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 Wednesday, March 16th, 2011, Professor D. M.Titterington in the Chair]

 Summary. Continuously indexed Gaussian fields (GFs) are the most important ingredient in
 spatial statistical modelling and geostatistics. The specification through the covariance func-
 tion gives an intuitive interpretation of the field properties. On the computational side, GFs are
 hampered with the big n problem, since the cost of factorizing dense matrices is cubic in the
 dimension. Although computational power today is at an all time high, this fact seems still to be
 a computational bottleneck in many applications. Along with GFs, there is the class of Gauss-
 ian Markov random fields (GMRFs) which are discretely indexed. The Markov property makes
 the precision matrix involved sparse, which enables the use of numerical algorithms for sparse
 matrices, that for fields in IR2 only use the square root of the time required by general algorithms.
 The specification of a GMRF is through its full conditional distributions but its marginal properties
 are not transparent in such a parameterization. We show that, using an approximate stochastic
 weak solution to (linear) stochastic partial differential equations, we can, for some GFs in the
 Matern class, provide an explicit link, for any triangulation of Ud, between GFs and GMRFs, for-
 mulated as a basis function representation. The consequence is that we can take the best from
 the two worlds and do the modelling by using GFs but do the computations by using GMRFs.
 Perhaps more importantly, our approach generalizes to other covariance functions generated
 by SPDEs, including oscillating and non-stationary GFs, as well as GFs on manifolds. We illus-
 trate our approach by analysing global temperature data with a non-stationary model defined
 on a sphere.

 Keywords : Approximate Bayesian inference; Covariance functions; Gaussian fields; Gaussian
 Markov random fields; Latent Gaussian models; Sparse matrices; Stochastic partial differential
 equations

 1 . Introduction

 Gaussian fields (GFs) have a dominant role in spatial statistics and especially in the traditional
 field of geostatistics (Cressie, 1993; Stein, 1999; Chiles and Delfiner, 1999; Diggle and Ribeiro,
 2006) and form an important building block in modern hierarchical spatial models (Banerjee
 et al. , 2004). GFs are one of a few appropriate multivariate models with an explicit and comput-
 able normalizing constant and have good analytic properties otherwise. In a domain VeUd with
 co-ordinate sgD, jc(s) is a continuously indexed GF if all finite collections {x(s/)} are jointly
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 Gaussian distributed. In most cases, the GF is specified by using a mean function //(•) and a
 covariance function C(-, •), so the mean is /jl = (/x(s /)) and the covariance matrix is £ = (C(s,-, s;)).
 Often the covariance function is only a function of the relative position of two locations, in which
 case it is said to be stationary, and it is isotropic if the covariance functions depends only on the
 Euclidean distance between the locations. Since a regular covariance matrix is positive definite,
 the covariance function must be a positive definite function. This restriction makes it difficult to
 'invent' covariance functions stated as closed form expressions. Bochner's theorem can be used
 in this context, as it characterizes all continuous positive definite functions in Ud.

 Although GFs are convenient from both an analytical and a practical point of view, the
 computational issues have always been a bottleneck. This is due to the general cost of 0(n3) to
 factorize dense n x n (covariance) matrices. Although the computational power today is at an
 all time high, the tendency seems to be that the dimension n is always set, or we want to set it, a
 little higher than the value that gives a reasonable computation time. The increasing popularity
 of hierarchical Bayesian models has made this issue more important, as 'repeated computations
 (as for simulation-based model fitting) can be very slow, perhaps infeasible' (Banerjee et al.
 (2004), page 387), and the situation is informally referred to as 'the big n problem'.

 There are several approaches to try to overcome or avoid 'the big n problem'. The spec-
 tral representation approach for the likelihood (Whittle, 1954) makes it possible to estimate the
 (power) spectrum (using discrete Fourier transforms calculations) and to compute the log-likeli-
 hood from it (Guyon, 1982; Dahlhaus and Kunsch, 1987; Fuentes, 2008) but this is only possible
 for directly observed stationary GFs on a (near) regular lattice. Vecchia (1988) and Stein et al
 (2004) proposed to use an approximate likelihood constructed through a sequential represen-
 tation and then to simplify the conditioning set, and similar ideas also apply when computing
 conditional expectations (kriging). An alternative approach is to do exact computations on a
 simplified Gaussian model of low rank (Banerjee et al , 2008; Cressie and Johannesson, 2008;
 Eidsvik et al , 2010). Furrer et al (2006) applied covariance tapering to zero-out parts of the
 covariance matrix to gain a computational speed-up. However, the sparsity pattern will depend
 on the range of the GFs, and the potential in a related approach, named 'lattice methods' by
 Banerjee et al (2004), section A. 5. 3, is superior to the covariance tapering idea. In this approach
 the GF is replaced by a Gaussian Markov random field (GMRF); see Rue and Held (2005) for
 a detailed introduction and Rue et al (2009), section 2.1, for a condensed review. A GMRF is
 a discretely indexed Gaussian field x, where the full conditionals 7r(x/|x_z), /= 1, . . . ,n, depend
 only on a set of neighbours 3 i to each site i (where consistency requirements imply that if
 iedj then also j e di). The computational gain comes from the fact that the zero pattern of the
 precision matrix Q (the inverse covariance matrix) relates directly to the notion of neighbours;
 Qij^O&i edj U j; see, for example, Rue and Held (2005), section 2.2. Algorithms for Markov
 chain Monte Carlo sampling will repeatedly update from these simple full conditionals, which
 explains to a large extent the popularity of GMRFs in recent years, starting already with the
 seminal papers by Besag (1974, 1975). However, GMRFs also allow for fast direct numeri-
 cal algorithms (Rue, 2001), as numerical factorization of the matrix Q can be done by using
 sparse matrix algorithms (George and Liu, 1981; Duff et al , 1989; Davis, 2006) at a typical
 cost of 0(n3/2) for two-dimensional GMRFs; see Rue and Held (2005) for detailed algorithms.
 GMRFs have very good computational properties, which are of major importance in Bayesian
 inferential methods. This is further enhanced by the link to nested integrated Laplace approx-
 imations (Rue et al, 2009), which allow fast and accurate Bayesian inference for latent GF
 models.

 Although GMRFs have very good computational properties, there are reasons why current
 statistical models based on GMRFs are relatively simple, in particular when applied to area data
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 from regions or counties. First, there has been no good way to parameterize the precision matrix
 of a GMRF to achieve predefined behaviour in terms of correlation between two sites and to
 control marginal variances. In matrix terms, the reason for this is that one must construct a
 positive definite precision matrix to obtain a positive definite covariance matrix as its inverse, so
 the conditions for proper covariance matrices are replaced by essentially equivalent conditions
 for sparse precision matrices. Therefore, often simplistic approaches are taken, like letting Qij
 be related to the reciprocal distance between sites i and j (Besag et al. , 1 99 1 ; Arjas and Gasbarra,
 1996; Weir and Pettitt, 2000; Pettitt et al , 2002; GschloBl and Czado, 2007); however, a more
 detailed analysis shows that such a rationale is suboptimal (Besag and Kooperberg, 1995; Rue
 and Tjelmeland, 2002) and can give surprising effects (Wall, 2004). Secondly, it is unclear how
 large the class of useful GMRF models really is by using only a simple neighbourhood. The
 complicating issue here is the global positive definiteness constraint, and it might not be evident
 how this influences the parameterization of the full conditionals.

 Rue and Tjelmeland (2002) demonstrated empirically that GMRFs could closely approxi-
 mate most of the commonly used covariance functions in geostatistics, and they proposed to
 use them as computational replacements for GFs for computational reasons like doing kriging
 (Hartman and Hossjer, 2008). However, there were several drawbacks with their approach; first,
 the fitting of GMRFs to GFs was restricted to a regular lattice (or torus) and the fit itself had to
 be precomputed for a discrete set of parameter values (like smoothness and range), using a time-
 consuming numerical optimization. Despite these 'proof-of-concept' results, several researchers
 have followed up this idea without any notable progress in the methodology (Hrafnkelsson and
 Cressie, 2003; Song et al , 2008; Cressie and Verzelen, 2008), but the approach itself has shown
 to be useful even for spatiotemporal models (Allcroft and Glasbey, 2003).

