Uncertainty and statistics Part IV

Håkon Tjelmeland
CGF and Department of Mathematical Sciences Norwegian University of Science and Technology

Friday November 12th 2021

Recall the typical problem setup

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

where

$$
p\left(y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{n}
$$

Recall the typical problem setup

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

where

$$
p\left(y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{n}
$$

- common to write

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \propto p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

Recall the typical problem setup

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

where

$$
p\left(y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{n}
$$

- common to write

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \propto p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

\star Focus today:

- Monte Carlo sampling

$$
\left(x_{1}, \ldots, x_{n}\right) \sim p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)
$$

- MCMC, Metropolis-Hastings algorithm, Gibbs sampling

Plan for today

* Introduce two example situations
- Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
- Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
* The Metropolis-Hastings algorithm
- the algorithm, proposal distribution
- toy examples, intuition
- random walk proposals, Gibbs proposals
- what is converging?
- reversible jump Metropolis-Hastings
* Metropolis-Hastings for the two example situations
- proposal distribution
- results

Inversion of seismic reflection coefficients

* Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.

Inversion of seismic reflection coefficients

* Variables in the problem:

$$
\begin{aligned}
& -m=\left\{m_{i j} ; i=1, \ldots, n_{y}, j=1, \ldots, n_{x}\right\}, m_{i j}=\left\{\frac{\Delta I_{\alpha}}{\bar{I}_{\alpha}}, \frac{\Delta I_{\beta}}{I_{\beta}}, \frac{\Delta \rho}{\bar{\rho}}\right\}_{i j} \\
& -d=\left\{d_{i j}, i=1, \ldots, n_{y}, j=1, \ldots, n_{x}\right\}, d_{i j}=\left\{r_{P P}(\theta), r_{P S}(\theta)\right\}_{i j} \\
& \quad \text { for } \theta=0^{\circ}\left(\text { only PP), } 20^{\circ}, 40^{\circ}, 55^{\circ}\right. \\
& -\sigma_{m}^{2}: \text { variance of } m_{i j} \\
& -\sigma_{e}^{2}: \text { variance of } d_{i j} \mid m
\end{aligned}
$$

* Structure of stochastic model

$$
p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)=p\left(\sigma_{m}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(m \mid \sigma_{m}^{2}\right) p\left(d \mid m, \sigma_{e}^{2}\right)
$$

Inversion of seismic reflection coefficients

\star Recall: $p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)=p\left(\sigma_{m}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(m \mid \sigma_{m}^{2}\right) p\left(d \mid m, \sigma_{e}^{2}\right)$
\star Model components

$$
\begin{aligned}
& -m \mid \sigma_{m}^{2} \sim \mathrm{~N}\left(\mu_{m}, \sigma_{m}^{2} S_{m}\right) \\
& -d \mid m, \sigma_{e}^{2} \sim \mathrm{~N}\left(f(m), \sigma_{e}^{2} S_{e}\right) \\
& \qquad \quad d=f(m)+e, e \sim \mathrm{~N}\left(0, \sigma_{e}^{2} S_{e}\right) \\
& -\sigma_{m}^{2} \sim \operatorname{IG}\left(\alpha_{m}, \beta_{m}\right) \\
& -\sigma_{e}^{2} \sim \operatorname{IG}\left(\alpha_{e}, \beta_{e}\right)
\end{aligned}
$$

Inversion of seismic reflection coefficients

* Recall: $p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)=p\left(\sigma_{m}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(m \mid \sigma_{m}^{2}\right) p\left(d \mid m, \sigma_{e}^{2}\right)$
\star Model components

$$
\begin{aligned}
& -m \mid \sigma_{m}^{2} \sim \mathrm{~N}\left(\mu_{m}, \sigma_{m}^{2} S_{m}\right) \\
& -d \mid m, \sigma_{e}^{2} \sim \mathrm{~N}\left(f(m), \sigma_{e}^{2} S_{e}\right) \\
& \qquad \quad d=f(m)+e, e \sim \mathrm{~N}\left(0, \sigma_{e}^{2} S_{e}\right) \\
& \quad-\sigma_{m}^{2} \sim \operatorname{IG}\left(\alpha_{m}, \beta_{m}\right) \\
& -\sigma_{e}^{2} \sim \operatorname{IG}\left(\alpha_{e}, \beta_{e}\right)
\end{aligned}
$$

