Uncertainty and statistics Part I

Håkon Tjelmeland CGF and Department of Mathematical Sciences Norwegian University of Science and Technology

Friday October 22nd 2021

Plan for the course

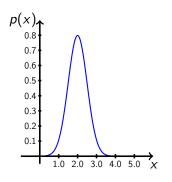
- Part I: Introduction, stochastic variables and the effect of conditioning
- * Part II: Modelling of dependence, conditional independence
- * Part III: Bayesian inversion, prior and posterior distribution
- Part IV: Spatial model for categorical variables, Markov chain Monte Carlo
- * Part V: Dynamic state space models, Kalman and ensemble Kalman filters

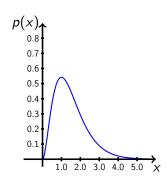
- * Part I, II and III: Focus on models and intuition
 - want to understand the results from the models
 - mostly small toy examples
- * Part IV and V: Focus on algorithms and larger examples
 - what is computationally feasible?
 - larger examples

Plan today

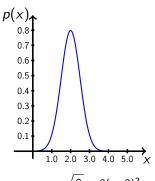
- ⋆ One stochastic variable
 - distribution, p(x)
 - mean and variance (standard deviation)
 - estimation from Monte Carlo samples
- * Two stochastic variables
 - joint distribution, $p(x_1, x_2)$
 - correlation
 - marginal and conditional distributions
 - the effect of conditioning
 - how to specify a model, $p(x_1, x_2)$
 - some simple examples

- ⋆ Continuous stochastic variable, X
 - amount of gas in a reservoir
 - porosity
 - your favourite uncertain quantity

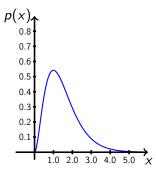




- ★ Continuous stochastic variable, X
 - amount of gas in a reservoir
 - porosity
 - your favourite uncertain quantity

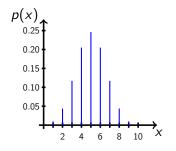


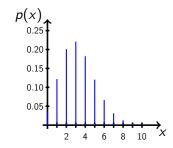
$$p(x) = \sqrt{\frac{2}{\pi}}e^{-2(x-2)^2}$$



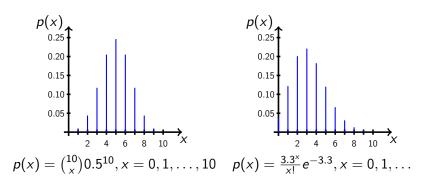
$$p(x) = \frac{e^{-2x}}{\sqrt{2x}}, x > 0$$

 \star Discrete stochastic variable, X

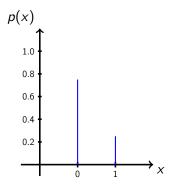




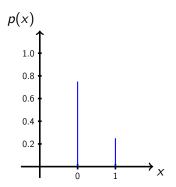
⋆ Discrete stochastic variable, X



- \star Binary stochastic variable, X
 - presence/not presence of hydrocarbons
 - CO2 leakage/not CO2 leakage



- ⋆ Binary stochastic variable, X
 - presence/not presence of hydrocarbons
 - CO2 leakage/not CO2 leakage



- * Categorical stochastic variable, X
 - shale, oil filled sandstone, brine sandstone
 - red, blue, green, yellow

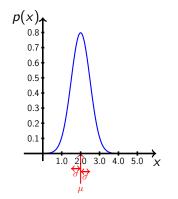
Mean and variance

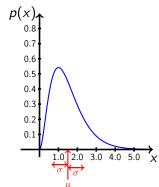
⋆ Mean:

$$\mu = \mathsf{E}[X] = \int_{-\infty}^{\infty} x p(x) dx$$

* Variance and standard deviation:

$$\sigma^2 = Var[X] = E[(X - \mu)^2]$$
 and $\sigma = SD[X] = \sqrt{Var[X]}$



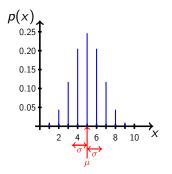


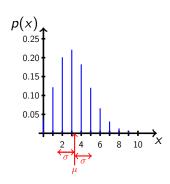
Mean and variance

* Mean:
$$\mu = E[X] = \sum_{x} xp(x)$$

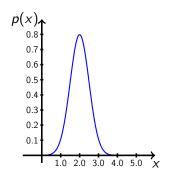
* Variance and standard deviation:

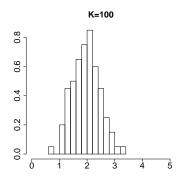
$$\sigma^2 = Var[X] = E[(X - \mu)^2]$$
 and $\sigma = SD[X] = \sqrt{Var[X]}$



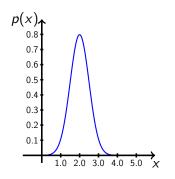


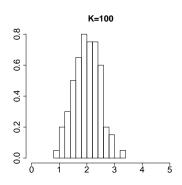
- * If you don't have a (simple) formula for p(x),
 - how to "plot" p(x)?
 - how to "compute" E[X] and Var[X]?
- * Often possible to generate Monte Carlo samples from p(x): x_1, x_2, \dots, x_K



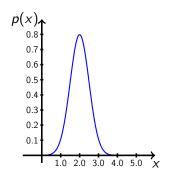


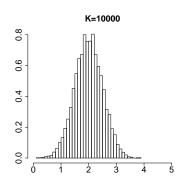
- * If you don't have a (simple) formula for p(x),
 - how to "plot" p(x)?
 - how to "compute" E[X] and Var[X]?
- * Often possible to generate Monte Carlo samples from p(x): x_1, x_2, \dots, x_K



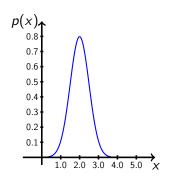


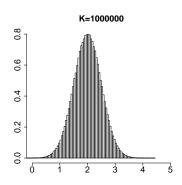
- * If you don't have a (simple) formula for p(x),
 - how to "plot" p(x)?
 - how to "compute" E[X] and Var[X]?
- * Often possible to generate Monte Carlo samples from p(x): x_1, x_2, \dots, x_K



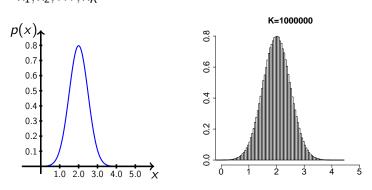


- * If you don't have a (simple) formula for p(x),
 - how to "plot" p(x)?
 - how to "compute" E[X] and Var[X]?
- * Often possible to generate Monte Carlo samples from p(x): x_1, x_2, \dots, x_K





- * If you don't have a (simple) formula for p(x),
 - how to "plot" p(x)?
- how to "compute" E[X] and Var[X]?
- * Often possible to generate Monte Carlo samples from p(x): x_1, x_2, \dots, x_K



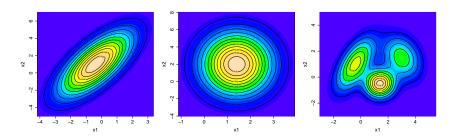
$$\widehat{\mu} = \overline{x} = \frac{1}{K} \sum_{i=1}^{K} x_i$$
 and $\widehat{\sigma}^2 = \frac{1}{K-1} \sum_{i=1}^{K} (x_i - \overline{x})^2$

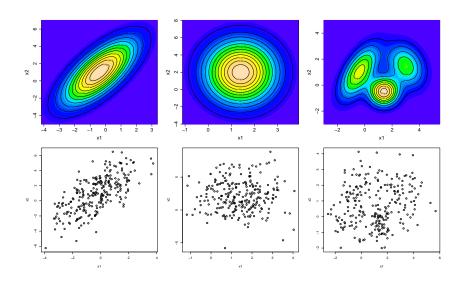
Two stochastic variables, (X_1, X_2)

- * Concepts that are (essentially) as with one stochastic variable
 - (joint) distribution: $p(x_1, x_2)$
 - mean and variance (standard deviation)

⋆ New aspects

- dependence/correlation
- marginalisation
- the effect of conditioning
- how to specify $p(x_1, x_2)$