 The discussion so far has revealed a modelling or computational strategy for approaching
 the big n problem in a seemingly good way.

 (a) Do the modelling by using a GF on a set of locations {s;}, to construct a discretized GF
 with covariance matrix £.

 (b) Find a GMRF with local neighbourhood and precision matrix Q that represents the GF
 in the best possible way, i.e. Q_1 is close to XI in some norm. (We deliberately use the
 word 'represents' instead of approximates.)

 (c) Do the computations using the GMRF representation by using numerical methods for
 sparse matrices.

 Such an approach relies on several assumptions. First the GF must be of such a type that there
 is a GMRF with local neighbourhood that can represent it sufficiently accurately to maintain
 the interpretation of the parameters and the results. Secondly, we must be able to compute the
 GMRF representation from the GF, at any collections of locations, so fast that we still achieve
 a considerable speed-up compared with treating the GF directly.

 The purpose of this paper is to demonstrate that these requirements can indeed be met for
 certain members of GFs with the Matern covariance function in Ud , where the GMRF rep-
 resentation is available explicitly. Although these results are seemingly restrictive at first sight,
 they cover the most important and most used covariance model in spatial statistics; see Stein
 (1999), page 14, which concluded a detailed theoretical analysis with 'Use the Matern model '
 The GMRF representation can be constructed explicitly by using a certain stochastic partial
 differential equation (SPDE) which has GFs with Matern covariance function as the solution
 when driven by Gaussian white noise. The result is a basis function representation with piece-
 wise linear basis functions, and Gaussian weights with Markov dependences determined by a
 general triangulation of the domain.
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 Rather surprisingly, extending this basic result seems to open new doors and opportunities,
 and to provide quite simple answers to rather difficult modelling problems. In particular, we
 shall show how this approach extends to Matern fields on manifolds, non-stationary fields and
 fields with oscillating covariance functions. Further, we shall discuss the link to the deformation
 method of Sampson and Guttorp (1992) for non-stationary covariances for non-isotropic mod-
 els, and how our approach naturally extends to non-separable space-time models. Our basic
 task, to do the modelling by using GFs and the computations by using the GMRF representa-
 tion, still holds for these extensions as the GMRF representation is still available explicitly. An
 important observation is that the resulting modelling strategy does not involve having to con-
 struct explicit formulae for the covariance functions, which are instead only defined implicitly
 through the SPDE specifications.

 The plan of the rest of this paper is as follows. In Section 2, we discuss the relationship between
 Matern covariances and a specific SPDE, and we present the two main results for explicitly con-
 structing the precision matrices for GMRFs based on this relationship. In Section 3, the results
 are extended to fields on triangulated manifolds, non-stationary and oscillating models, and
 non-separable space-time models. The extensions are illustrated with a non-stationary analysis
 of global temperature data in Section 4, and we conclude the main part of the paper with a dis-
 cussion in Section 5. Thereafter follow four technical appendices, with explicit representation
 results (A), theory for random fields on manifolds (B), the Hilbert space representation details
 (C) and proofs of the technical details (D).

 2. Preliminaries and main results

 This section will introduce the Matern covariance model and discuss its representation through
 an SPDE. We shall state explicit results for the GMRF representation of Matern fields on a
 regular lattice and do an informal summary of the main results.

 2. 1. Matern covariance model and its stochastic partial differential equation
 Let || • || denote the Euclidean distance in Ud. The Matern covariance function between locations
 u, v g Ud is defined as

 2

 Ku, V) = 2l/_?r(|/) M'y -u''rKv(K''y - u||). (1)
 Here, Kv is the modified Bessel function of the second kind and order v > 0, k > 0 is a scaling
 parameter and a2 is the marginal variance. The integer value of v determines the mean-square
 differentiability of the underlying process, which matters for predictions that are made by using
 such a model. However, v is usually fixed since it is poorly identified in typical applications. A
 more natural interpretation of the scaling parameter k is as a range parameter p; the Euclidean
 distance where x(u) and x(v) are almost independent. Lacking a simple relationship, we shall
 throughout this paper use the empirically derived definition p = V( 8i/)/k, corresponding to
 correlations near 0.1 at the distance p , for all v.

 The Matern covariance function appears naturally in various scientific fields (Guttorp and
 Gneiting, 2006), but the important relationship that we shall make use of is that a GF x(u) with
 the Matern covariance is a solution to the linear fractional SPDE

 (k2 - A)a/2x(u) = W(u), ue(RJ, a = v + d/ 2, k;>0, ^>0, (2)
 where (k2 - A)a/2 is a pseudodifferential operator that we shall define later in equation (4)
 through its spectral properties (Whittle, 1954, 1963). The innovation process W is spatial
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 Gaussian white noise with unit variance, A is the Laplacian

 d 02
 A = Err.

 1=1 3xf

 and the marginal variance is

 j.2 r(")
 r(v + d/2)(4ir)d/2K2l/'

 We shall name any solution to equation (2) a Matern field in what follows. However, the limiting
 solutions to the SPDE (2) as k -> 0 or v 0 do not have Matern covariance functions, but the
 SPDE still has solutions when k = 0 or v = 0 which are well-defined random measures. We shall

 return to this issue in Appendix C.3. Further, there is an implicit assumption of appropriate
 boundary conditions for the SPDE, as for a ^ 2 the null space of the differential operator is
 non-trivial, containing, for example, the functions exp(^eTu), for all ||e|| = 1. The Matern fields
 are the only stationary solutions to the SPDE.

 The proof that was given by Whittle (1954, 1963) is to show that the wave number spectrum
 of a stationary solution is

 KOO^TrrV + llkll2)-*, (3)

 using the Fourier transform definition of the fractional Laplacian in Ud,

 {T(k2 - A)a/^}(k) = (k2 + ||k||2)a/2(^)(k), (4)
 where 0 is a function on Ud for which the right-hand side of the definition has a well-defined
 inverse Fourier transform.

 2.2. Main results

 This section contains our main results, however, in a loose and imprecise form. In the appendi-
 ces, our statements are made precise and the proofs are given. In the discussion we shall restrict
 ourselves to dimension d - 2 although our results are general.

 2.2.1. Main result 1

 For our first result, we shall use some informal arguments and a simple but powerful conse-
 quence of a partly analytic result of Besag (1981). We shall show that these results are true in the
 appendices. Let x be a GMRF on a regular (tending to infinite) two-dimensional lattice indexed
 by //, where the Gaussian full conditionals are

 E (. Xi j | x-i j) = ^ (*/_ i j + xi+ 1 j + Xij - 1 + Xij+ 1 ) , ^
 V2LT(Xij'X-ij) = '/a

 and 'a' > 4. To simplify the notation, we write this particular model as

 -1

 Q -1 (6)

 which displays the elements of the precision matrix related to a single location (section 3.4.2 in
 Rue and Held (2005) uses a related graphical notation). Owing to symmetry, we display only
 the upper right quadrant, with 4 a ' as the central element. The approximate result (Besag (1981),
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 428 F. Lindgren , H. Rue and J. Lindstrom

 equation 14)) is that

 cov(*/ j, Xi> K0{lj(a - 4) } , Ijt 0,

 where / is the Euclidean distance between ij and i'j'. Evaluated for continuous distances, this is
 a generalized covariance function, which is obtained from equation (1) in the limit v->0, with
 k2 = a - 4 and a2 - 1 /47r, even though equation (1) requires v > 0. Informally, this means that
 the discrete model defined by expression (5) generates approximate solutions to the SPDE (2)
 on a unit distance regular grid, with v = 0.

