (reject zk)

3. End

? For k large enough, xk is (approximately) from p(x)
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Random walk proposal
? Target distribution: p(x)

? Proposal distribution: zk ∼ q(zk |xk−1)

? Acceptance probability:

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)
· q(xk−1|zk)

q(zk |xk−1)

}

? Random walk proposal:

zki = xk−1
i + εi , εi ∼ N(0, σ2)

– formula for the proposal distribution

q(zk |xk−1) =
1

(2πσ2)
n
2

exp

{
− 1
2σ2 (zk − xk−1)T (zk − xk−1)

}
– acceptance probability

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)

}



Random walk proposal
? Target distribution: p(x)

? Proposal distribution: zk ∼ q(zk |xk−1)

? Acceptance probability:

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)
· q(xk−1|zk)

q(zk |xk−1)

}
? Random walk proposal:

zki = xk−1
i + εi , εi ∼ N(0, σ2)

– formula for the proposal distribution

q(zk |xk−1) =
1

(2πσ2)
n
2

exp

{
− 1
2σ2 (zk − xk−1)T (zk − xk−1)

}
– acceptance probability

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)

}



Toy example: Random walk proposal

? Target distribution: p(x)
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? Start with x1 = (4,−2)

? Random walk proposal with σ = 1.0
? Run K = 100 iterations
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Toy example: Random walk proposal

? Target distribution: p(x)
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? Start with x1 = (4,−2)

? Random walk proposal with σ = 1.0
? Run K = 1000 iterations
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Toy example: Random walk proposal

? Target distribution: p(x)
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? Random walk proposal with σ = 0.1
? Run K = 100 iterations
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Toy example: Random walk proposal

? Target distribution: p(x)

−2 0 2 4

−
2

0
2

4

x1

x2

 0.01 

 0.02 

 0.03 

 0.04 

 0.04 

 0.04 

 0.05 

 0.05 

 0.06 

 0.06 

 0.07 

 0.08 

 0.09 

? Start with x1 = (4,−2)

? Random walk proposal with σ = 10.0
? Run K = 100 iterations
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Gibbs sampling

? Target distribution: p(x)

? Proposal distribution: zk ∼ q(zk |xk−1)

? Acceptance probability:

α(zk |xk−1) = min

{
1,

p(zk)

p(xk−1)
· q(xk−1|zk)

q(zk |xk−1)

}

? Gibbs proposal:
– sample i ∼ Uniform{1, . . . , n}
– sample zki ∼ p(xi |xk−1

1 , . . . , xk−1
i−1 , x

k−1
i+1 , . . . , x

k−1
n )

– set zkj = xk−1
j for j 6= i

– acceptance probability

α(zk |xk−1) = 1
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Toy example: Gibbs sampling

? Target distribution: p(x)
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Toy example: Combine Gibbs and random walk

? Target distribution: p(x)
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? Gibbs proposal for x1

? Random walk proposal for x2

zk2 = xk−1
2 + ε, ε ∼ N(0, 1)

? Run K = 100 iterations
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Convergence of the Metropolis–Hastings algorithm

? Note: It is not xk that is converging
– it is the distribution of xk that is converging
– we can only look at and plot xk

? Common to evaluate convergence by plotting trace plots, i.e. h(x)

? Experience:
– for many distributions p(x) simple proposal distribution gives

reasonable quick convergence
– the convergence can be extremely slow — not useful!
– to choose a good proposal distribution for a given distribution

often requires experience
– typically a proposal distribution modify only a few components

in xk

? Reversible jump Metropolis–Hastings
– also the dimension of x is stochastic
– the number of stochastic variables is a stochastic variable
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in xk

? Reversible jump Metropolis–Hastings
– also the dimension of x is stochastic
– the number of stochastic variables is a stochastic variable
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Simulation example: Observations
? "Observed" PP and PS reflection coefficients using the

Zoeppritz model



Proposal distributions
? Target distribution:

p(m, σ2
m, σ

2
e |d) ∝ p(m, d , σ2

m, σ
2
e )

dσ2
e

m

σ2
m

? Proposal distributions:
– Gibbs proposal for σ2

m

– Gibbs proposal for σ2
e

– proposal for mA based on a linearised model

plin(mA|mB , σ
2
m, σ

2
e )

note: the acceptance probability is correcting the error done
when proposing from a linearised model and by not
conditioning on mc



Inversion of seismic reflection coefficients: Results

? Resulting bias in inverted reflection coefficients
– recall: results for three forward functions



Inversion of seismic reflection coefficients: Results

? Distribution of σ2
m and σ2

e

– recall: results for three forward functions



Lithology/fluid class prediction using a Markov mesh prior
? Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019).

A Bayesian model for lithology/fluid class prediction using a
Markov mesh prior fitted from a training image, Geophysical
Prospecting.

? Distribution of interest

p(κ|θ, d) ∝ p(κ, d |θ)

? Near (left) and far (right) offset seismic data

? First: Construction of the prior, p(κ|θ)
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Prior p(κ)
? Recall: Markov mesh, θ = (νi ;β(λ), νi ⊆ νi )

? Training image

? Use reversible jump Metropolis–Hastings to sample from

p(θ|training image) ∝ p(θ)p(training image|θ)



The fitted prior
? Training image

? Neighbourhood and Monte Carlo samples



Proposal distributions

? Target distribution:

p(κ|θ, d) ∝ p(κ, d |θ)

? Proposal distributions
– Gibbs proposal for κi = (κij , j = 1, . . . , nx)

i



Lithology/fluid class prediction: Results
? Monte Carlo samples from posterior

Markov mesh prior Simpler prior



Lithology/fluid class prediction: Results
? Marginal probabilities and most probable value

Markov mesh prior Simpler prior



Lithology/fluid class prediction: Results

? Probabilities for connectivity

Markov mesh prior Simpler prior



Markov chain Monte Carlo summary

? Metropolis–Hastings is extremely flexible
– can sample from almost any distribution

? Metropolis–Hastings can be reasonable fast or extremely slow
? If you can sample without using Metropolis–Hastings:

– do not use Metropolis–Hastings
? If you cannot sample without using Metropolis–Hastings:

– use Metropolis–Hastings

? Next Friday: Alternatives to MCMC for specific classes of
models
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