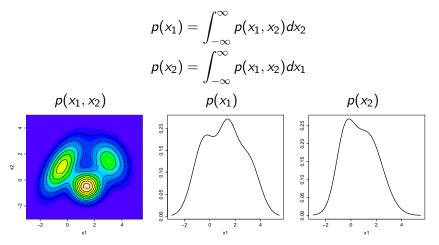
$$\star \text{ Correlation: } \rho = \frac{\text{Cov}[x_1, x_2]}{\sqrt{\text{Var}[x_1] \cdot \text{Var}[x_2]}} = \frac{\text{E}[(x_1 - \mu_1)(x_2 - \mu_2)]}{\sqrt{\text{Var}[x_1] \cdot \text{Var}[x_2]}}$$

* Correlation:
$$\rho = \frac{\operatorname{Cov}[x_1, x_2]}{\sqrt{\operatorname{Var}[x_1] \cdot \operatorname{Var}[x_2]}} = \frac{\operatorname{E}[(x_1 - \mu_1)(x_2 - \mu_2)]}{\sqrt{\operatorname{Var}[x_1] \cdot \operatorname{Var}[x_2]}}$$

$$\rho = 0.7 \qquad \rho = 0 \qquad \rho = 0.17$$

Marginalisation

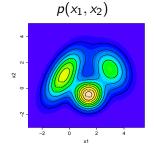
- * Assume a formula for $p(x_1, x_2)$ is available
- \star Marginal distribution for x_1 and for x_2

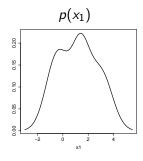


 Note: With Monte Carlo simulation marginalisation is immediate

- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

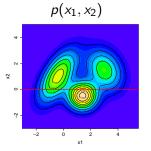
$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$

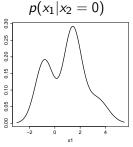


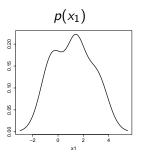


- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$

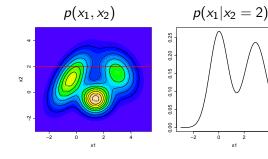


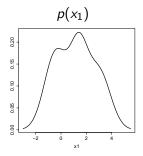




- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

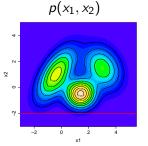
$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$

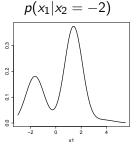


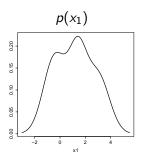


- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$

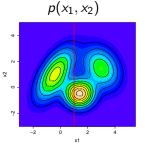


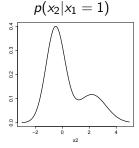


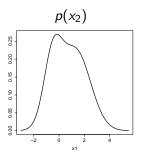


- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$

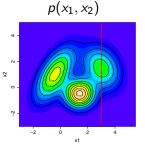


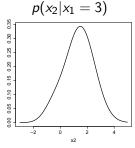


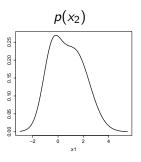


- * Assume a formula for $p(x_1, x_2)$
- * Conditional distributions

$$p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$
$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)}$$







How to specify a model for two stochastic variables?

- * Specify a formula for $p(x_1, x_2)$
- * Using conditional probability

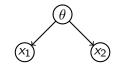
$$p(x_1, x_2) = p(x_1)p(x_2|x_1)$$
 OR $p(x_1, x_2) = p(x_2)p(x_1|x_2)$

$$(x_1) \longrightarrow (x_2)$$

$$(x_1) \longleftarrow (x_2)$$

* Hierarchical model

$$x_1, x_2 | \theta \sim p(x | \theta)$$
 independently, and $\theta \sim p(\theta)$



Specify a formula for $p(x_1, x_2)$

* Multivariate normal (multivariate Gaussian)

$$p(x_1, x_2) = \frac{1}{2\pi} \frac{1}{\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mu \end{pmatrix}^T \Sigma^{-1} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mu \end{pmatrix}\right\}$$
 where
$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}_{\mathbb{R}^n}$$