 Solving equation (2) for a = 1 gives a generalized random field with spectrum

 /e1(k)oc(a-4-h||k||2)-1,

 meaning that (some discretized version of) the SPDE acts like a linear filter with squared trans-
 fer function equal to Ri . If we replace the noise term on the right-hand side of equation (2) by
 Gaussian noise with spectrum R' , the resulting solution has spectrum R2 = R', and so on. The
 consequence is GMRF representations for the Matern fields for v = 1 and ;/=2, as convolutions
 of the coefficients in representation (6): v=',

 1

 -2a 2

 4 + a2 -2a 1

 v = 2,

 -1

 3 a -3

 - 3(a2 + 3) 6 a -3
 a(a2 + 12) - 3(a2 + 3) 3 a -1

 The marginal variance is l/{47ri^(a -4)"}. Fig. 1 shows how accurate these approximations
 are for v= 1 and range 10 and 100, displaying the Matern correlations and the linearly inter-
 polated correlations for integer lags for the GMRF representation. For range 100 the results

 °"~®' I "Tn

 00 ~ ' 00 '
 o ~ A, o" '

 0 g - ' o g - ' ra ' 5 '
 £ ' 2 ' O Tt ' O
 O O Tt 0- ' oS- O '
 CM CVJ
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 Distance Distance
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 Fig. 1. Matern correlations (

 sentation (o)
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 are indistinguishable. The root-mean-square error between correlations up to twice the range
 is 0.01 and 0.0003 for range 10 and 100 respectively. The error in the marginal variance is 4%
 for range 10 and negligible for range 100.

 Our first main result confirms the above heuristics.

 Result 1 . The coefficients in the GMRF representation of equation (2) on a regular unit
 distance two-dimensional infinite lattice for v - 1 , 2, . . . , is found by convolving model (6) by
 itself v times.

 Simple extensions of this result include anisotropy along the main axes, as presented in Appen-
 dix A. A rigorous formulation of the result is derived in the subsequent appendices, showing
 that the basic result is a special case of a more general link between SPDEs and GMRFs. The
 first such generalization, which is based on irregular grids, is the next main result.

 2.3. Main result 2

 Although main result 1 is useful in itself, it is not yet fully practical since often we do not want to
 have a regular grid, to avoid interpolating the locations of observations to the nearest grid point,
 and to allow for finer resolution where details are required. We therefore extend the regular grid
 to irregular grids, by subdividing U2 into a set of non-intersecting triangles, where any two
 triangles meet in at most a common edge or corner. The three corners of a triangle are named
 vertices. In most cases we place initial vertices at the locations for the observations and add
 additional vertices to satisfy overall soft constraints of the triangles, such as maximally allowed
 edge length, and minimally allowed angles. This is a standard problem in engineering for solving
 partial differential equations by using finite element methods (FEMs) (Ciarlet, 1978; Brenner
 and Scott, 2007; Quarteroni and Valli, 2008), where the quality of the solutions depends on the
 triangulation properties. Typically, the triangulation is chosen to maximize the minimum inte-
 rior triangle angle, so-called Delaunay triangulations, which helps to ensure that the transitions
 between small and large triangles are smooth. The extra vertices are added heuristically to try
 to minimize the total number of triangles that are needed to fulfil the size and shape constraints.
 See for example Edelsbrunner (2001), and Hjelle and Daehlen (2006) for algorithm details. Our
 implementation in the R-inla package (www. r-inla . org) is based on Hjelle and Daehlen
 (2006).

 To illustrate the process of triangulation of [R2, we shall use an example from Henderson
 et al. (2002) which models spatial variation in leukaemia survival data in north-west England.
 Fig. 2(a) displays the locations of 1043 cases of acute myeloid leukaemia in adults who were
 diagnosed between 1982 and 1998 in north-west England. In the analysis, the spatial scale has
 been normalized so that the width of the study region is equal to 1. Fig. 2(b) displays the tri-
 angulation of the area of interest, using fine resolution around the data locations and rough
 resolution outside the area of interest. Further, we place vertices at all data locations. The
 number of vertices in this example is 1749 and the number of triangles is 3446.

 To construct a GMRF representation of the Matern field on the triangulated lattice, we start
 with a stochastic weak formulation of SPDE (2). Define the inner product

 (f,g) = J /(u)£f(u)du (7)
 where the integral is over the region of interest. The stochastic weak solution of the SPDE is
 found by requiring that

 {(<Pj, (k2 - A )a/2x)J= ',...,m}={{4>j,W),j=',...,m} (8)
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 Fig. 2. (a) Locations of leukaemia survival observations, (b) triangulation using 3446 triangles and (c) a sta-
 tionary correlation function (

 range 0.26

 for every appropriate finite set of test functions (07(u), j = 1 , . . . , ra}, where '=d' denotes equality
 in distribution.

 The next step is to construct a finite element representation of the solution to the SPDE
 (Brenner and Scott, 2007) as

 *(u)= £ ^*(u)wfc (9)
 k= l

 for some chosen basis functions {^} and Gaussian-distributed weights {v^}. Here, n is the
 number of vertices in the triangulation. We choose to use functions ipk that are piecewise linear
 in each triangle, defined such that is 1 at vertex k and 0 at all other vertices. An interpretation
 of the representation (9) with this choice of basis functions is that the weights determine the
 values of the field at the vertices, and the values in the interior of the triangles are determined
 by linear interpolation. The full distribution of the continuously indexed solution is determined
 by the joint distribution of the weights.
 The finite dimensional solution is obtained by finding the distribution for the representation

 weights in equation (9) that fulfils the stochastic weak SPDE formulation (8) for only a specific
 set of test functions, with m-n. The choice of test functions, in relation to the basis func-
 tions, governs the approximation properties of the resulting model representation. We choose
 cj)k = (k2 - A)1/2^ for a = 1 and fa = ^ for a = 2. These two approximations are denoted the
 least squares and the Galerkin solution respectively. For a ^ 3, we let a = 2 on the left-hand side
 of equation (2) and replace the right-hand side with a field generated by a - 2, and let cj)k = ^k.
 In essence, this generates a recursive Galerkin formulation, terminating in either a = 1 or a = 2;
 see Appendix C for details.
 Define the n x n matrices C, G and K with entries

 Cij =
 Gi7 = (V^V^>,

 (KK2)/y = K^Cij + Gij.

 Using Neumann boundary conditions (a zero normal derivative at the boundary), we obtain
 our second main result, expressed here for R1 and U2.
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 Result 2. Let Qq^2 be the precision matrix for the Gaussian weights w as defined in equa-
 tion (9) for a = 1, 2, . . . , as a function of k?. Then the finite dimensional representations of the
 solutions to equation (2) have precisions

 Ql,K;2 ^/C2' 1
 Q2,K2=K«;2C_1KK2' ? 0°)

 =Kk2C- 'Q^C- »KK2, for a = 3,4,. . ..J
 Some remarks concerning this result are as follows.

 (a) The matrices C and G are easy to compute as their elements are non-zero only for pairs
 of basis functions which share common triangles (a line segment in Ul), and their values
 do not depend on k?. Explicit formulae are given in Appendix A.

 (b) The matrix C_1 is dense, which makes the precision matrix dense as well. In Appendix
 C.5, we show that C can be replaced by the diagonal matrix C, where Cu = {ipi, 1), which
 makes the precision matrices sparse, and hence we obtain GMRF models.

 (c) A consequence of the previous remarks is that we have an explicit mapping from the
 parameters of the GF model to the elements of a GMRF precision matrix, with compu-
 tational cost 0{n) for any triangulation.

 (d) For the special case where all the vertices are points on a regular lattice, using a regular
 triangularization reduces main result 2 to main result 1. Note that the neighbourhood
 of the corresponding GMRF in U2 is 3 x 3 for a = 1, is 5 x 5 for a = 2, and so on.
 Increased smoothness of the random field induces a larger neighbourhood in the GMRF
 representation.

