Uncertainty and statistics Part II

Håkon Tjelmeland
CGF and Department of Mathematical Sciences Norwegian University of Science and Technology

Friday October 29th 2021

Recall from last time

* Stochastic variable, X
- X represents an unknown quantity
- $p(x)$ describes our knowledge about X
\star The effect of conditioning
- two stochastic variables, $p\left(x_{1}, x_{2}\right)$
- $p\left(x_{1}\right)=\int_{-\infty}^{\infty} p\left(x_{1}, x_{2}\right) d x_{2}$ describes our knowledge about x_{1}
- after we have observed a value for x_{2},

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)}
$$

describes our updated knowledge about x_{1}

* Three strategies to specify $p\left(x_{1}, x_{2}\right)$
- specify a formula for $p\left(x_{1}, x_{2}\right)$ directly (often Gaussian)
- conditional probability, $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$
- hierarchical model, $x_{1}, x_{2} \mid \theta \sim p(x \mid \theta)$ indep., and $\theta \sim p(\theta)$
\star Use graphical model to visualise how we specified $p\left(x_{1}, x_{2}\right)$

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
\star Independence and conditional independence
* Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
* Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
* Independence and conditional independence
\star Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
\star Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Interpretation of $p(x)$

* Discrete stochastic variable

* Interpretation: $p(x)=P(X=x)$

Interpretation of $p(x)$

* Discrete stochastic variable

\star Interpretation: $p(x)=P(X=x)$
- for example: $p(5)=P(X=5)$

Interpretation of $p(x)$

* Discrete stochastic variable

* Interpretation: $p(x)=P(X=x)$
- for example: $p(5)=P(X=5)$
\star With two stochastic variables

$$
p\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Interpretation of $p(x)$

* Continuous stochastic variable

* Interpretation:

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

Interpretation of $p(x)$

* Continuous stochastic variable

* Interpretation:

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

- for example:

$$
P(0.75 \leq X \leq 1.86)=\int_{0.45}^{1.86} p(x) d x
$$

Interpretation of $p(x)$

* Continuous stochastic variable

* Interpretation:

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

- for example:

$$
P(0.75 \leq X \leq 1.86)=\int_{0.45}^{1.86} p(x) d x
$$

- two continuous stochastic variables

$$
P\left(\left(X_{1}, X_{2}\right) \in A\right)=\iint_{A} p\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Plan for today

\star Interpretation of a distribution, $p(x)$

* Modelling of noisy observations
* Independence and conditional independence
\star Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
\star Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Recall: Hierarchical model example

\star Assume: $x_{1}, x_{2} \mid \theta \sim p(x \mid \theta)$ independently, $\theta \sim p(\theta)$

\star Simplistic example:

- $\theta \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2
- assume probabilities: $p(\theta=1)=0.3$

$$
\begin{aligned}
& p\left(x_{1}=1 \mid \theta=0\right)=0, p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

\star We found and compared: $p\left(x_{1}=1\right)$ and $p\left(x_{1}=1 \mid x_{2}=0\right)$

Recall: Hierarchical model example

\star Assume: $x_{1}, x_{2} \mid \theta \sim p(x \mid \theta)$ independently, $\theta \sim p(\theta)$

\star Simplistic example:

- $\theta \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
- $x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2
- assume probabilities: $p(\theta=1)=0.3$

$$
\begin{aligned}
& p\left(x_{1}=1 \mid \theta=0\right)=0, p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

\star We found and compared: $p\left(x_{1}=1\right)$ and $p\left(x_{1}=1 \mid x_{2}=0\right)$
\star Now assume we observe x_{2} with noise

- how can we model this?