* Use three versions for $f(m)$
- Zoeppritz equations
- quadratic approximation of the Zoeppritz equations
- linear approximation of the Zoeppritz equations

Quadratic approximation of the Zoeppritz equations

$$
\begin{aligned}
r_{\mathrm{PP}}= & \frac{1}{2 \cos ^{2} \theta_{p}} \frac{\Delta I_{\alpha}}{\bar{I}_{\alpha}}-4 \sin ^{2} \theta_{s} \frac{\Delta I_{\beta}}{\bar{I}_{\beta}}-\frac{1}{2} \tan ^{2} \theta_{p}\left(1-4 \gamma^{2} \cos ^{2} \theta_{p}\right) \frac{\Delta \rho}{\bar{\rho}} \\
& +\tan \theta_{p} \tan \theta_{s}\left\{4 \gamma^{2}\left(1-\left(1+\gamma^{2}\right) \sin ^{2} \theta_{p}\right)\left(\frac{\Delta I_{\beta}}{\bar{I}_{\beta}}\right)^{2}\right. \\
& -4 \gamma^{2}\left[1-\left(\frac{3}{2}+\gamma^{2}\right) \sin ^{2} \theta_{p}\right]\left(\frac{\Delta I_{\beta}}{\bar{I}_{\beta}} \frac{\Delta \rho}{\bar{\rho}}\right) \\
& \left.+\left[\gamma^{2}\left(1-\left(2+\gamma^{2}\right) \sin ^{2} \theta_{p}\right)-\frac{1}{4}\right]\left(\frac{\Delta \rho}{\bar{\rho}}\right)^{2}\right\} \\
r_{\mathrm{PS}}= & \sqrt{\tan \theta_{p} \tan \theta_{s}}\left\{\left[\left(1-\cos \theta_{s}\left(\cos \theta_{s}+\gamma \cos \theta_{p}\right)\right)\left(2 \frac{\Delta I_{\beta}}{\bar{I}_{\beta}}-\frac{\Delta \rho}{\bar{\rho}}\right)-\frac{1}{2} \frac{\Delta \rho}{\bar{\rho}}\right]\right. \\
& +\frac{1}{2}\left[\left(1-\cos \theta_{s}\left(\cos \theta_{s}-\gamma \cos \theta_{p}\right)\right)\left(2 \frac{\Delta I_{\beta}}{\bar{I}_{\beta}}-\frac{\Delta \rho}{\bar{\rho}}\right)-\frac{1}{2} \frac{\Delta \rho}{\bar{\rho}}\right] \\
& \times\left[\frac{1}{2 \cos ^{2} \theta_{p}} \frac{\Delta I_{\alpha}}{\bar{I}_{\alpha}}+\left(\frac{1}{2 \cos ^{2} \theta_{s}}-8 \sin ^{2} \theta_{s}\right) \frac{\Delta I_{\beta}}{\bar{I}_{\beta}}\right. \\
& \left.\left.+\left(4 \sin ^{2} \theta_{s}-\frac{1}{2}\left(\tan ^{2} \theta_{p}+\tan ^{2} \theta_{s}\right)\right) \frac{\Delta \rho}{\bar{\rho}}\right]\right\},
\end{aligned}
$$

Inversion of seismic reflection coefficients

\star Recall: $p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)=p\left(\sigma_{m}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(m \mid \sigma_{m}^{2}\right) p\left(d \mid m, \sigma_{e}^{2}\right)$