 (e) In terms of the smoothness parameter v in the Matern covariance function, these results
 correspond to v= 1/2, 3/2, 5/2, ... , in Ul and v = 0, 1,2, . . . , in 1R2.

 (f) We are currently unable to provide results for other values of a; the main obstacle is the
 fractional derivative in the SPDE which is defined by using the Fourier transform (4). A
 result of Rozanov (1982), chapter 3.1, for the continuously indexed random field, says
 that a random field has a Markov property if and only if the reciprocal of the spectrum is
 a polynomial. For our SPDE (2) this corresponds to a = 1 , 2, 3, . . . ; see equation (3). This
 result indicates that a different approach may be needed to provide representation results
 when a is not an integer, such as approximating the spectrum itself. Given approximations
 for general 0 ^ a ^ 2, the recursive approach could then be used for general a > 2.

 Although the approach does give a GMRF representation of the Matern field on the triangu-
 lated region, it is truly an approximation to the stochastic weak solution as we use only a subset
 of the possible test functions. However, for a given triangulation, it is the best possible approxi-
 mation in the sense that is made explicit in Appendix C, where we also show weak convergence
 to the full SPDE solutions. Using standard results from the finite element literature (Brenner
 and Scott, 2007), it is also possible to derive rates of convergence results, like, for a = 2,

 sup {£((/, Xn -*)^,)} ^ch2. (11)
 /€«';ll/llwi<i

 Here, xn is the GMRF representation of the SPDE solution x, h is the diameter of the largest
 circle that can be inscribed in a triangle in the triangulation and c is some constant. The Hilbert
 space scalar product and norm are defined in definition 2 in Appendix B, which also includes
 the values and the gradients of the field. The result holds for general d ^ 1, with h proportional
 to the edge lengths between the vertices, when the minimal mesh angles are bounded away from
 zero.
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 To see how well we can approximate the Matern covariance, Fig. 2(c) displays the empirical
 correlation function (dots) and the theoretical function for u= 1 with approximate range 0.26,
 using the triangulation in Fig. 2(b). The match is quite good. Some dots show a discrepancy
 from the true correlations, but these can be identified to be due to the rather rough triangula-
 tion outside the area of interest which is included to reduce edge effects. In practice there is a
 trade-off between accuracy of the GMRF representation and the number of vertices used. In
 Fig. 2(b) we chose to use a fine resolution in the study area and a reduced resolution outside.
 A minor drawback in using these GMRFs in place of given stationary covariance models is
 the boundary effects due to the boundary conditions of the SPDE. In main result 2 we used
 Neumann conditions that inflate the variance near the boundary (see Appendix A.4 for details)
 but other choices are also possible (see Rue and Held (2005), chapter 5).

 2.4. Leukaemia example
 We shall now return to the example from Henderson et al. (2002) at the beginning of Section 2.3
 which models spatial variation in leukaemia survival data in north-west England. The specifi-
 cation, in (pseudo-) Wilkinson-Rogers notation (McCullagh and Nelder (1989), section 3.4) is

 survival(time, censoring) ~ intercept + sex + age + wbc + tpi + spatial(location)

 using a Weibull likelihood for the survival times, and where 'wbc' is the white blood cell count at

 diagnosis, 'tpi' is the Townsend deprivation index (which is a measure of economic deprivation
 for the related district) and 'spatial' is the spatial component depending on the spatial location
 for each measurement. The hyperparameters in this model are the marginal variance and range
 for the spatial component and the shape parameter in the Weibull distribution.

 Kneib and Fahrmeir (2007) reanalysed the same data set by using a Cox proportional hazards
 model but, for computational reasons, used a low rank approximation for the spatial compo-
 nent. With our GMRF representation we easily work with a sparse 1 749 x 1 749 precision matrix
 for the spatial component. We ran the model in R-inla (www. r-inla . org) using integrated
 nested Laplace approximations to do the full Bayesian analysis (Rue et al , 2009). Fig. 3 displays
 the posterior mean and standard deviation of the spatial component. A full Bayesian analysis

 Fig. 3. (a) Posterior mean and (b) standard deviation of the spatial effect on survival by using the GMRF
 representation
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 took about 16 s on a quad-core laptop, and factorizing the 2797 x 2797 (total) precision matrix
 took about 0.016 s on average.

 3. Extensions: beyond classical Matern models

 In this section we shall discuss five extensions to the SPDE, widening the usefulness of the
 GMRF construction results in various ways. The first extension is to consider solutions to the
 SPDE on a manifold, which allows us to define Matern fields on domains such as a sphere.
 The second extension is to allow for space varying parameters in the SPDE which allows us to
 construct non-stationary locally isotropic GFs. The third extension is to study a complex ver-
 sion of equation (2) which makes it possible to construct oscillating fields. The fourth extension
 generalizes the non-stationary SPDE to a more general class of non-isotropic fields. Finally, the
 fifth extension shows how the SPDE generalizes to non-separable space-time models.

 An important feature in our approach is that all these extensions still give explicit GMRF
 representations that are similar to expressions (9) and (10), even if all the extensions are com-
 bined. The rather amazing consequence is that we can construct the GMRF representations
 of non-stationary oscillating GFs on the sphere, still not requiring any computation beyond
 the geometric properties of the triangulation. In Section 4 we shall illustrate the use of these
 extensions with a non-stationary model for global temperatures.

 3. 1. Matern fields on manifolds

 We shall now move away from U2 and consider Matern fields on manifolds. GFs on manifolds
 are a well-studied subject with important application to excursion sets in brain mapping (Adler
 and Taylor, 2007; Bansal et al ., 2007; Adler, 2010). Our main objective is to construct Matern
 fields on the sphere, which is important for the analysis of global spatial and spatiotemporal
 models. To simplify the current discussion we shall therefore restrict the construction of Matern
 fields to a unit radius sphere §2 in three dimensions, leaving the general case for the appendices.

 Just as for Ud, models on a sphere can be constructed via a spectral approach (Jones, 1963). A
 more direct way of defining covariance models on a sphere is to interpret the two-dimensional
 space §2 as a surface embedded in IR3. Any three-dimensional covariance function can then be
 used to define the model on the sphere, considering only the restriction of the function to the
 surface. This has the interpretational disadvantage of using chordal distances to determine the
 correlation between points. Using the great circle distances in the original covariance function
 would not work in general, since for differentiable fields this does not yield a valid positive
 definite covariance function (this follows from Gneiting (1998), theorem 2). Thus, the Matern
 covariance function in Ud cannot be used to define GFs on a unit sphere embedded in tR3 with
 distance naturally defined with respect to distances within the surface. However, we can still
 use its origin, the SPDE! For this purpose, we simply reinterpret the SPDE to be defined on
 §2 instead of Ud, and the solution is still what we mean by a Matern field, but defined directly
 for the given manifold. The Gaussian white noise which drives the SPDE can easily be defined
 on S2 as a (zero-mean) random GF W(-) with the property that the covariance between W(A)
 and W(B ), for any subsets A and B of §2, is proportional to the surface integral over ADB.
 Any regular 2-manifold behaves locally like R2, which heuristically explains why the GMRF
 representation of the weak solution only needs to change the definition of the inner product (7)
 to a surface integral on §2. The theory in Appendices B-D covers the general manifold setting.

