Uncertainty and statistics Part I

Håkon Tjelmeland
CGF and Department of Mathematical Sciences Norwegian University of Science and Technology

Friday October 22nd 2021

Plan for the course

* Part I: Introduction, stochastic variables and the effect of conditioning
* Part II: Modelling of dependence, conditional independence
* Part III: Bayesian inversion, prior and posterior distribution
* Part IV: Spatial model for categorical variables, Markov chain Monte Carlo
* Part V: Dynamic state space models, Kalman and ensemble Kalman filters
* Part I, II and III: Focus on models and intuition
- want to understand the results from the models
- mostly small toy examples
\star Part IV and V: Focus on algorithms and larger examples
- what is computationally feasible?
- larger examples

Plan today

* One stochastic variable
- distribution, $p(x)$
- mean and variance (standard deviation)
- estimation from Monte Carlo samples
\star Two stochastic variables
- joint distribution, $p\left(x_{1}, x_{2}\right)$
- correlation
- marginal and conditional distributions
- the effect of conditioning
- how to specify a model, $p\left(x_{1}, x_{2}\right)$
- some simple examples

One stochastic variable

* Continuous stochastic variable, X
- amount of gas in a reservoir
- porosity
- your favourite uncertain quantity

One stochastic variable

* Continuous stochastic variable, X
- amount of gas in a reservoir
- porosity
- your favourite uncertain quantity

$p(x)=\sqrt{\frac{2}{\pi}} e^{-2(x-2)^{2}}$

$$
p(x)=\frac{e^{-2 x}}{\sqrt{2 x}}, x>0
$$

One stochastic variable

\star Discrete stochastic variable, X

One stochastic variable

\star Discrete stochastic variable, X

$$
p(x)=\binom{10}{x} 0.5^{10}, x=0,1, \ldots, 10 \quad p(x)=\frac{3.3^{x}}{x!} e^{-3.3}, x=0,1, \ldots
$$

One stochastic variable

\star Binary stochastic variable, X

- presence/not presence of hydrocarbons
- CO2 leakage/not CO2 leakage

One stochastic variable

* Binary stochastic variable, X
- presence/not presence of hydrocarbons
- CO2 leakage/not CO2 leakage

* Categorical stochastic variable, X
- shale, oil filled sandstone, brine sandstone
- red, blue, green, yellow

Mean and variance

* Mean:

$$
\mu=\mathrm{E}[X]=\int_{-\infty}^{\infty} x p(x) d x
$$

\star Variance and standard deviation:

$$
\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[(X-\mu)^{2}\right] \quad \text { and } \quad \sigma=\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}
$$

Mean and variance

* Mean:

$$
\mu=\mathrm{E}[X]=\sum_{x} x p(x)
$$

* Variance and standard deviation:

$$
\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[(X-\mu)^{2}\right] \quad \text { and } \quad \sigma=\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}
$$

Monte Carlo simulation

* If you don't have a (simple) formula for $p(x)$,
- how to "plot" $p(x)$?
- how to "compute" $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
\star Often possible to generate Monte Carlo samples from $p(x)$: $x_{1}, x_{2}, \ldots, x_{K}$

Monte Carlo simulation

* If you don't have a (simple) formula for $p(x)$,
- how to "plot" $p(x)$?
- how to "compute" $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
\star Often possible to generate Monte Carlo samples from $p(x)$: $x_{1}, x_{2}, \ldots, x_{K}$

Monte Carlo simulation

* If you don't have a (simple) formula for $p(x)$,
- how to "plot" $p(x)$?
- how to "compute" $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
\star Often possible to generate Monte Carlo samples from $p(x)$: $x_{1}, x_{2}, \ldots, x_{K}$

Monte Carlo simulation

* If you don't have a (simple) formula for $p(x)$,
- how to "plot" $p(x)$?
- how to "compute" $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
\star Often possible to generate Monte Carlo samples from $p(x)$: $x_{1}, x_{2}, \ldots, x_{K}$