* Model components

$$
\begin{aligned}
& -m \mid \sigma_{m}^{2} \sim \mathrm{~N}\left(\mu_{m}, \sigma_{m}^{2} S_{m}\right) \\
& -d \mid m, \sigma_{e}^{2} \sim \mathrm{~N}\left(f(m), \sigma_{e}^{2} S_{e}\right) \\
& \quad d=f(m)+e, e \sim \mathrm{~N}\left(0, \sigma_{e}^{2} S_{e}\right) \\
& \quad-\sigma_{m}^{2} \sim \operatorname{IG}\left(\alpha_{m}, \beta_{m}\right) \\
& -\sigma_{e}^{2} \sim \operatorname{IG}\left(\alpha_{e}, \beta_{e}\right)
\end{aligned}
$$

\star Use three versions of $f(m)$

- Zoeppritz equations
- quadratic approximation of the Zoeppritz equations
- linear approximation of the Zoeppritz equations

Inversion of seismic reflection coefficients

\star Recall: $p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)=p\left(\sigma_{m}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(m \mid \sigma_{m}^{2}\right) p\left(d \mid m, \sigma_{e}^{2}\right)$

* Model components

$$
\begin{aligned}
& -m \mid \sigma_{m}^{2} \sim \mathrm{~N}\left(\mu_{m}, \sigma_{m}^{2} S_{m}\right) \\
& -d \mid m, \sigma_{e}^{2} \sim \mathrm{~N}\left(f(m), \sigma_{e}^{2} S_{e}\right) \\
& \quad d=f(m)+e, e \sim \mathrm{~N}\left(0, \sigma_{e}^{2} S_{e}\right) \\
& \quad-\sigma_{m}^{2} \sim \operatorname{IG}\left(\alpha_{m}, \beta_{m}\right) \\
& -\sigma_{e}^{2} \sim \operatorname{IG}\left(\alpha_{e}, \beta_{e}\right)
\end{aligned}
$$

\star Use three versions of $f(m)$

- Zoeppritz equations
- quadratic approximation of the Zoeppritz equations
- linear approximation of the Zoeppritz equations
* Distribution of interest

$$
p\left(m, \sigma_{m}^{2}, \sigma_{e}^{2} \mid d\right) \propto p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)
$$

Lithology/fluid class prediction using a Markov mesh prior * Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.

Lithology/fluid class prediction using a Markov mesh prior

* Variables in the problem:

$$
\begin{aligned}
& -\kappa=\left\{\kappa_{i j} ; i=1, \ldots, n_{y}, j=1, \ldots, n_{x}\right\}, \kappa_{i j} \in\{0,1\} \text { (shale, oil sand) } \\
& -m=\left\{m_{i j} ; i=1, \ldots, n_{y}, j=1, \ldots, n_{x}\right\}, m_{i j}=\left(\text { impedance, } v_{p} / v_{s}\right)_{i j} \\
& -d=\left\{d_{i j} ; i=1, \ldots, n_{y}, j=1, \ldots, n_{x}\right\}, d_{i j}=(\text { near offset, far offset })_{i j} \\
& -\theta: \text { parameters vector describing stochastic model for } \kappa \text { (fixed) }
\end{aligned}
$$

* Structure of the stochastic model

$$
p(\kappa, m, d \mid \theta)=p(\kappa \mid \theta) p(m \mid \kappa) p(d \mid m)
$$

Lithology/fluid class prediction using a Markov mesh prior
\star Recall: $p(\kappa, m, d \mid \theta)=p(\kappa \mid \theta) p(m \mid \kappa) p(d \mid m)$

* Model components
- $\kappa \mid \theta \sim$ Markov mesh model
$-m_{i j} \mid \kappa \sim \mathrm{N}\left(\mu_{\kappa_{i j}}, \Sigma_{\kappa_{i j}}\right)$
$-d \mid m \sim N\left(W A D m, \Sigma_{\varepsilon}\right)$

$$
d=W A D m+\varepsilon, \varepsilon \sim \mathrm{N}\left(0, \Sigma_{\varepsilon}\right)
$$

Lithology/fluid class prediction using a Markov mesh prior
\star Recall: $p(\kappa, m, d \mid \theta)=p(\kappa \mid \theta) p(m \mid \kappa) p(d \mid m)$