Modelling of observation noise

\star New stochastic variable for observation: $y_{2} \in\{0,1,2\}$

- assume

$$
\begin{array}{ll}
p\left(y_{2}=0 \mid x_{2}=0\right)=0.6 & p\left(y_{2}=0 \mid x_{2}=1\right)=0.1 \\
p\left(y_{2}=1 \mid x_{2}=0\right)=0.3 & p\left(y_{2}=1 \mid x_{2}=1\right)=0.2 \\
p\left(y_{2}=2 \mid x_{2}=0\right)=0.1 & p\left(y_{2}=2 \mid x_{2}=1\right)=0.7
\end{array}
$$

\star New graphical model:

$$
p\left(\theta, x_{1}, x_{2}, y_{2}\right)=p(\theta) p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right) p\left(y_{2} \mid x_{2}\right)
$$

Modelling of observation noise

\star New stochastic variable for observation: $y_{2} \in\{0,1,2\}$

- assume

$$
\begin{array}{ll}
p\left(y_{2}=0 \mid x_{2}=0\right)=0.6 & p\left(y_{2}=0 \mid x_{2}=1\right)=0.1 \\
p\left(y_{2}=1 \mid x_{2}=0\right)=0.3 & p\left(y_{2}=1 \mid x_{2}=1\right)=0.2 \\
p\left(y_{2}=2 \mid x_{2}=0\right)=0.1 & p\left(y_{2}=2 \mid x_{2}=1\right)=0.7
\end{array}
$$

\star New graphical model:

* Joint distribution:

$$
p\left(\theta, x_{1}, x_{2}, y_{2}\right)=p(\theta) p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right) p\left(y_{2} \mid x_{2}\right)
$$

* Probabilities of interest:

$$
\begin{array}{ll}
p\left(x_{1}=1 \mid y_{2}=0\right), & p\left(x_{2}=1 \mid y_{2}=0\right) \\
p\left(x_{1}=1 \mid y_{2}=1\right), & p\left(x_{2}=1 \mid y_{2}=1\right) \\
p\left(x_{1}=1 \mid y_{2}=2\right), & p\left(x_{2}=1 \mid y_{2}=2\right)
\end{array}
$$

Modelling of observation noise

* "Detailed" calculation of one probability

$$
\begin{aligned}
p\left(x_{1}=1 \mid y_{2}=0\right) & =\frac{p\left(x_{1}=1, y_{2}=0\right)}{p\left(y_{2}=0\right)} \\
& =\frac{\sum_{\theta=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}=1, x_{2}, y_{2}=0\right)}{\sum_{\theta=0}^{1} \sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}, x_{2}, y_{2}=0\right)} \\
& =\frac{0.054}{0.51}=0.1059
\end{aligned}
$$

Modelling of observation noise

* "Detailed" calculation of one probability

$$
\begin{aligned}
p\left(x_{1}=1 \mid y_{2}=0\right) & =\frac{p\left(x_{1}=1, y_{2}=0\right)}{p\left(y_{2}=0\right)} \\
& =\frac{\sum_{\theta=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}=1, x_{2}, y_{2}=0\right)}{\sum_{\theta=0}^{1} \sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}, x_{2}, y_{2}=0\right)} \\
& =\frac{0.054}{0.51}=0.1059
\end{aligned}
$$

* Resulting probabilities:

$$
\begin{array}{cc}
p\left(x_{1}=1 \mid y_{2}=0\right)=0.1059 & p\left(x_{2}=1 \mid y_{2}=0\right)=0.0353 \\
p\left(x_{1}=1 \mid y_{2}=1\right)=0.1532 & p\left(x_{2}=1 \mid y_{2}=1\right)=0.1277 \\
p\left(x_{1}=1 \mid y_{2}=2\right)=0.3981 & p\left(x_{2}=1 \mid y_{2}=2\right)=0.6058 \\
p\left(x_{1}=1\right)=0.18 & p\left(x_{2}=1\right)=0.18
\end{array}
$$

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
* Independence and conditional independence
\star Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
\star Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Independence and conditional independence

\star Independence: x_{1} and x_{2} are independent if

$$
p\left(x_{1} \mid x_{2}\right)=p\left(x_{1}\right)
$$

- from this it follows

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)}=p\left(x_{1}\right) \Leftrightarrow p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) \cdot p\left(x_{2}\right)
$$