Monte Carlo simulation

* If you don't have a (simple) formula for $p(x)$,
- how to "plot" $p(x)$?
- how to "compute" $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
\star Often possible to generate Monte Carlo samples from $p(x)$: $x_{1}, x_{2}, \ldots, x_{K}$

$\widehat{\mu}=\bar{x}=\frac{1}{K} \sum_{i=1}^{K} x_{i} \quad$ and
$\widehat{\sigma}^{2}=\frac{1}{K-1} \sum_{i=1}^{K}\left(x_{i}-\bar{x}\right)^{2}$

Two stochastic variables, $\left(X_{1}, X_{2}\right)$

* Concepts that are (essentially) as with one stochastic variable
- (joint) distribution: $p\left(x_{1}, x_{2}\right)$
- mean and variance (standard deviation)
* New aspects
- dependence/correlation
- marginalisation
- the effect of conditioning
- how to specify $p\left(x_{1}, x_{2}\right)$

Joint distribution $p\left(x_{1}, x_{2}\right)$

Joint distribution $p\left(x_{1}, x_{2}\right)$

Joint distribution $p\left(x_{1}, x_{2}\right)$

* Correlation: $\rho=\frac{\operatorname{Cov}\left[x_{1}, x_{2}\right]}{\sqrt{\operatorname{Var}\left[x_{1}\right] \cdot \operatorname{Var}\left[x_{2}\right]}}=\frac{\mathrm{E}\left[\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right]}{\sqrt{\operatorname{Var}\left[x_{1}\right] \cdot \operatorname{Var}\left[x_{2}\right]}}$

Joint distribution $p\left(x_{1}, x_{2}\right)$

Marginalisation

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$ is available
\star Marginal distribution for x_{1} and for x_{2}

$$
\begin{aligned}
& p\left(x_{1}\right)=\int_{-\infty}^{\infty} p\left(x_{1}, x_{2}\right) d x_{2} \\
& p\left(x_{2}\right)=\int_{-\infty}^{\infty} p\left(x_{1}, x_{2}\right) d x_{1}
\end{aligned}
$$

* Note: With Monte Carlo simulation marginalisation is immediate

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

Conditioning

\star Assume a formula for $p\left(x_{1}, x_{2}\right)$
\star Conditional distributions

$$
\begin{aligned}
& p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& p\left(x_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)}
\end{aligned}
$$

How to specify a model for two stochastic variables?

\star Specify a formula for $p\left(x_{1}, x_{2}\right)$

* Using conditional probability
$p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \quad$ OR $\quad p\left(x_{1}, x_{2}\right)=p\left(x_{2}\right) p\left(x_{1} \mid x_{2}\right)$

* Hierarchical model

$$
x_{1}, x_{2} \mid \theta \sim p(x \mid \theta) \text { independently, and } \theta \sim p(\theta)
$$

Specify a formula for $p\left(x_{1}, x_{2}\right)$

* Multivariate normal (multivariate Gaussian)

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{|\Sigma|}} \exp \left\{-\frac{1}{2}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\mu\right)^{T} \Sigma^{-1}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\mu\right)\right\}
$$

where

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

* Marginal distributions $p\left(x_{1}\right)$ and $p\left(x_{2}\right)$ are also normal
\star Conditional distributions $p\left(x_{1} \mid x_{2}\right)$ and $p\left(x_{2} \mid x_{1}\right)$ are also normal

Using conditional probability to specify $p\left(x_{1}, x_{2}\right)$

\star Probability law: $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$

\star Simplistic example:

- $x_{1} \in\{0,1\}$: source rock has produced hydrocarbons
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect
- assume probabilities: $p\left(x_{1}=1\right)=0.3$

$$
p\left(x_{2}=1 \mid x_{1}=0\right)=0, p\left(x_{2}=1 \mid x_{1}=1\right)=0.6
$$

Using conditional probability to specify $p\left(x_{1}, x_{2}\right)$

\star Probability law: $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$

\star Simplistic example:

- $x_{1} \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{2} \in\{0,1\}$: hydrocarbons present in prospect
- assume probabilities: $p\left(x_{1}=1\right)=0.3, p\left(x_{1}=0\right)=0.7$

$$
\begin{aligned}
& p\left(x_{2}=1 \mid x_{1}=0\right)=0, p\left(x_{2}=1 \mid x_{1}=1\right)=0.6 \\
& p\left(x_{2}=0 \mid x_{1}=0\right)=1, p\left(x_{2}=0 \mid x_{1}=1\right)=0.4
\end{aligned}
$$

Using conditional probability to specify $p\left(x_{1}, x_{2}\right)$

\star Probability law: $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$

\star Simplistic example:

- $x_{1} \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{2} \in\{0,1\}$: hydrocarbons present in prospect
- assume probabilities: $p\left(x_{1}=1\right)=0.3, p\left(x_{1}=0\right)=0.7$

$$
\begin{aligned}
& p\left(x_{2}=1 \mid x_{1}=0\right)=0, p\left(x_{2}=1 \mid x_{1}=1\right)=0.6 \\
& p\left(x_{2}=0 \mid x_{1}=0\right)=1, p\left(x_{2}=0 \mid x_{1}=1\right)=0.4
\end{aligned}
$$

- the joint distribution becomes

$x_{1} \backslash x_{2}$	0	1
0	$0.7 \cdot 1=0.7$	$0.7 \cdot 0=0$
1	$0.3 \cdot 0.4=0.12$	$0.3 \cdot 0.6=0.18$

Using conditional probability to specify $p\left(x_{1}, x_{2}\right)$

\star Probability law: $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$

\star Simplistic example:

- $x_{1} \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{2} \in\{0,1\}$: hydrocarbons present in prospect
- assume probabilities: $p\left(x_{1}=1\right)=0.3, p\left(x_{1}=0\right)=0.7$

$$
\begin{aligned}
& p\left(x_{2}=1 \mid x_{1}=0\right)=0, p\left(x_{2}=1 \mid x_{1}=1\right)=0.6 \\
& p\left(x_{2}=0 \mid x_{1}=0\right)=1, p\left(x_{2}=0 \mid x_{1}=1\right)=0.4
\end{aligned}
$$

- the joint distribution becomes

$x_{1} \backslash x_{2}$	0	1
0	$0.7 \cdot 1=0.7$	$0.7 \cdot 0=0$
1	$0.3 \cdot 0.4=0.12$	$0.3 \cdot 0.6=0.18$

- having observed x_{2} :

$$
\begin{aligned}
& p\left(x_{1}=1 \mid x_{2}=0\right)=\frac{p\left(x_{1}=1, x_{2}=0\right)}{p\left(x_{2}=0\right)}=\frac{0.12}{0.7+0.12}=0.146 \\
& p\left(x_{1}=1 \mid x_{2}=1\right)=\frac{p\left(x_{1}=1, x_{2}=1\right)}{p\left(x_{2}=1\right)}=\frac{0.18}{0+0.18}=1
\end{aligned}
$$

Hierarchical model for specifying $p\left(x_{1}, x_{2}\right)$

\star Assume: $x_{1}, x_{2} \mid \theta \sim p(x \mid \theta)$ independently, $\theta \sim p(\theta)$

* Simplistic example:
- $\theta \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}$: hydrocarbons present in prospect 2
- assume probabilities: $p(\theta=1)=0.3$

$$
\begin{aligned}
& p\left(x_{1}=1 \mid \theta=0\right)=0, p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

Hierarchical model for specifying $p\left(x_{1}, x_{2}\right)$

\star Assume: $x_{1}, x_{2} \mid \theta \sim p(x \mid \theta)$ independently, $\theta \sim p(\theta)$