* Model components
- $\kappa \mid \theta \sim$ Markov mesh model
- $m_{i j} \mid \kappa \sim \mathrm{N}\left(\mu_{\kappa_{i j}}, \Sigma_{\kappa_{i j}}\right)$
- $d \mid m \sim \mathrm{~N}\left(W A D m, \Sigma_{\varepsilon}\right)$

$$
d=W A D m+\varepsilon, \varepsilon \sim N\left(0, \Sigma_{\varepsilon}\right)
$$

wavelet for near offset wavelet for far offset

Markov mesh model

* Order the nodes in lexicographical order from 1 to $n=n_{x} \cdot n_{y}$

$$
p(\kappa \mid \theta)=\prod_{i=1}^{n} p\left(\kappa_{i} \mid \kappa_{<i}, \theta\right)
$$

* Conditional independence (Markov) assumption

$$
p\left(\kappa \mid \kappa_{<i}, \theta\right)=p\left(\kappa_{i} \mid \kappa_{\nu_{i}}, \theta\right)
$$

* Thus

$$
p(\kappa \mid \theta)=\prod_{i=1}^{n} p\left(\kappa_{i} \mid \kappa_{\nu_{i}}, \theta\right)
$$

Markov mesh model

\star Recall:

$$
p(\kappa \mid \theta)=\prod_{i=1}^{n} p\left(\kappa_{i} \mid \kappa_{\nu_{i}}, \theta\right)
$$

* Reformulation of $p\left(\kappa_{i} \mid \kappa_{\nu_{i}}, \theta\right)$

$$
\begin{gathered}
\theta_{i}\left(\kappa_{\nu_{i}}\right)=\ln \left(\frac{p\left(\kappa_{i}=1 \mid \kappa_{\nu_{i}}, \theta\right)}{1-p\left(\kappa_{i}=1 \mid \kappa_{\nu_{i}}, \theta\right)}\right) \\
\theta_{i}\left(\kappa_{\nu_{i}}\right)=\sum_{\lambda \subseteq \kappa_{\nu_{i}}} \beta(\lambda)
\end{gathered}
$$

\star Limit the number of model parameters by setting some $\beta(\lambda)=0$

$\star \theta=\left(\nu_{i} ; \beta(\lambda), \nu_{i} \subseteq \nu_{i}\right)$

How to specify θ ?

* Values in θ does not have a simple interpretation
- difficult to set values consistent with prior knowledge
* Use a training image
- hand drawn or from area with similar geological origin
- contain information about typical spatial structures

* Let θ be a Monte Carlo sample from

$$
p(\theta \mid \text { training image }) \propto p(\theta) p(\text { training image } \mid \theta)
$$

Lithology/fluid class prediction using a Markov mesh prior

\star Recall: $p(\kappa, m, d \mid \theta)=p(\kappa \mid \theta) p(m \mid \kappa) p(d \mid m)$

\star Model components

- $\kappa \mid \theta \sim$ Markov mesh model
- $m_{i j} \mid \kappa \sim \mathrm{N}\left(\mu_{\kappa_{i j}}, \Sigma_{\kappa_{i j}}\right)$
- d|m~N(WADm, $\left.\Sigma_{\varepsilon}\right)$

$$
d=W A D m+\varepsilon, \varepsilon \sim N\left(0, \Sigma_{\varepsilon}\right)
$$

Lithology/fluid class prediction using a Markov mesh prior

\star Recall: $p(\kappa, m, d \mid \theta)=p(\kappa \mid \theta) p(m \mid \kappa) p(d \mid m)$

\star Model components

- $\kappa \mid \theta \sim$ Markov mesh model
- $m_{i j} \mid \kappa \sim \mathrm{N}\left(\mu_{\kappa_{i j}}, \Sigma_{\kappa_{i j}}\right)$
- d|m~N(WADm, $\left.\Sigma_{\varepsilon}\right)$

$$
d=W A D m+\varepsilon, \varepsilon \sim N\left(0, \Sigma_{\varepsilon}\right)
$$

* Distribution of interest

$$
p(\kappa, m \mid \theta, d) \propto p(\kappa, m, d \mid \theta)
$$

- can analyticall integrate over m to find formula for

$$
p(\kappa \mid \theta, d) \propto p(\kappa, d \mid \theta)
$$

Markov chain Monte Carlo

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \propto p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