- * Marginal distributions $p(x_1)$ and $p(x_2)$ are also normal
- \star Conditional distributions $p(x_1|x_2)$ and $p(x_2|x_1)$ are also normal

- * Probability law: $p(x_1, x_2) = p(x_1)p(x_2|x_1)$ $\xrightarrow{(x_1)}$
- ★ Simplistic example:
 - $-x_1$ ∈ {0,1}: source rock has produced hydrocarbons
 - $-x_2$ ∈ {0,1}: hydrocarbons present in prospect
 - assume probabilities: $p(x_1 = 1) = 0.3$

$$p(x_2 = 1|x_1 = 0) = 0, p(x_2 = 1|x_1 = 1) = 0.6$$

- * Probability law: $p(x_1, x_2) = p(x_1)p(x_2|x_1)$ (x_1) (x_2)
- ★ Simplistic example:
 - $-x_1$ ∈ {0,1}: source rock has produced hydrocarbons
 - $-x_2 \in \{0,1\}$: hydrocarbons present in prospect
 - assume probabilities: $p(x_1 = 1) = 0.3$, $p(x_1 = 0) = 0.7$

$$p(x_2 = 1|x_1 = 0) = 0, p(x_2 = 1|x_1 = 1) = 0.6$$

 $p(x_2 = 0|x_1 = 0) = 1, p(x_2 = 0|x_1 = 1) = 0.4$

* Probability law:
$$p(x_1, x_2) = p(x_1)p(x_2|x_1)$$
 (x_1) (x_2)

- * Simplistic example:
 - $-x_1 \in \{0,1\}$: source rock has produced hydrocarbons
 - $x_2 \in \{0,1\}$: hydrocarbons present in prospect
 - assume probabilities: $p(x_1 = 1) = 0.3$, $p(x_1 = 0) = 0.7$

$$p(x_2 = 1|x_1 = 0) = 0$$
, $p(x_2 = 1|x_1 = 1) = 0.6$
 $p(x_2 = 0|x_1 = 0) = 1$, $p(x_2 = 0|x_1 = 1) = 0.4$

the joint distribution becomes

$x_1 \setminus x_2$	0	1
0	$0.7 \cdot 1 = 0.7$	$0.7 \cdot 0 = 0$
1	$0.7 \cdot 1 = 0.7 \\ 0.3 \cdot 0.4 = 0.12$	$0.3 \cdot 0.6 = 0.18$

* Probability law:
$$p(x_1, x_2) = p(x_1)p(x_2|x_1)$$

- ★ Simplistic example:
 - $-x_1 \in \{0,1\}$: source rock has produced hydrocarbons
 - $-x_2$ ∈ {0,1}: hydrocarbons present in prospect
 - assume probabilities: $p(x_1 = 1) = 0.3$, $p(x_1 = 0) = 0.7$

$$p(x_2 = 1|x_1 = 0) = 0, p(x_2 = 1|x_1 = 1) = 0.6$$

 $p(x_2 = 0|x_1 = 0) = 1, p(x_2 = 0|x_1 = 1) = 0.4$

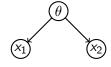
the joint distribution becomes

- having observed x_2 :

$$p(x_1 = 1 | x_2 = 0) = \frac{p(x_1 = 1, x_2 = 0)}{p(x_2 = 0)} = \frac{0.12}{0.7 + 0.12} = 0.146$$
$$p(x_1 = 1 | x_2 = 1) = \frac{p(x_1 = 1, x_2 = 1)}{p(x_2 = 1)} = \frac{0.18}{0 + 0.18} = 1$$

Hierarchical model for specifying $p(x_1, x_2)$

* Assume: $x_1, x_2 | \theta \sim p(x | \theta)$ independently, $\theta \sim p(\theta)$



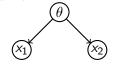
- ★ Simplistic example:
 - − $\theta \in \{0,1\}$: source rock has produced hydrocarbons
 - $x_1 \in \{0,1\}$: hydrocarbons present in prospect 1
 - $-x_2$ ∈ {0,1}: hydrocarbons present in prospect 2
 - assume probabilities: $p(\theta = 1) = 0.3$

$$p(x_1 = 1|\theta = 0) = 0, \ p(x_1 = 1|\theta = 1) = 0.6$$

 $p(x_2 = 1|\theta = 0) = 0, \ p(x_2 = 1|\theta = 1) = 0.6$

Hierarchical model for specifying $p(x_1, x_2)$

* Assume: $x_1, x_2 | \theta \sim p(x | \theta)$ independently, $\theta \sim p(\theta)$



