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Plan for the course

? Part I: Introduction, stochastic variables and the effect of
conditioning

? Part II: Modelling of dependence, conditional independence
? Part III: Bayesian inversion, prior and posterior distribution
? Part IV: Spatial model for categorical variables, Markov chain

Monte Carlo
? Part V: Dynamic state space models, Kalman and ensemble

Kalman filters

? Part I, II and III: Focus on models and intuition
– want to understand the results from the models
– mostly small toy examples

? Part IV and V: Focus on algorithms and larger examples
– what is computationally feasible?
– larger examples



Plan today

? One stochastic variable
– distribution, p(x)
– mean and variance (standard deviation)
– estimation from Monte Carlo samples

? Two stochastic variables
– joint distribution, p(x1, x2)
– correlation
– marginal and conditional distributions
– the effect of conditioning
– how to specify a model, p(x1, x2)
– some simple examples



One stochastic variable
? Continuous stochastic variable, X

– amount of gas in a reservoir
– porosity
– your favourite uncertain quantity
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One stochastic variable

? Discrete stochastic variable, X
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One stochastic variable
? Binary stochastic variable, X

– presence/not presence of hydrocarbons
– CO2 leakage/not CO2 leakage
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? Categorical stochastic variable, X
– shale, oil filled sandstone, brine sandstone
– red, blue, green, yellow
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Mean and variance
? Mean: µ = E[X ] =

∫ ∞
−∞

xp(x)dx

? Variance and standard deviation:

σ2 = Var[X ] = E[(X − µ)2] and σ = SD[X ] =
√

Var[X ]

µ
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Monte Carlo simulation
? If you don’t have a (simple) formula for p(x),

– how to “plot” p(x)?
– how to “compute” E[X ] and Var[X ]?

? Often possible to generate Monte Carlo samples from p(x):
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Two stochastic variables, (X1,X2)

? Concepts that are (essentially) as with one stochastic variable
– (joint) distribution: p(x1, x2)
– mean and variance (standard deviation)

? New aspects
– dependence/correlation
– marginalisation
– the effect of conditioning
– how to specify p(x1, x2)



Joint distribution p(x1, x2)

? Correlation: ρ =
Cov[x1, x2]√

Var[x1] · Var[x2]
=

E[(x1 − µ1)(x2 − µ2)]√
Var[x1] · Var[x2]
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Joint distribution p(x1, x2)

? Correlation: ρ =
Cov[x1, x2]√

Var[x1] · Var[x2]
=

E[(x1 − µ1)(x2 − µ2)]√
Var[x1] · Var[x2]
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Joint distribution p(x1, x2)

? Correlation: ρ =
Cov[x1, x2]√

Var[x1] · Var[x2]
=

E[(x1 − µ1)(x2 − µ2)]√
Var[x1] · Var[x2]
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Joint distribution p(x1, x2)

? Correlation: ρ =
Cov[x1, x2]√

Var[x1] · Var[x2]
=

E[(x1 − µ1)(x2 − µ2)]√
Var[x1] · Var[x2]
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Marginalisation
? Assume a formula for p(x1, x2) is available
? Marginal distribution for x1 and for x2

p(x1) =

∫ ∞
−∞

p(x1, x2)dx2

p(x2) =

∫ ∞
−∞

p(x1, x2)dx1

p(x1, x2) p(x1) p(x2)
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? Note: With Monte Carlo simulation marginalisation is
immediate



Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x1)
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Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x1|x2 = 0) p(x1)
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Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x1|x2 = 2) p(x1)
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Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x1|x2 = −2) p(x1)
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Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x2|x1 = 1) p(x2)
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Conditioning
? Assume a formula for p(x1, x2)

? Conditional distributions

p(x1|x2) =
p(x1, x2)

p(x2)

p(x2|x1) =
p(x1, x2)

p(x1)

p(x1, x2) p(x2|x1 = 3) p(x2)
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How to specify a model for two stochastic variables?

? Specify a formula for p(x1, x2)

? Using conditional probability

p(x1, x2) = p(x1)p(x2|x1) OR p(x1, x2) = p(x2)p(x1|x2)

x1 x2 x1 x2

? Hierarchical model

x1, x2|θ ∼ p(x |θ) independently, and θ ∼ p(θ)

θ

x1 x2



Specify a formula for p(x1, x2)

? Multivariate normal (multivariate Gaussian)

p(x1, x2) =
1
2π

1√
|Σ|

exp

{
−1
2

([
x1
x2

]
− µ

)T

Σ−1
([

x1
x2

]
− µ

)}

where

µ =

[
µ1
µ2

]
and Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
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? Marginal distributions p(x1) and p(x2) are also normal

? Conditional distributions p(x1|x2) and p(x2|x1) are also normal



Using conditional probability to specify p(x1, x2)