- in turn this implies

$$
p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}=\frac{p\left(x_{1}\right) \cdot p\left(x_{2}\right)}{p\left(x_{1}\right)}=p\left(x_{2}\right)
$$

\star Graphical model showing that x_{1} and x_{2} are independent:

Independence and conditional independence

\star Conditional independence: x_{1} and x_{2} are conditionally independent given θ if

$$
p\left(x_{1} \mid x_{2}, \theta\right)=p\left(x_{1} \mid \theta\right)
$$

- from this it follows

$$
p\left(x_{1}, x_{2} \mid \theta\right)=p\left(x_{1} \mid \theta\right) \cdot p\left(x_{2} \mid \theta\right)
$$

- note that x_{1} and x_{2} are then not independent!
\star Graphical model showing that x_{1} and x_{2} are conditionally independent given θ

How conditional independence helps specifying a model
\star Simplistic example:
$-\theta \in\{0,1\}$: source rock has produced hydrocarbons
$-x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2

- $y_{2} \in\{0,1,2\}$: noisy observation of x_{2}
\star Want a model for θ, x_{1}, x_{2} and y_{2}, i.e. $p\left(\theta, x_{1}, x_{2}, y_{2}\right)$
* Always true:

$$
\begin{aligned}
p\left(\theta, x_{1}, x_{2}, y_{2}\right) & =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(x_{2} \mid \theta, x_{1}\right) \cdot p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) \\
& =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(y_{2} \mid \theta, x_{1}\right) \cdot p\left(x_{2} \mid \theta, x_{1}, y_{2}\right) \\
& \vdots \\
& =p\left(y_{2}\right) \cdot p\left(x_{2} \mid y_{2}\right) \cdot p\left(x_{1} \mid y_{2}, x_{2}\right) \cdot p\left(\theta \mid y_{2}, x_{2}, x_{1}\right)
\end{aligned}
$$

How conditional independence helps specifying a model

* Simplistic example:
- $\theta \in\{0,1\}$: source rock has produced hydrocarbons
$-x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2
- $y_{2} \in\{0,1,2\}$: noisy observation of x_{2}
\star Want a model for θ, x_{1}, x_{2} and y_{2}, i.e. $p\left(\theta, x_{1}, x_{2}, y_{2}\right)$
* Always true:

$$
\begin{aligned}
p\left(\theta, x_{1}, x_{2}, y_{2}\right) & =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(x_{2} \mid \theta, x_{1}\right) \cdot p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) \Leftarrow \\
& =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(y_{2} \mid \theta, x_{1}\right) \cdot p\left(x_{2} \mid \theta, x_{1}, y_{2}\right) \\
& \vdots \\
& =p\left(y_{2}\right) \cdot p\left(x_{2} \mid y_{2}\right) \cdot p\left(x_{1} \mid y_{2}, x_{2}\right) \cdot p\left(\theta \mid y_{2}, x_{2}, x_{1}\right)
\end{aligned}
$$

How conditional independence helps specifying a model
\star Simplistic example:
$-\theta \in\{0,1\}$: source rock has produced hydrocarbons
$-x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2

- $y_{2} \in\{0,1,2\}$: noisy observation of x_{2}
\star Want a model for θ, x_{1}, x_{2} and y_{2}, i.e. $p\left(\theta, x_{1}, x_{2}, y_{2}\right)$
* Always true:

$$
\begin{aligned}
p\left(\theta, x_{1}, x_{2}, y_{2}\right) & =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(x_{2} \mid \theta, x_{1}\right) \cdot p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) \Leftarrow \\
& =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(y_{2} \mid \theta, x_{1}\right) \cdot p\left(x_{2} \mid \theta, x_{1}, y_{2}\right) \\
& \vdots \\
& =p\left(y_{2}\right) \cdot p\left(x_{2} \mid y_{2}\right) \cdot p\left(x_{1} \mid y_{2}, x_{2}\right) \cdot p\left(\theta \mid y_{2}, x_{2}, x_{1}\right)
\end{aligned}
$$