- ★ Simplistic example:
 - $-\theta \in \{0,1\}$: source rock has produced hydrocarbons
 - $x_1 \in \{0,1\}$: hydrocarbons present in prospect 1
 - $-x_2$ ∈ {0,1}: hydrocarbons present in prospect 2
 - assume probabilities: $p(\theta = 1) = 0.3$

$$p(x_1 = 1|\theta = 0) = 0, \ p(x_1 = 1|\theta = 1) = 0.6$$

 $p(x_2 = 1|\theta = 0) = 0, \ p(x_2 = 1|\theta = 1) = 0.6$

joint distribution:

$$p(\theta = 0, x_1 = 0, x_2 = 0) = 0.7 \cdot 1 \cdot 1 = 0.7$$

$$\vdots$$

$$p(\theta = 1, x_1 = 1, x_2 = 0) = 0.3 \cdot 0.6 \cdot 0.4 = 0.072$$

$$p(\theta = 1, x_1 = 1, x_2 = 1) = 0.3 \cdot 0.6 \cdot 0.6 = 0.108$$

Hierarchical model — simplistic example

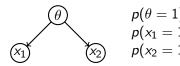
* Recall assumed model:

★ From the joint distribution we can get (for example)

$$p(x_1 = 1) = \sum_{\theta=0}^{1} \sum_{x_2=0}^{1} p(\theta, x_1 = 1, x_2) = 0.18$$

Hierarchical model — simplistic example

* Recall assumed model:



$$p(\theta = 1) = 0.3$$

 $p(x_1 = 1|\theta = 0) = 0, \quad p(x_1 = 1|\theta = 1) = 0.6$
 $p(x_2 = 1|\theta = 0) = 0, \quad p(x_2 = 1|\theta = 1) = 0.6$

* From the joint distribution we can get (for example)

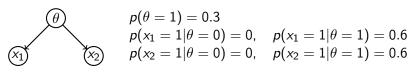
$$p(x_1 = 1) = \sum_{\theta=0}^{1} \sum_{x_2=0}^{1} p(\theta, x_1 = 1, x_2) = 0.18$$

$$p(x_1 = 1 | x_2 = 0) = \frac{p(x_1 = 1, x_2 = 0)}{p(x_2 = 0)}$$

$$= \frac{\sum_{\theta=0}^{1} p(\theta, x_1 = 1, x_2 = 0)}{\sum_{\theta=0}^{1} \sum_{x_1=0}^{1} p(\theta, x_1, x_2 = 0)} = 0.0878$$

Hierarchical model — simplistic example

* Recall assumed model:



* From the joint distribution we can get (for example)

$$p(x_1 = 1) = \sum_{\theta=0}^{1} \sum_{x_2=0}^{1} p(\theta, x_1 = 1, x_2) = 0.18$$

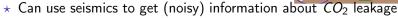
$$p(x_1 = 1 | x_2 = 0) = \frac{p(x_1 = 1, x_2 = 0)}{p(x_2 = 0)}$$

$$= \frac{\sum_{\theta=0}^{1} p(\theta, x_1 = 1, x_2 = 0)}{\sum_{\theta=0}^{1} \sum_{x_1=0}^{1} p(\theta, x_1, x_2 = 0)} = 0.0878$$

$$p(x_1 = 1 | x_2 = 1) = \dots = 0.6$$

CO2 leakage example and decision making

- * Situation: Company can
 - i) proceed with CO₂ injection
 - cost of 30 monetary units
 - if CO_2 leakage, fine of 60 monetary units
 - ii) suspend sequestration
 - tax of 80 monetary units