 To illustrate the continuous index definition and the Markov representation of Matern fields
 on a sphere, Fig. 4 shows the locations of 7280 meteorological measurement stations on the
 globe, together with an irregular triangulation. The triangulation was constrained to have
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 Fig. 4. (a), (b) Data locations and (c), (d) triangulation for the global temperature data set analysed in
 Section 4, with a coastline map superimposed

 minimal angles 21° and maximum edge lengths corresponding to 500 km based on an aver-
 age Earth radius of 6370 km. The triangulation includes all the stations more than 10 km apart,
 requiring a total of 15182 vertices and 30360 triangles. The resulting GF model for a = 2 is
 illustrated in Fig. 5, for k2 = 16, corresponding to an approximate correlation range 0.7 on a
 unit radius globe. Numerically calculating the covariances between a point on the equator and
 all other points shows, in Fig. 5(a), that, despite the highly irregular triangulation, the deviations
 from the theoretical covariances determined by the SPDE (calculated via a spherical Fourier
 series) are practically non-detectable for distances that are larger than the local edge length
 (0.08 or less), and nearly undetectable even for shorter distances. A random realization from
 the model is shown in Fig. 5(b), resampled to a longitude-latitude grid with an area preserving
 cylindrical projection. The number of Markov neighbours of each node ranges from 10 to 34,
 with an average of 19. The resulting structure of the precision matrix is shown in Fig. 6(a), with
 the corresponding ordering of the nodes shown visually in Fig. 6(b) by mapping the node indices
 to grey scales. The ordering uses the Markov graph structure to divide the graph recursively into
 conditionally independent sets (Karypis and Kumar, 1999), which helps to make the Cholesky
 factor of the precision matrix sparse.
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 Fig. 5. (a) Covariances (•, numerical result for the GMRF approximation;

 function) and (b) a random sample from the stationary SPDE model (2) on the unit sphere, with v - 1 and
 k2 = 16

 Fig. 6. (a) Structure of the (reordered) 1 51 82 x 1 51 82 precision matrix and (b) a visual representation of the
 reordering: the indices of each triangulation node have been mapped to grey scales showing the governing
 principle of the reordering algorithm, recursively dividing the graph into conditionally independent sets

 3.2. Non-stationary fields
 From a traditional point of view, the most surprising extension within the SPDE framework
 is how we can model non-stationarity. Many applications require non-stationarity in the cor-
 relation function and there is a vast literature on this subject (Sampson and Guttorp, 1992;
 Higdon, 1998; Hughes-Oliver etal., 1998; Cressie and Huang, 1999;Higdone^/., 1999;Fuentes,
 2001; Gneiting, 2002; Stein, 2005; Paciorek and Schervish, 2006; Jun and Stein, 2008; Yue and
 Speckman, 2010). The SPDE approach has the additional huge advantage that the resulting
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 (non-stationary) GF is a GMRF, which allows for swift computations and can additionally be
 defined on a manifold.

 In the SPDE defined in equation (2), the parameters k2 and the innovation variance are con-
 stant in space. In general, we can allow both parameters to depend on the co-ordinate u, and
 we write

 (ft2(u) - A}q/2{t(u)jc(u)} = W(u). (12)
 For simplicity, we choose to keep the variance for the innovation constant and instead scale the
 resulting process x(u) with a scaling parameter r(u). Non-stationarity is achieved when one or
 both parameters are non-constant. Of particular interest is the case where they vary slowly with
 u, e.g. in a low dimensional representation like

 log{K2(u)} = E/?-K2>fi,!'<2)(u)
 i

 and

 log{r(u)}-E/3,W^T)(u)
 i

 where the basis functions {5- ')( )} are smooth over the domain of interest. With slowly varying
 parameters k2(u) and r(u), the appealing local interpretation of equation (12) as a Matern
 field remains unchanged, whereas the actual form of the non-stationary correlation function
 achieved is unknown. The actual process of 'combining all local Matern fields into a consistent
 global field' is done automatically by the SPDE.

 The GMRF representation of equation (12) is found by using the same approach as for the
 stationary case, with minor changes. For convenience, we assume that both k2 and r can be
 considered as constant within the support of the basis functions {V^}, and hence

 (13)

 for a naturally defined u* in the support of and tpj. The consequence is a simple scaling of the
 matrices in expression (10) at no additional cost; see Appendix A. 3. If we improve the integral
 approximation (13) from considering k2(u) locally constant to locally planar, the computational
 preprocessing cost increases but is still 0( 1) for each element in the precision matrix Qa.

 3.3. Oscillating covariance functions
 Another extension is to consider a complex version of the basic equation (2). For simplicity, we
 consider only the case a = 2. With innovation processes Wj and W2 as two independent white
 noise fields, and an oscillation parameter 0 , the complex version becomes

 {k2 exp(i7r$) - A}{;q (u) + i*2(u)} = Wi (u) + iW2(u), 0^0 < 1. (14)

 The real and imaginary stationary solution components xj and x2 are independent, with spectral
 densities

 R( k) = (27r)~d{K4 + 2cos(7r6>)K2||k||2 + ||k||4}

 on Ud. The corresponding covariance functions for U and U2 are given in Appendix A. For
 general manifolds, no closed form expression can be found. In Fig. 7, we illustrate the reso-
 nance effects obtained for compact domains by comparing oscillating covariances for U2 and
 the unit sphere, §2. The precision matrices for the resulting fields are obtained by a simple mod-
 ification of the construction for the regular case; the precise expression is given in Appendix A.
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 Fig. 7. Correlation functions from oscillating SPDE models, for 0 = 0,0.1
 k2 = 1 2 and v - 1

 The details of the construction, which are given in Appendix C.4, also reveal the possibility of
 multivariate fields, similar to Gneiting et al. (2010).
 For 0 = 0, the regular Matern covariance with v = 2 - d/2 is recovered, with oscillations

 increasing with 6. The limiting case 0=1 generates intrinsic stationary random fields, on Ud
 invariant to addition of cosine functions of arbitrary direction, with wave number k.

 3.4. Non-isotropic models and spatial deformations
 The non-stationary model that was defined in Section 3.2 has locally isotropic correlations,
 despite having globally non-stationary correlations. This can be relaxed by widening the class
 of SPDEs considered, allowing a non-isotropic Laplacian, and also by including a directional
 derivative term. This also provides a link to the deformation method for non-stationary covari-
 ances that was introduced by Sampson and Guttorp (1992).
 In the deformation method, the domain is deformed into a space where the field is station-

 ary, resulting in a non-stationary covariance model in the original domain. Using the link to
 SPDE models, the resulting model can be interpreted as a non-stationary SPDE in the original
 domain.

 For notational simplicity, assume that the deformation is between two d-manifolds Q c Ud to
 Cl c Rd9 with u = /( u), uett,ue&. Restricting to the case a = 2, consider the stationary SPDE
 on the deformed space

 (k2 - V • V)x(u) = VV(u), (15)

 generating a stationary Matern field. A change of variables onto the undeformed space Q yields
 (Smith, 1934)

 1 T -7 F(u)F(U)T 1 1

 dS{iw}[" 1 T -7 -"et{';'(U>}V ' F(u)F(U)T TM) 1 ° det{fW}^ 1 W(U)' (16)
 where F(u) is the Jacobian of the deformation function /. This non-stationary SPDE exactly
 reproduces the deformation method with Matern co variances (Sampson and Guttorp, 1992). A
 sparse GMRF approximation can be constructed by using the same principles as for the simpler
 non-stationary model in Section 3.2.
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 An important remark is that the parameters of the resulting SPDE do not depend directly
 on the deformation function itself, but only its Jacobian. A possible option for parameterizing
 the model without explicit construction of a deformation function is to control the major axis
 of the local deformation given by F( u) through a vector field, given either from covariate infor-
 mation or as a weighted sum of vector basis functions. Addition or subtraction of a directional
 derivative term further generalizes the model. Allowing all parameters, including the variance
 of the white noise, to vary across the domain, results in a very general non-stationary model
 that includes both the deformation method and the model in Section 3.2. The model class can

 be interpreted as changes of metric in Riemannian manifolds, which is a natural generalization
 of deformation between domains embedded in Euclidean spaces. A full analysis is beyond the
 scope of this paper, but the technical appendices cover much of the necessary theory.