? Probability law: p(x1, x2) = p(x1)p(x2|x1) x1 x2

? Simplistic example:
– x1 ∈ {0, 1}: source rock has produced hydrocarbons
– x2 ∈ {0, 1}: hydrocarbons present in prospect
– assume probabilities: p(x1 = 1) = 0.3

, p(x1 = 0) = 0.7

p(x2 = 1|x1 = 0) = 0, p(x2 = 1|x1 = 1) = 0.6

p(x2 = 0|x1 = 0) = 1, p(x2 = 0|x1 = 1) = 0.4

– the joint distribution becomes
x1 \x2 0 1

0 0.7 · 1 = 0.7 0.7 · 0 = 0
1 0.3 · 0.4 = 0.12 0.3 · 0.6 = 0.18

– having observed x2:
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p(x1 = 1, x2 = 0)

p(x2 = 0)
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0.7 + 0.12

= 0.146

p(x1 = 1|x2 = 1) =
p(x1 = 1, x2 = 1)

p(x2 = 1)
=

0.18
0 + 0.18

= 1
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Hierarchical model for specifying p(x1, x2)
? Assume: x1, x2|θ ∼ p(x |θ) independently, θ ∼ p(θ)

θ

x1 x2

? Simplistic example:
– θ ∈ {0, 1}: source rock has produced hydrocarbons
– x1 ∈ {0, 1}: hydrocarbons present in prospect 1
– x2 ∈ {0, 1}: hydrocarbons present in prospect 2
– assume probabilities: p(θ = 1) = 0.3

p(x1 = 1|θ = 0) = 0, p(x1 = 1|θ = 1) = 0.6
p(x2 = 1|θ = 0) = 0, p(x2 = 1|θ = 1) = 0.6

– joint distribution:

p(θ = 0, x1 = 0, x2 = 0) = 0.7 · 1 · 1 = 0.7
...

p(θ = 1, x1 = 1, x2 = 0) = 0.3 · 0.6 · 0.4 = 0.072
p(θ = 1, x1 = 1, x2 = 1) = 0.3 · 0.6 · 0.6 = 0.108
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Hierarchical model — simplistic example

? Recall assumed model:

θ

x1 x2

p(θ = 1) = 0.3
p(x1 = 1|θ = 0) = 0, p(x1 = 1|θ = 1) = 0.6
p(x2 = 1|θ = 0) = 0, p(x2 = 1|θ = 1) = 0.6

? From the joint distribution we can get (for example)

p(x1 = 1) =
1∑
θ=0

1∑
x2=0

p(θ, x1 = 1, x2) = 0.18

p(x1 = 1|x2 = 0) =
p(x1 = 1, x2 = 0)

p(x2 = 0)

=

∑1
θ=0 p(θ, x1 = 1, x2 = 0)∑1

θ=0
∑1

x1=0 p(θ, x1, x2 = 0)
= 0.0878

p(x1 = 1|x2 = 1) = . . . = 0.6
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CO2 leakage example and decision making
? Situation: Company can

i) proceed with CO2 injection
– cost of 30 monetary units
– if CO2 leakage, fine of 60 monetary units

ii) suspend sequestration
– tax of 80 monetary units

? Can use seismics to get (noisy) information about CO2 leakage
? What decision should the company do?

– do seismics or not do seismics
– inject CO2 or suspend sequestration

? Model assumptions
– x ∈ {0, 1}: CO2 leakage, p(x = 1) = 0.3
– y ∈ {0, 1}: seismic information, p(y = 1|x = 1) = 0.9,

p(y = 0|x = 0) = 0.9

? Expected cost if injection

E[cost injection] = 30 · p(x = 0) + (30 + 60) · p(x = 1) = 48
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– x ∈ {0, 1}: CO2 leakage, p(x = 1) = 0.3
– y ∈ {0, 1}: seismic information, p(y = 1|x = 1) = 0.9,

p(y = 0|x = 0) = 0.9
? With seismic information

p(x = 1|y = 0) =
p(x = 1)p(y = 0|x = 1)

p(y = 0)
= 0.045

p(x = 1|y = 1) =
p(x = 1)p(y = 1|x = 1)

p(y = 1)
= 0.794

? Expected costs

E [cost injection|y = 0] = 30 · (1− 0.045) + (30 + 60) · 0.045 = 32.7
E [cost injection|y = 1] = 30 · (1− 0.794) + (30 + 60) · 0.794 = 77.6
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Many (n) stochastic variables

? Concepts that are (essentially) as with two stochastic variables
– (joint) distribution
– mean and variance (standard deviation)
– dependence/correlation
– marginalisation
– the effect of conditioning
– how to specify the distribution

? New aspects
– conditional independence
– how to “look at” the distribution
– what quantities are of interest
– how to generate Monte Carlo realizations/samples