- ★ What decision should the company do?
 - do seismics or not do seismics
 - inject CO₂ or suspend sequestration
- * Model assumptions
 - $-x \in \{0,1\}$: CO_2 leakage, p(x=1) = 0.3
 - $y \in \{0, 1\}$: seismic information, p(y = 1|x = 1) = 0.9, p(y = 0|x = 0) = 0.9

CO2 leakage example and decision making

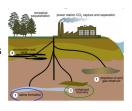
- ★ Situation: Company can
 - i) proceed with CO2 injection
 - cost of 30 monetary units
 - if CO_2 leakage, fine of 60 monetary units
 - ii) suspend sequestration
 - tax of 80 monetary units

- \star Can use seismics to get (noisy) information about CO_2 leakage
- * What decision should the company do?
 - do seismics or not do seismics
 - inject CO₂ or suspend sequestration
- * Model assumptions
 - $-x \in \{0,1\}$: CO_2 leakage, p(x=1) = 0.3
 - $y \in \{0, 1\}$: seismic information, p(y = 1|x = 1) = 0.9, p(y = 0|x = 0) = 0.9
- ★ Expected cost if injection

E[cost injection] =
$$30 \cdot p(x = 0) + (30 + 60) \cdot p(x = 1) = 48$$

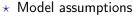
CO₂ leakage example and decision making

- * Situation: Company can
 - i) proceed with CO₂ injection
 - cost of 30 monetary units
 - if CO₂ leakage, fine of 60 monetary units
 - ii) suspend sequestration
 - tax of 80 monetary units
- * Model assumptions
 - $-x \in \{0,1\}$: CO_2 leakage, p(x=1) = 0.3
 - $y \in \{0, 1\}$: seismic information, p(y = 1|x = 1) = 0.9, p(y = 0|x = 0) = 0.9
- * With seismic information



CO₂ leakage example and decision making

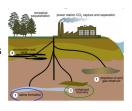
- * Situation: Company can
 - i) proceed with CO₂ injection
 - cost of 30 monetary units
 - if CO₂ leakage, fine of 60 monetary units
 - ii) suspend sequestration
 - tax of 80 monetary units



- $-x \in \{0,1\}$: CO_2 leakage, p(x=1) = 0.3
- $y \in \{0, 1\}$: seismic information, p(y = 1|x = 1) = 0.9, p(y = 0|x = 0) = 0.9
- * With seismic information

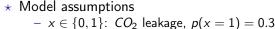
$$p(x = 1|y = 0) = \frac{p(x = 1)p(y = 0|x = 1)}{p(y = 0)} = 0.045$$

$$p(x = 1|y = 1) = \frac{p(x = 1)p(y = 1|x = 1)}{p(y = 1)} = 0.794$$



CO₂ leakage example and decision making

- ⋆ Situation: Company can
 - i) proceed with CO₂ injection
 - cost of 30 monetary units
 if CO₂ leakage, fine of 60 monetary units
 - ii) suspend sequestration
 - tax of 80 monetary units



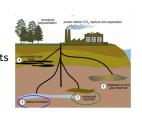
$$-x \in \{0,1\}$$
. CO₂ leakage, $p(x-1) = 0.3$
 $-y \in \{0,1\}$: seismic information, $p(y=1|x=1) = 0.9$,

$$p(y=0|x=0)=0.9$$

$$p(x = 1|y = 0) = \frac{p(x = 1)p(y = 0|x = 1)}{p(y = 0)} = 0.045$$
$$p(x = 1|y = 1) = \frac{p(x = 1)p(y = 1|x = 1)}{p(y = 1)} = 0.794$$

$$E[\text{cost injection}|y=0] = 30 \cdot (1 - 0.045) + (30 + 60) \cdot 0.045 = 32.7$$

 $E[\text{cost injection}|y=1] = 30 \cdot (1 - 0.794) + (30 + 60) \cdot 0.794 = 77.6$



Many (n) stochastic variables

- ★ Concepts that are (essentially) as with two stochastic variables
 - (joint) distribution
 - mean and variance (standard deviation)
 - dependence/correlation
 - marginalisation
 - the effect of conditioning
 - how to specify the distribution

⋆ New aspects

- conditional independence
- how to "look at" the distribution
- what quantities are of interest
- how to generate Monte Carlo realizations/samples