* Note: The y 's are observed numbers

Markov chain Monte Carlo

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \propto p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

\star Note: The y 's are observed numbers

* We now simplify the notation and write

$$
p(x)=p\left(x_{1}, \ldots, x_{n}\right)=c \cdot h(x) \text { in stead of } p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)
$$

- we have a formula for $h(x)=p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we don't know the value of c

Markov chain Monte Carlo

\star Have a model for stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \propto p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

\star Note: The y 's are observed numbers
\star We now simplify the notation and write

$$
p(x)=p\left(x_{1}, \ldots, x_{n}\right)=c \cdot h(x) \text { in stead of } p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)
$$

- we have a formula for $h(x)=p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we don't know the value of c
\star So the goal is to generate a Monte Carlo sample

$$
x \sim p(x)=c \cdot h(x)
$$

Markov chain Monte Carlo

* Want a Monte Carlo sample from

$$
x \sim p(x)=c \cdot h(x)
$$

\star Metropolis-Hastings algorithm: Generate x^{1}, x^{2}, \ldots as follows

1. Generate/set x^{1} somehow
2. For $k=2,3, \ldots, K$
(a) Generate a potential new values $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
(b) Compute acceptance probability

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

(c) Generate $u^{k} \sim$ Uniform $[0,1]$
(d) If $\left(u^{k} \leq \alpha\left(z^{k} \mid x^{k-1}\right)\right.$

$$
x^{k}=z^{k}\left(\text { accept } z^{k}\right)
$$

else

$$
x^{k}=x^{k-1}\left(\text { reject } z^{k}\right)
$$

3. End

Markov chain Monte Carlo

* Want a Monte Carlo sample from

$$
x \sim p(x)=c \cdot h(x)
$$

* Metropolis-Hastings algorithm: Generate x^{1}, x^{2}, \ldots as follows

1. Generate/set x^{1} somehow
2. For $k=2,3, \ldots, K$
(a) Generate a potential new values $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
(b) Compute acceptance probability

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

(c) Generate $u^{k} \sim$ Uniform $[0,1]$
(d) If $\left(u^{k} \leq \alpha\left(z^{k} \mid x^{k-1}\right)\right.$

$$
x^{k}=z^{k}\left(\text { accept } z^{k}\right)
$$

else

$$
x^{k}=x^{k-1}\left(\text { reject } z^{k}\right)
$$

3. End
\star For k large enough, x^{k} is (approximately) from $p(x)$

Random walk proposal

\star Target distribution: $p(x)$
\star Proposal distribution: $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
\star Acceptance probability:

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

Random walk proposal

* Target distribution: $p(x)$
\star Proposal distribution: $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
\star Acceptance probability:

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

* Random walk proposal:

$$
z_{i}^{k}=x_{i}^{k-1}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)
$$

- formula for the proposal distribution

$$
q\left(z^{k} \mid x^{k-1}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(z^{k}-x^{k-1}\right)^{T}\left(z^{k}-x^{k-1}\right)\right\}
$$

- acceptance probability

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)}\right\}
$$

Toy example: Random walk proposal

* Target distribution: $p(x)$
* Start with $x^{1}=(4,-2)$
* Random walk proposal with $\sigma=1.0$
* Run $K=100$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
* Start with $x^{1}=(4,-2)$
* Random walk proposal with $\sigma=1.0$
* Run $K=100$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
* Start with $x^{1}=(4,-2)$
* Random walk proposal with $\sigma=1.0$
* Run $K=1000$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
\star Start with $x^{1}=(4,-2)$
\star Random walk proposal with $\sigma=0.1$
* Run $K=100$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
\star Start with $x^{1}=(4,-2)$
* Random walk proposal with $\sigma=0.1$
* Run $K=1000$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
* Start with $x^{1}=(4,-2)$
\star Random walk proposal with $\sigma=10.0$
* Run $K=100$ iterations