* Assume conditional independence

$$
\begin{aligned}
p\left(x_{2} \mid \theta, x_{1}\right) & =p\left(x_{2} \mid \theta\right) \\
p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) & =p\left(y_{2} \mid x_{2}\right)
\end{aligned}
$$

How conditional independence helps specifying a model
\star Simplistic example:
$-\theta \in\{0,1\}$: source rock has produced hydrocarbons
$-x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2

- $y_{2} \in\{0,1,2\}$: noisy observation of x_{2}
\star Want a model for θ, x_{1}, x_{2} and y_{2}, i.e. $p\left(\theta, x_{1}, x_{2}, y_{2}\right)$
* Always true:

$$
\begin{aligned}
p\left(\theta, x_{1}, x_{2}, y_{2}\right) & =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(x_{2} \mid \theta, x_{1}\right) \cdot p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) \Leftarrow \\
& =p(\theta) \cdot p\left(x_{1} \mid \theta\right) \cdot p\left(y_{2} \mid \theta, x_{1}\right) \cdot p\left(x_{2} \mid \theta, x_{1}, y_{2}\right) \\
& \vdots \\
& =p\left(y_{2}\right) \cdot p\left(x_{2} \mid y_{2}\right) \cdot p\left(x_{1} \mid y_{2}, x_{2}\right) \cdot p\left(\theta \mid y_{2}, x_{2}, x_{1}\right)
\end{aligned}
$$

* Assume conditional independence

$$
\begin{aligned}
p\left(x_{2} \mid \theta, x_{1}\right) & =p\left(x_{2} \mid \theta\right) \\
p\left(y_{2} \mid \theta, x_{1}, x_{2}\right) & =p\left(y_{2} \mid x_{2}\right)
\end{aligned}
$$

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
* Independence and conditional independence
\star Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
\star Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Conditional independence example: CO_{2} leakage

\star Inject CO_{2} in layered reservoir
$\star x_{i} \in\{0,1\}:$ injected CO_{2} present in layer i

* Modelling

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

where

$\frac{x_{5}}{x_{4}}$
$\frac{x_{3}}{x_{2}}$
$\frac{x_{1}}{\text { inject } \mathrm{CO}_{2}}$
p_{i}

$$
\begin{aligned}
& p\left(x_{1}=1\right)=p_{1} \\
& p\left(x_{i}=1 \mid x_{i-1}=0\right)=0, \quad p\left(x_{i}=1 \mid x_{i-1}=1\right)=p_{i}
\end{aligned}
$$

Conditional independence example: CO_{2} leakage

\star Inject CO_{2} in layered reservoir
$\star x_{i} \in\{0,1\}:$ injected CO_{2} present in layer i

* Modelling

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& p\left(x_{1}=1\right)=p_{1} \\
& p\left(x_{i}=1 \mid x_{i-1}=0\right)=0, \quad p\left(x_{i}=1 \mid x_{i-1}=1\right)=p_{i}
\end{aligned}
$$

Conditional independence example: CO_{2} leakage

\star Inject CO_{2} in layered reservoir
$\star x_{i} \in\{0,1\}$: injected CO_{2} present in layer i

* Modelling

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

where

\star Observation related to each layer, y_{i}

$$
p\left(y_{i} \mid x_{i}\right)
$$

Conditional independence example: CO_{2} leakage

\star Inject CO_{2} in layered reservoir
$\star x_{i} \in\{0,1\}$: injected CO_{2} present in layer i

* Modelling

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& p\left(x_{1}=1\right)=p_{1} \\
& p\left(x_{i}=1 \mid x_{i-1}=0\right)=0, \quad p\left(x_{i}=1 \mid x_{i-1}=1\right)=p_{i}
\end{aligned}
$$

\star Observation related to each layer, y_{i}

$$
p\left(y_{i} \mid x_{i}\right)
$$

* Distributions of interest:

$$
p\left(x_{i} \mid y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right), i=1,2,3,4,5
$$

A larger graphical model example

* Reference: Martinelli, G., Eidsvik, J. and Hauge, R. (2013). Dynamic decision making for graphical models applied to oil exploration, European Journal of Operational Research.