 3.5. Non-separable space-time models
 A separable space-time covariance function can be characterized as having a spectrum that can
 be written as a product or sum of spectra in only space or time. In contrast, a non-separable
 model can have interaction between the space and time dependence structures. Whereas it is diffi-
 cult to construct non-separable non-stationary covariance functions explicitly, non-separable
 SPDE models can be obtained with relative ease, using locally specified parameters. Arguably,
 the most simple non-separable SPDE that can be applied to the GMRF method is the transport
 and diffusion equation

 j^ + (K2 + m- V- v-HV)j*(u,0 = £(u,0, (17)
 where m is a transport direction vector, H is a positive definite diffusion matrix (for general man-
 ifolds strictly a tensor ) and £(u, t) is a stochastic space-time noise field. It is clear that even this
 stationary formulation yields non-separable fields, since the spatiotemporal power spectrum of
 the solution is

 /?x(k,u;) = /?£:(k,cj){(cj-hin-k)2 + (^2 + k-Hk)2}"1, (18)

 which is strictly non-separable even with m = 0 and H = I. The driving noise is an important
 part of the specification and may require an additional layer in the model. To ensure a desired
 regularity of the solutions, the noise process can be chosen to be white in time but with spa-
 tial dependence, such as a solution to {k2 - V • V)a/2£(u,t) = W(u,f), for some a ^ 1, where
 W(u, t) is space-time white noise. A GMRF representation can be obtained by first applying
 the ordinary spatial method, and then discretizing the resulting system of coupled temporal sto-
 chastic differential equations with, for example, an Euler method. Allowing all the parameters
 to vary with location in space (and possibly in time) generates a large class of non-separable non-
 stationary models. The stationary models that were evaluated by Heine (1955) can be obtained
 as special cases.

 4. Example: global temperature reconstruction

 4. 1 . Problem background
 When analysing past observed weather and climate, the Global Historical Climatology Network
 data set (http: //www.ncdc .noaa.gov/ghcn/ghcn.html) (Peterson and Vose, 1997) is
 commonly used. On August 8th, 2010, the data contained meteorological observations from
 7280 stations spread across continents, where each of the 597 373 rows of observations contains
 the monthly mean temperatures from a specific station and year. The data span the period
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 1702-2010, though counting, for each year, only stations with no missing values, yearly aver-
 ages can be calculated only as far back as 1835. The spatial coverage varies from less than 400
 stations before 1880 up to 3700 in the 1970s. For each station, covariate information such as
 location, elevation and land use is available.

 The Global Historical Climatology Network data are used to analyse regional and global
 temperatures in the GISTEMP temperature series (see http: / /data. giss .nasa.gov/
 gistemp) (Hansen et al ., 1999, 2001) and HadCRUT3 (Brohan et al , 2006) global tempera-
 ture series, together with additional data such as ocean-based sea surface temperature measure-
 ments. These analyses process the data in different ways to reduce the influence of station-specific
 effects (which is a procedure knows as homogenization ), and the information about the temper-
 ature anomaly (the difference in weather from the local climate, the latter defined as the average
 weather over a 30-year reference period) is then aggregated to latitude-longitude grid boxes.
 The grid box anomalies are then combined by using area-based weights into an estimate of
 the average global anomaly for each year. The analysis is accompanied by a derivation of the
 resulting uncertainty of the estimates.

 Though different in details, the gridding procedures are algorithmically based, i.e. there is no
 underlying statistical model for the weather and climate, only for the observations themselves.
 We shall here present a basis for a stochastic-model-based approach to the problem of estimating
 past regional and global temperatures, as an example of how the non-stationary SPDE models
 can be used in practice. The ultimate goal is to reconstruct the entire spatiotemporal yearly (or
 even monthly) average temperature field, with appropriate measures of uncertainty, taking the
 model parameter uncertainty into account.

 Since most of the spatial variation is linked to the rotational nature of the globe in relation
 to the sun, we shall here restrict ourselves to a rotationally invariant covariance model, which
 reduces the computational burden. However, we shall allow for regional deviations from rota-
 tional symmetry in the expectations. The model separates weather from climate by assuming
 that the climate can be parameterized by non-stationary expectation and covariance parameters
 fi( u), k(u) and r(u), for u e S2, and assuming that the yearly weather follows the model defined
 by equation (12), given the climate. Using the triangulation from Fig. 4 with piecewise linear
 basis function, the GMRF representation that is given in Appendix A. 3 will be used, with xt
 denoting the discretized field at time t. To avoid complications due to temporal dependence
 between monthly values, we aggregate the measurements into yearly means and model only the
 yearly average temperature at each location. A full analysis needs to take local station-dependent
 effects into account. Here, we include only the effect of elevation. To incorporate a completely
 integrated station homogenization procedure into the model would go far beyond the scope of
 this paper, and we therefore use the 'adjusted' Global Historical Climatology Network data set,
 which includes some outlier quality control and relative station calibrations.

 4.2. Model summary
 The climate and observation model is governed by a parameter vector 0 = {0^, 0K, 0T, 0S, 0e},
 and we denote the yearly temperature fields x = {x,} and the yearly observations y = {yj, with
 t = 1970, . . . , 1989. Using basis function matrices (all 49 spherical harmonics up to and
 including order 6; see Wahba (1981)), and Br (5-splines of order 2 in sin(latitude), shown in
 Fig. 8), the expectation field is given by /xX|^ = B^#^, the local spatial dependence k(u) is defined
 through log(K2) = Bk0k and the local variance scaling r(u) is defined through log(r) = Br0r.
 The prior distribution for the climate field is chosen as approximate solutions to the SPDE
 A/i(u) = W(u), where a ^ > 0, which provides natural relative prior weights for the spherical
 harmonic basis functions.
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 Fig. 8. (a) Three transformed 8-spline basis functions of order 2, and approximate 95% credible intervals
 for (b) standard deviation and (c) approximate correlation range of yearly weather, as functions of latitude

 The yearly temperature fields xr are defined conditionally on the climate as

 (xt'd)~N(iJ,xl0,Q-le),

 where QX|# is the GMRF precision corresponding to model (12) with parameters determined
 by (0K, 0T). Introducing observation matrices At, that extract the nodes from xt for each obser-
 vation, the observed yearly weather is modelled as

 (y,|x„ 0) ~ N(A,x, +S,0.V,

 where St0s are station-specific effects and Qy|X,0 = I exp(0e) is the observation precision. Since
 we use the data only for illustrative purposes here, we shall ignore all station-specific effects
 except for elevation. We also ignore any remaining residual dependences between consecutive
 years, analysing only the marginal distribution properties of each year.
 The Bayesian analysis draws all its conclusions from the properties of the posterior distribu-
 tions of (0|y) and (x|y), so all uncertainty about the weather xr is included in the distribution
 for the model parameters 0 , and conversely for 0 and xt. One of the most important steps is
 how to determine the conditional distribution for the weather given observations and model
 parameters,

 (x,|y,, d)~~N {nxl0 + Qxiy.fi, A^Qyix.eCy/ - A,/aX|0 - S,0.v),
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 where QX|y,0 = Qx|0 + Aj Qy|X,0Ar is the conditional precision, and the expectation is the kriging
 estimator of x,. Owing to the compact support of the basis functions, which is determined by
 the triangulation, each observation depends on at most three neighbouring nodes in xt, which
 makes the conditional precision have the same sparsity structure as the field precisions QX|0.
 The computational cost of the kriging estimates is 0(n) in the number of observations, and
 approximately 0(n 3//2) in the number of basis functions. If basis functions with non-compact
 support had been used, such as a Fourier basis, the posterior precisions would have been fully
 dense matrices, with computational cost 0(n 3) in the number of basis functions, regardless of
 the sparsity of the prior precisions. This shows that when constructing computationally efficient
 models it is not enough to consider the theoretical properties of the prior model, but instead
 the whole sequence of computations needs to be taken into account.