Toy example: Random walk proposal

* Target distribution: $p(x)$
* Start with $x^{1}=(4,-2)$
\star Random walk proposal with $\sigma=10.0$
* Run $K=1000$ iterations

Gibbs sampling

* Target distribution: $p(x)$
\star Proposal distribution: $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
\star Acceptance probability:

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

Gibbs sampling

* Target distribution: $p(x)$
\star Proposal distribution: $z^{k} \sim q\left(z^{k} \mid x^{k-1}\right)$
* Acceptance probability:

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=\min \left\{1, \frac{p\left(z^{k}\right)}{p\left(x^{k-1}\right)} \cdot \frac{q\left(x^{k-1} \mid z^{k}\right)}{q\left(z^{k} \mid x^{k-1}\right)}\right\}
$$

* Gibbs proposal:
- sample $i \sim \operatorname{Uniform}\{1, \ldots, n\}$
- sample $z_{i}^{k} \sim p\left(x_{i} \mid x_{1}^{k-1}, \ldots, x_{i-1}^{k-1}, x_{i+1}^{k-1}, \ldots, x_{n}^{k-1}\right)$
- set $z_{j}^{k}=x_{j}^{k-1}$ for $j \neq i$
- acceptance probability

$$
\alpha\left(z^{k} \mid x^{k-1}\right)=1
$$

Toy example: Gibbs sampling

* Target distribution: $p(x)$
* Run $K=100$ iterations

Toy example: Gibbs sampling

* Target distribution: $p(x)$
* Run $K=100$ iterations

Toy example: Gibbs sampling

* Target distribution: $p(x)$
* Run $K=1000$ iterations

Toy example: Combine Gibbs and random walk
\star Target distribution: $p(x)$
\star Gibbs proposal for x_{1}
\star Random walk proposal for x_{2}

$$
z_{2}^{k}=x_{2}^{k-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}(0,1)
$$

* Run $K=100$ iterations

Toy example: Combine Gibbs and random walk

* Target distribution: $p(x)$
\star Gibbs proposal for x_{1}
* Random walk proposal for x_{2}

$$
z_{2}^{k}=x_{2}^{k-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}(0,1)
$$

\star Run $K=100$ iterations

Toy example: Combine Gibbs and random walk

* Target distribution: $p(x)$
\star Gibbs proposal for x_{1}
* Random walk proposal for x_{2}

$$
z_{2}^{k}=x_{2}^{k-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}(0,1)
$$

* Run $K=1000$ iterations

Convergence of the Metropolis-Hastings algorithm

* Note: It is not x^{k} that is converging
- it is the distribution of x^{k} that is converging
- we can only look at and plot x^{k}
* Common to evaluate convergence by plotting trace plots, i.e. $h(x)$

Convergence of the Metropolis-Hastings algorithm

\star Note: It is not x^{k} that is converging

- it is the distribution of x^{k} that is converging
- we can only look at and plot x^{k}
* Common to evaluate convergence by plotting trace plots, i.e. $h(x)$
* Experience:
- for many distributions $p(x)$ simple proposal distribution gives reasonable quick convergence
- the convergence can be extremely slow - not useful!
- to choose a good proposal distribution for a given distribution often requires experience
- typically a proposal distribution modify only a few components in x^{k}

Convergence of the Metropolis-Hastings algorithm

\star Note: It is not x^{k} that is converging

- it is the distribution of x^{k} that is converging
- we can only look at and plot x^{k}
* Common to evaluate convergence by plotting trace plots, i.e. $h(x)$
* Experience:
- for many distributions $p(x)$ simple proposal distribution gives reasonable quick convergence
- the convergence can be extremely slow - not useful!
- to choose a good proposal distribution for a given distribution often requires experience
- typically a proposal distribution modify only a few components in x^{k}
* Reversible jump Metropolis-Hastings
- also the dimension of x is stochastic
- the number of stochastic variables is a stochastic variable

Inversion of seismic reflection coefficients

\star Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
\star Distribution of interest

$$
p\left(m, \sigma_{m}^{2}, \sigma_{e}^{2} \mid d\right) \propto p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)
$$