* Simplistic example:
- $\theta \in\{0,1\}$: source rock has produced hydrocarbons
- $x_{1} \in\{0,1\}$: hydrocarbons present in prospect 1
$-x_{2} \in\{0,1\}:$ hydrocarbons present in prospect 2
- assume probabilities: $p(\theta=1)=0.3$

$$
\begin{aligned}
& p\left(x_{1}=1 \mid \theta=0\right)=0, p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

- joint distribution:

$$
\begin{gathered}
p\left(\theta=0, x_{1}=0, x_{2}=0\right)=0.7 \cdot 1 \cdot 1=0.7 \\
\vdots \\
p\left(\theta=1, x_{1}=1, x_{2}=0\right)=0.3 \cdot 0.6 \cdot 0.4=0.072 \\
p\left(\theta=1, x_{1}=1, x_{2}=1\right)=0.3 \cdot 0.6 \cdot 0.6=0.108
\end{gathered}
$$

Hierarchical model - simplistic example

* Recall assumed model:

$$
\begin{aligned}
& p(\theta=1)=0.3 \\
& p\left(x_{1}=1 \mid \theta=0\right)=0, \quad p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, \quad p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

* From the joint distribution we can get (for example)

$$
p\left(x_{1}=1\right)=\sum_{\theta=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}=1, x_{2}\right)=0.18
$$

Hierarchical model - simplistic example

* Recall assumed model:

$$
\begin{aligned}
& p(\theta=1)=0.3 \\
& p\left(x_{1}=1 \mid \theta=0\right)=0, \quad p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, \quad p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

* From the joint distribution we can get (for example)

$$
\begin{aligned}
p\left(x_{1}=1\right) & =\sum_{\theta=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}=1, x_{2}\right)=0.18 \\
p\left(x_{1}=1 \mid x_{2}=0\right) & =\frac{p\left(x_{1}=1, x_{2}=0\right)}{p\left(x_{2}=0\right)} \\
& =\frac{\sum_{\theta=0}^{1} p\left(\theta, x_{1}=1, x_{2}=0\right)}{\sum_{\theta=0}^{1} \sum_{x_{1}=0}^{1} p\left(\theta, x_{1}, x_{2}=0\right)}=0.0878
\end{aligned}
$$

Hierarchical model - simplistic example

* Recall assumed model:

$$
\begin{aligned}
& p(\theta=1)=0.3 \\
& p\left(x_{1}=1 \mid \theta=0\right)=0, \quad p\left(x_{1}=1 \mid \theta=1\right)=0.6 \\
& p\left(x_{2}=1 \mid \theta=0\right)=0, \quad p\left(x_{2}=1 \mid \theta=1\right)=0.6
\end{aligned}
$$

* From the joint distribution we can get (for example)

$$
\begin{aligned}
p\left(x_{1}=1\right) & =\sum_{\theta=0}^{1} \sum_{x_{2}=0}^{1} p\left(\theta, x_{1}=1, x_{2}\right)=0.18 \\
p\left(x_{1}=1 \mid x_{2}=0\right) & =\frac{p\left(x_{1}=1, x_{2}=0\right)}{p\left(x_{2}=0\right)} \\
& =\frac{\sum_{\theta=0}^{1} p\left(\theta, x_{1}=1, x_{2}=0\right)}{\sum_{\theta=0}^{1} \sum_{x_{1}=0}^{1} p\left(\theta, x_{1}, x_{2}=0\right)}=0.0878 \\
p\left(x_{1}=1 \mid x_{2}=1\right) & =\ldots=0.6
\end{aligned}
$$

CO_{2} leakage example and decision making

\star Situation: Company can
i) proceed with CO_{2} injection

- cost of 30 monetary units
- if CO_{2} leakage, fine of 60 monetary units
ii) suspend sequestration
- tax of 80 monetary units

* Can use seismics to get (noisy) information about CO_{2} leakage
\star What decision should the company do?
- do seismics or not do seismics
- inject CO_{2} or suspend sequestration
\star Model assumptions
$-x \in\{0,1\}: \mathrm{CO}_{2}$ leakage, $p(x=1)=0.3$
- $y \in\{0,1\}$: seismic information, $p(y=1 \mid x=1)=0.9$, $p(y=0 \mid x=0)=0.9$