 4.3. Results

 We implemented the model by using R-inla. Since (x|y,0) is Gaussian, the results are only
 approximate with regard to the numerical integration of the covariance parameters (0K, 0T,0S).
 Owing to the large size of the data set, this initial analysis is based on data only from the
 period 1970-1989, requiring 336960 nodes in a joint model for the yearly temperature fields,
 measurements and linear covariate parameters, with 15 182 nodes in each field, and the num-
 ber of observations in each year ranging between approximately 1300 and 1900, for each year
 including all stations with no missing monthly values. The full Bayesian analysis took about
 1 h to compute on a 12-core computer, with a peak memory use of about 50 Gbytes during the
 parallel numerical integration phase. This is a notable improvement over earlier work by Das
 (2000) where partial estimation of the parameters in a deformation-based covariance model of
 the type in Section 3.4 took more than a week on a supercomputer.

 The 95% credible interval for the measurement standard deviation, including local unmod-
 elled effects, was calculated as (0.628,0.650) °C, with posterior expectation 0.634 °C. The spa-
 tial covariance parameters are more difficult to interpret individually, but we instead show the
 resulting spatially varying field standard deviations and correlation ranges in Fig. 8, including
 pointwise 95% credible intervals. Both curves show a clear dependence on latitude, with both
 larger variance and correlation range near the poles, compared with the equator. The standard
 deviations range between 1.2 and 2.6 °C, and the correlation ranges vary between 1175 and
 2825 km. There is an asymmetric north-south pole effect for the variances, but a symmetric
 curve is admissible in the credible intervals.

 Evaluating the estimated climate and weather for a period of only 20 years is difficult, since
 'climate' is typically defined as averages over periods of 30 years. Also, the spherical harmonics
 that were used for the climate model are not of sufficiently high order to capture all regional
 effects. To alleviate these problems, we base the presentation on what can reasonably be called
 the empirical climate and weather anomalies for the period 1970-1989, in effect using the period
 average as reference. Thus, instead of evaluating the distributions of (/x |y) and (xt - /x|y), we
 consider (x|y) and ( xt - x|y), where x = £^970 *t /20. In Figs 9(a) and 9(b), the posterior expec-
 tation of the empirical climate, £(x|y), is shown (including the estimated effect of elevation),
 together with the posterior expectation of the temperature anomaly for 1980, £(xi98o - x|y).
 The corresponding standard deviations are shown in Figs 9(c) and 9(d). As expected, the tem-
 peratures are low near the poles and high near the equator, and some of the relative warming
 effect of the thermohaline circulation on the Alaska and northern European climates can also be
 seen. There is a clear effect of regional topography, showing cold areas for high elevations such
 as in the Himalayas, Andes and Rocky Mountains, as indicated by an estimated cooling effect
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 Fig. 9. Posterior means for (a) the empirical 1970-1989 climate and (b) the empirical mean anomaly 1980
 with (c) and (d) the corresponding posterior standard deviations respectively: the climate includes the esti-
 mated effect of elevation; an area preserving cylindrical projection is used

 of 5.2 °C per kilometre of increased elevation. It is clear from Figs 9(c) and 9(d) that includ-
 ing ocean-based measurements is vital for analysis of regional ocean climate and weather, in
 particular for the south-east Pacific Ocean.

 With this in mind, we might expect that the period of analysis and data coverage are too
 restricted to allow detection of global trends, especially since the simple model that we use
 a priori assumes a constant climate. However, the present analysis, including the effects of all
 parameter uncertainties, still yields a 95% Bayesian prediction interval (0.87,2.18) °C per cen-
 tury (expectation 1.52 °C) for the global average temperature trend over the 20-year period
 analysed. The posterior standard deviation for each global average temperature anomaly was
 calculated to about 0.09 °C. Comparing the values with the corresponding estimates in the GISS
 series, which has an observed trend of 1.48 °C per century for this period, yields a standard
 deviation for the differences between the series of only 0.04 °C. Thus, the results here are similar
 to the GISS results, even without the use of ocean data.

 The estimated trend has less than a 2% probability of occurring in a random sample from
 the temporally stationary model that was used in the analysis. From a purely statistical point of
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 view, this could indicate either that there is a large amount of unmodelled temporal correlation
 in the yearly weather averages or that the expectation is non-stationary, i.e. that the climate was
 changing. Since it is impossible to distinguish between these two cases by using only statistical
 methods on the single realization of the actual climate and weather system that is available, a
 full analysis should incorporate knowledge from climate system physics to balance properly the
 change in climate and short-term dependence in the weather in the model.

 5. Discussion

 The main result in this work is that we can construct an explicit link between (some) GFs and
 GMRFs by using an approximate weak solution of the corresponding SPDE. Although this
 result is not generally applicable for all covariance functions, the subclass of models where this
 result is applicable is substantial, and we expect to find additional versions and extensions in the
 future; see for example Bolin and Lindgren (201 1). The explicit link makes these GFs much more
 practically applicable, as we might model and interpret the model by using covariance func-
 tions while doing the computations by using the GMRF representation which allows for sparse
 matrix numerical linear algebra. In most cases, we can make use of the integrated nested Laplace
 approximation approach for doing (approximate) Bayesian inference (Rue et al. , 2009), which
 requires the latent field to be a GMRF. It is our hope that the SPDE link might help in bridg-
 ing the literature of (continuously indexed) GFs and geostatistics on one side, and GMRFs or
 conditional auto-regressions on the other.

 Furthermore, the simplicity of the SPDE parameter specifications provides a new model-
 ling approach that is not dependent on the theory for constructing positive definite covariance
 functions. The SPDE approach allows easy construction of non-stationary models, defined in
 a natural way that provides good local interpretation, via spatially varying parameters, and
 is computationally very efficient, as we still obtain GMRF representations. The extension to
 manifolds is also useful, with fields on the globe as the main example.

 A third issue, which has not yet been discussed, is that the SPDE approach might help to
 interpret external covariates (e.g. wind speed) as an appropriate drift term or similar in the
 related SPDE and then this covariate would enter the spatial dependence models correctly. This
 is again an argument for more physics-based spatial modelling but, as we have shown in this
 paper, such an approach can also provide a huge computational benefit.

 On the negative side, the approach comes with an implementation and preprocessing cost
 for setting up the models, as it involves the SPDE, triangulations and GMRF representa-
 tions, but we firmly believe that such costs are unavoidable when efficient computations are
 required.
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 Appendix A: Explicit results

 This appendix includes some explicit expressions and results that are not included in the main text.

 A. 1. Regular lattices
 Here we shall give some explicit precision expressions for grid-based models on U and U2. Consider the
 SPDE

 (k2 - V . HV)a/2 x(u) = W(u), Q = (RJ, d = 1 or d = 2,

 where H is a diagonal ^/-dimensional matrix with positive diagonal elements (compare with Section 3.4).
 For any given ordered discretization u' , . . . , un on U, let 7,- u i Uj - i, j u{ and Sf - (7/ I ) /2 .

 Since d= 1, we can write H = H ^ 0, and the elements on row /, around the diagonal, of the precision are
 given by

 Qi 'Si-[ -at Cj -bi],

 Q 2 :s, • [fl/fli-i + c,) +c] -^fe + c/+i) /?//?/+! ]

 where a, = H/jjSi, bi = H/SiSj and c, = k2 + + bi. If the spacing is regular, s = S = 7, and a = aj = bi = H/6 2
 and c = Ci = k2 + 2<z. The special case a = 2 with ac = 0 and irregular spacing is a generalization of Lindgren
 and Rue (2008).