Inversion of seismic reflection coefficients

\star Reference: Rabben, T.E., Tjelmeland, H. and Ursin, B. (2008). Non-linear Bayesian joint inversion of seismic reflection coefficients, Geophysical Journal International.
\star Distribution of interest

$$
p\left(m, \sigma_{m}^{2}, \sigma_{e}^{2} \mid d\right) \propto p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)
$$

\star Simulation example: Reference contrasts

Simulation example: Observations

* "Observed" PP and PS reflection coefficients using the Zoeppritz model

Proposal distributions

* Target distribution:

$$
p\left(m, \sigma_{m}^{2}, \sigma_{e}^{2} \mid d\right) \propto p\left(m, d, \sigma_{m}^{2}, \sigma_{e}^{2}\right)
$$

* Proposal distributions:
- Gibbs proposal for σ_{m}^{2}
- Gibbs proposal for σ_{e}^{2}
- proposal for m_{A} based on a linearised model

$$
p^{\operatorname{lin}}\left(m_{A} \mid m_{B}, \sigma_{m}^{2}, \sigma_{e}^{2}\right)
$$

note: the acceptance probability is correcting the error done when proposing from a linearised model and by not conditioning on m_{c}

Inversion of seismic reflection coefficients: Results
\star Resulting bias in inverted reflection coefficients

- recall: results for three forward functions

Inversion of seismic reflection coefficients: Results

\star Distribution of σ_{m}^{2} and σ_{e}^{2}

- recall: results for three forward functions

Lithology/fluid class prediction using a Markov mesh prior

* Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.
* Distribution of interest

$$
p(\kappa \mid \theta, d) \propto p(\kappa, d \mid \theta)
$$

Lithology/fluid class prediction using a Markov mesh prior * Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.

* Distribution of interest

$$
p(\kappa \mid \theta, d) \propto p(\kappa, d \mid \theta)
$$

* Near (left) and far (right) offset seismic data

Lithology/fluid class prediction using a Markov mesh prior * Reference: Tjelmeland, H., Luo, X. and Fjeldstad, T. (2019). A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image, Geophysical Prospecting.

* Distribution of interest

$$
p(\kappa \mid \theta, d) \propto p(\kappa, d \mid \theta)
$$

\star Near (left) and far (right) offset seismic data

\star First: Construction of the prior, $p(\kappa \mid \theta)$

Prior $p(\kappa)$

\star Recall: Markov mesh, $\theta=\left(\nu_{i} ; \beta(\lambda), \nu_{i} \subseteq \nu_{i}\right)$

* Training image

* Use reversible jump Metropolis-Hastings to sample from

$$
p(\theta \mid \text { training image }) \propto p(\theta) p(\text { training image } \mid \theta)
$$

The fitted prior

* Training image

* Neighbourhood and Monte Carlo samples

Proposal distributions

* Target distribution:

$$
p(\kappa \mid \theta, d) \propto p(\kappa, d \mid \theta)
$$

* Proposal distributions
- Gibbs proposal for $\kappa_{i}=\left(\kappa_{i j}, j=1, \ldots, n x\right)$

Lithology/fluid class prediction: Results

* Monte Carlo samples from posterior

Lithology/fluid class prediction: Results

* Marginal probabilities and most probable value

Markov mesh prior
Simpler prior

Lithology/fluid class prediction: Results

* Probabilities for connectivity

Markov chain Monte Carlo summary

* Metropolis-Hastings is extremely flexible
- can sample from almost any distribution
* Metropolis-Hastings can be reasonable fast or extremely slow
\star If you can sample without using Metropolis-Hastings:
- do not use Metropolis-Hastings
* If you cannot sample without using Metropolis-Hastings:
- use Metropolis-Hastings

Markov chain Monte Carlo summary

* Metropolis-Hastings is extremely flexible
- can sample from almost any distribution
* Metropolis-Hastings can be reasonable fast or extremely slow
\star If you can sample without using Metropolis-Hastings:
- do not use Metropolis-Hastings
* If you cannot sample without using Metropolis-Hastings:
- use Metropolis-Hastings
* Next Friday: Alternatives to MCMC for specific classes of models