CO_{2} leakage example and decision making

\star Situation: Company can
i) proceed with CO_{2} injection

- cost of 30 monetary units
- if CO_{2} leakage, fine of 60 monetary units
ii) suspend sequestration
- tax of 80 monetary units

* Can use seismics to get (noisy) information about CO_{2} leakage
\star What decision should the company do?
- do seismics or not do seismics
- inject CO_{2} or suspend sequestration
\star Model assumptions
$-x \in\{0,1\}: \mathrm{CO}_{2}$ leakage, $p(x=1)=0.3$
- $y \in\{0,1\}$: seismic information, $p(y=1 \mid x=1)=0.9$, $p(y=0 \mid x=0)=0.9$
* Expected cost if injection
$\mathrm{E}[$ cost injection $]=30 \cdot p(x=0)+(30+60) \cdot p(x=1)=48$
CO_{2} leakage example and decision making \star Situation: Company can
i) proceed with CO_{2} injection
- cost of 30 monetary units
- if CO_{2} leakage, fine of 60 monetary units
ii) suspend sequestration
- tax of 80 monetary units
\star Model assumptions

$-x \in\{0,1\}: C O_{2}$ leakage, $p(x=1)=0.3$
- $y \in\{0,1\}$: seismic information, $p(y=1 \mid x=1)=0.9$, $p(y=0 \mid x=0)=0.9$
\star With seismic information
CO_{2} leakage example and decision making \star Situation: Company can
i) proceed with CO_{2} injection
- cost of 30 monetary units
- if CO_{2} leakage, fine of 60 monetary units
ii) suspend sequestration
- tax of 80 monetary units
* Model assumptions

$-x \in\{0,1\}: C O_{2}$ leakage, $p(x=1)=0.3$
- $y \in\{0,1\}$: seismic information, $p(y=1 \mid x=1)=0.9$,

$$
p(y=0 \mid x=0)=0.9
$$

\star With seismic information

$$
\begin{aligned}
& p(x=1 \mid y=0)=\frac{p(x=1) p(y=0 \mid x=1)}{p(y=0)}=0.045 \\
& p(x=1 \mid y=1)=\frac{p(x=1) p(y=1 \mid x=1)}{p(y=1)}=0.794
\end{aligned}
$$

CO_{2} leakage example and decision making
\star Situation: Company can
i) proceed with CO_{2} injection

- cost of 30 monetary units
- if CO_{2} leakage, fine of 60 monetary units
ii) suspend sequestration
- tax of 80 monetary units
* Model assumptions

$-x \in\{0,1\}: C O_{2}$ leakage, $p(x=1)=0.3$
- $y \in\{0,1\}$: seismic information, $p(y=1 \mid x=1)=0.9$,

$$
p(y=0 \mid x=0)=0.9
$$

\star With seismic information

$$
\begin{aligned}
& p(x=1 \mid y=0)=\frac{p(x=1) p(y=0 \mid x=1)}{p(y=0)}=0.045 \\
& p(x=1 \mid y=1)=\frac{p(x=1) p(y=1 \mid x=1)}{p(y=1)}=0.794
\end{aligned}
$$

* Expected costs
$E[$ cost injection $\mid y=0]=30 \cdot(1-0.045)+(30+60) \cdot 0.045=32.7$
$E[$ cost injection $\mid y=1]=30 \cdot(1-0.794)+(30+60) \cdot 0.794=77.6$

Many (n) stochastic variables

\star Concepts that are (essentially) as with two stochastic variables

- (joint) distribution
- mean and variance (standard deviation)
- dependence/correlation
- marginalisation
- the effect of conditioning
- how to specify the distribution
* New aspects
- conditional independence
- how to "look at" the distribution
- what quantities are of interest
- how to generate Monte Carlo realizations/samples