* Three types of nodes: Areas which may have produced HC (K), macro-regions able to store HC (P), prospect nodes
\star A stochastic variable for each node, $x_{k} \in\{d r y$, oil, gas $\}$

A larger graphical model example

* Joint distribution

$$
p(x)=\prod_{k} p\left(x_{k} \mid x_{\mathrm{pa}(k)}\right)
$$

\star Number of possible values of $x: 3^{42} \approx 10^{20}$

* Cost of drilling, profit if finding oil/gas
* In which prospects should we drill exploration wells?
- sequential decisions
- finding oil/gas gives profit
- observations are important for later decision
- assume we want to maximize profit
- include discounting
* Maximisation problem

$$
\max _{i \in N}\left\{\sum_{j=1}^{3} p\left(x_{i}=j\right)\left[r_{i}^{j}+\delta \max _{s \in N \backslash\{i\}}\left\{\sum_{l=1}^{3} p\left(x_{s}=I x_{i}=j\right)\left(r_{s}^{\prime}+\ldots\right), 0\right\}\right], 0\right\}
$$

The effect of conditioing

* The effect of drilling in prospect 14 (top) and 10 (bottom)
- observe dry (left) or oil (right)
\star Colours indicate $p\left(x_{k}=\right.$ oil $\left.\mid x_{\text {obs }}\right)-p\left(x_{k}=\right.$ oil $)$

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
* Independence and conditional independence
* Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
* Hierarchical models
- the effect of conditioning
* How to look at n-dimensional distributions
- what quantities are we interested in?

Hierarchical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Hierarchical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Hierarchical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Hierarchical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Hierarchical models and the effect of conditioning

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable
$\begin{array}{llllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} x_{11} & x_{12} & x_{13}\end{array} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20}$
\star Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

* Assume $\mu=0, \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable
$\begin{array}{llllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12}\end{array} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20}$
\star Assume x to be Gaussian

* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning

$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable
$\begin{array}{llllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12}\end{array} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20}$

* Assume x to be Gaussian
* $\mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Graphical models and the effect of conditioning
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable
$\xrightarrow[x_{1}]{x_{2}} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7} \quad x_{8} \quad x_{9} x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20}^{+}$

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Plan for today

* Interpretation of a distribution, $p(x)$
* Modelling of noisy observations
* Independence and conditional independence
* Use of conditional independence for modelling of n variables
- Markov chain, CO_{2} leakage example
- a larger network example
\star Hierarchical models
- the effect of conditioning
^ How to look at n-dimensional distributions
- what quantities are we interested in?

How to look at n-dimensional distributions

\star How to look at 1-dimensional distributions?

How to look at n-dimensional distributions

* How to look at 2-dimensional distributions?

What quantities are we interested in?

\star Assume stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

where

$$
p\left(y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{n}
$$

What quantities are we interested in?

\star Assume stochastic variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$

- we have a formula for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- we have observed y_{1}, \ldots, y_{m}
- distribution of interest

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

where

$$
p\left(y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{n}
$$

\star We may be interested in

- each $x_{i} ; i=1, \ldots, n$, i.e.

$$
\begin{aligned}
& p\left(x_{i} \mid y_{1}, \ldots, y_{m}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n} \\
& \quad \text { - each pair }\left(x_{i}, x_{j}\right) ; i, j=1, \ldots, n, \text { i.e. } p\left(x_{i}, x_{j} \mid y_{1}, \ldots, y_{m}\right) \\
& \quad \text { - some function of } x_{1}, \ldots, x_{n}
\end{aligned}
$$

$$
z=g\left(x_{1}, \ldots, x_{n}\right)
$$

What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo sampling
* Assume we can do Monte Carlo sampling from

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo sampling
* Assume we can do Monte Carlo sampling from

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

\star If $\left(x_{1}, \ldots, x_{n}\right) \sim p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)$ we have

What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo sampling
* Assume we can do Monte Carlo sampling from

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

$$
\star \text { If }\left(x_{1}, \ldots, x_{n}\right) \sim p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \text { we have }
$$

$$
-x_{i} \sim p\left(x_{i} \mid y_{1}, \ldots, y_{m}\right)
$$

What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo sampling
* Assume we can do Monte Carlo sampling from

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

$$
\star \text { If }\left(x_{1}, \ldots, x_{n}\right) \sim p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \text { we have }
$$

$$
-x_{i} \sim p\left(x_{i} \mid y_{1}, \ldots, y_{m}\right)
$$

$$
-\left(x_{i}, x_{j}\right) \sim p\left(x_{i}, x_{j} \mid y_{1}, \ldots, y_{m}\right)
$$

What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo sampling
* Assume we can do Monte Carlo sampling from

$$
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}{p\left(y_{1}, \ldots, y_{m}\right)}
$$

$$
\star \text { If }\left(x_{1}, \ldots, x_{n}\right) \sim p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{m}\right) \text { we have }
$$

$$
-x_{i} \sim p\left(x_{i} \mid y_{1}, \ldots, y_{m}\right)
$$

$$
-\left(x_{i}, x_{j}\right) \sim p\left(x_{i}, x_{j} \mid y_{1}, \ldots, y_{m}\right)
$$

$$
-z=g\left(x_{1}, \ldots, x_{n}\right) \sim p\left(z \mid y_{1}, \ldots, y_{m}\right)
$$

Gaussian example revisited
$\star x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: spatial variable
$\xrightarrow[x_{1}]{x_{2}} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7} \quad x_{8} \quad x_{9} \quad x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20}^{+}$

* Assume x to be Gaussian
$\star \mathrm{E}\left[x_{i}\right]=\mu$
$\star \operatorname{Var}\left[x_{i}\right]=\sigma^{2}$
$\star \operatorname{Corr}\left[x_{i}, x_{j}\right]=\rho(|i-j|)$

\star Assume $\mu \sim N\left(0,5^{2}\right), \sigma^{2}=1$ and $\rho(h)=\exp \left\{-(h / 10)^{1.5}\right\}$
\star Assume observed: $x_{8}=2.8, x_{14}=2.4, x_{18}=2.5, x_{22}=2.7$

Marginal distributions

\star Ten realisations

\star Marginal distributions for x_{20}, x_{25} and x_{60} $p\left(x_{20} \mid x_{8}, x_{14}, x_{18}, x_{22}\right) \quad p\left(x_{25} \mid x_{8}, x_{14}, x_{18}, x_{22}\right) \quad p\left(x_{60} \mid x_{8}, x_{14}, x_{18}, x_{22}\right)$

Bivariate distributions

* Ten realisations

* Some bivariate distributions

A non-linear function of x_{1}, \ldots, x_{n}

* Three realisations

\star Let $z=g\left(x_{1}, \ldots, x_{n}\right)$ be the length of the longest continuous interval where $x_{i} \geq 3.25$
* Distribution of z :

A non-linear function of x_{1}, \ldots, x_{n}

* Three realisations

\star Let $z=g\left(x_{1}, \ldots, x_{n}\right)$ be the length of the longest continuous interval where $x_{i} \geq 3.25$
* Distribution of z :

Plan for next time

^ Part I: Introduction, stochastic variables and the effect of conditioning

* Part II: Modelling of dependence, conditional independence
* Part III: Bayesian inversion, prior and posterior distribution
* Part IV: Spatial model for categorical variables, Markov chain Monte Carlo
* Part V: Dynamic state space models, Kalman and ensemble Kalman filters