 For [R2, assume a given regular grid discretization, with horizontal (co-ordinate component 1) distances 7
 and vertical (co-ordinate component 2) distances 6. Let s = ^8,a - Hn/^2,b = H22/S2 and c = k2 + 2a + 2b.
 The precision elements are then given by

 Qi :s-
 c -a

 b2

 Q2 : s • -2 be 2 ab
 2 a2 + 2 b2 + c 2 -2 ac a 2

 -b3

 n 3 b2c -3 ab2
 -3b(2a2 + b2 + c2) 6 abc -3a2b
 c(6a2 + 6b2 + c2) -3a(a2 -'-2b2 + c2) 3 a2c - a 3

 If the grid distances are proportional to the square root of the corresponding diagonal elements of H (such
 as in the isotropic case 7 = 6 and H' 1 = H2 2), the expressions simplify to 5 = 76, a = b - H' ' h2 = H22/82
 and c = k2 + 4a.

 A.2. Triangulated domains
 In this section, we derive explicit expressions for the building blocks for the precision matrices, for
 general triangulated domains with piecewise linear basis functions. For implementation of the theory in
 Appendix C, we need to calculate

 Cu = {tl>i, l)n, '

 Cij = (ipi,ipj){i, I

 Gij = (Vjpi,Vil)j)n,

 Bij = (ilJi,dnipj)x}. ,

 For 2-manifolds such as regions in U2 or on §2, we require a triangulation with a set of vertices '' , . . . , v„,
 embedded in [R3. Each vertex v* is assigned a continuous piecewise linear basis function tpk with support
 on the triangles attached to 'k. To obtain explicit expressions for equation (19), we need to introduce some
 notation for geometry of an arbitrary triangle. For notational convenience, we number the corner vertices
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 of a given triangle T = (v0, Vi , V2). The edge vectors opposite each corner are

 e0 = v2- vi,

 ei=v0-v2,

 e2 = vi -v0,

 and the corner angles are 60, 0' and 02.
 The triangle area 'T' can be obtained from the formula | T' = ||e0 x ei ||/2, i.e. half the length of the vector

 product in IR3. The contributions from the triangle to the C- and C-matrices are given by

 [C,,,(7U=o,I,2 = ^(1 1 1),

 'T' (2 1
 [C,,;(7)],J=0,i.2 = 'y 'T' ( 1 2 ll.

 The contribution to G0, 1 from the triangle T is

 T cot(02) 1 T

 Go, 1 (7) = | r|(VVo)T(VVi T ) =
 and the entire contribution from the triangle is

 j /lleoll2 ejei eje2 ' (
 [G/,j(7)]f,j-=0,i,2 = Tpprl j eJeo lleill2 eje2 =- ( 1 (e0 e, e2)T(e0 ei e2). ' eJe0 eje, ||e2||2/ 1 1

 For the boundary integrals in expression (19), the contribution from the triangle is

 _ j / 0 eo eo ' T / bol '
 [Bi,j(T)]i,j=0,l,2 = 77^71 el 0 ei I I I (e0 el )>

 11 'e2 e2 oj 'b2lj

 where bk = Q (edge k in T lies on 317). Summing the contributions from all the triangles yields the complete
 C-, C-, G- and B-matrices.

 For the anisotropic version, parameterized as in Appendix A. 1 and Appendix C.4, the modified G-matrix
 elements are given by

 1

 [Gi,j{T)]ij=Qxi = 4jyj(e° e' e2)Tadj(H)(e0 ei e2), (20)

 where adj(H) is the adjugate matrix of H, for non-singular matrices defined as det(H)H_1 .

 A. 3. Non-stationary and oscillating models
 For easy reference, we give specific precision matrix expressions for the case a = 2 for arbitrary triangu-
 lated manifold domains Q. The stationary and simple oscillating models for a = 2 have precision matrices
 given by

 Q2(k' 6) = K4C + 2 K1 cos(tt0)G + GCT'G, (21)

 where 0 = 0 corresponds to the regular Matern case and 0 < 9 < 1 are oscillating models. Using the approx-
 imation from expression (13), the non-stationary model (12) with a = 2 has precision matrix given by

 Q2{*2(0, t(.)} = T(K2 CK2 + K2G + GK2 + GClG) T (22)

 where k2 and r are diagonal matrices, with K2ti = k(u/)2 and tu = t(u/). As shown in Appendix C.5, all the
 C should be replaced by C to obtain a Markov model.
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 A.4. Neumann boundary effects
 The effects on the covariance functions resulting from using Neumann boundary conditions can be explic-
 itly expressed as a folding effect. When the full SPDE is

 (ac2 - A)a/2 x(u) = W(u), ue ft,
 dn(K2-Ayx(u) = 0, uedn, 7 = 0, 1 , . . . , |_(a - 1 ) /2J ,

 the following theorem provides a direct answer, in terms of the Matern covariance function.

 Theorem 1. If x is a solution to the boundary value problem (23) for Q, = [0, L] and a positive integer a,
 then

 oo

 cov{*(w),x(iO} = {rM(w, v - 2kL) + rM(w, 2kL - t>)}
 k=-oo

 where rM is the Matern covariance as defined on the whole of (R.

 Theorem 1, which extends naturally to arbitrary generalized rectangles in [RJ, is proved in Appendix
 D. 1 . In practice, when the effective range is small compared with L, only the three main terms need to be
 included for a very close approximation:

 co v{x(u),x(v)}&rM(u,v) + rM(u, - v) + rM(w, 2L - v) (24)

 = rM (0, v - u) + rM (0, v + u) + rM {0, 2L - (v + u) } . (25)

 Moreover, the resulting covariance is nearly indistinguishable from the stationary Matern covariance at
 distances greater than twice the range away from the borders of the domain.

 A.5. Oscillating covariance functions
 The covariances for the oscillating model can be calculated explicitly for U and (R2, from the spectrum. On
 U, complex analysis gives

 r(H'")=2sin(U^^"KC0S(T)l"-M|}sin{T+KSin(y) (26)
 which has variance {4cos(7r6>/2)^3}_1. On [R2, involved Bessel function integrals yield

 r(U'V) = 4*sin(U«2i [^o{«l|v-u|| exp(-^)}-/r0{«||v-u|| }] (27)
 which has variance {47rft2sinc(7r0)}-1.

 Appendix B: Manifolds, random fields and operator identities

 B. 1 . Manifold calculus

 To state concisely the theory needed for constructing solutions to SPDEs on more general spaces than
 Ud , we need to introduce some concepts from differential geometry and manifolds. A main point is that,
 loosely speaking, for statisticians who are familiar with measure theory and stochastic calculus on Ud ,
 many of the familiar rules for calculus for random processes and fields still apply, as long as all expressions
 are defined in co-ordinate-free manners. Here, we give a brief overview of the concepts that are used in
 the subsequent appendices. For more details on manifolds, differential calculus and geometric measure
 theory see for example Auslander and MacKenzie (1977), Federer (1978) and Krantz and Parks (2008).

 Loosely, we say that a space Q is a d-manifold if it locally behaves as Ud . We consider only manifolds
 with well-behaved boundaries, in the sense that the boundary dQ of a manifold, if present, is required to
 be a piecewise smooth (d- l)-manifold. We also require the manifolds to be metric manifolds, so that
 distances between points and angles between vectors are well defined.

 A bounded manifold has a finite maximal distance between points. If such a manifold is complete in
 the set sense, it is called compact. Finally, if the manifold is compact but has no boundary, it is closed.
 The most common metric manifolds are subsets of Ud equipped with the Euclidean metric. The prime
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 example of a closed manifold is the unit sphere S2 embedded in R3. In Fourier analysis for images, the flat
 torus commonly appears, when considering periodic continuations of a rectangular region. Topologically,
 this is equivalent to a torus, but with a different metric compared with a torus that is embedded in R3. The
 d-dimensional hypercube [0, 1]^ is a compact manifold with a closed boundary.

 From the metric that is associated with the manifold it is possible to define differential operators. Let
 (p denote a function 0 : Q, i->> R. The gradient of 0 at u is a vector V</>( u) defined indirectly via directional
 derivatives. In RJ with Euclidean metric, the gradient operator V is formally given by the column vector
 (3/3mi, . . . , d/dud)T. The Laplacian A of 0 at u (or the Laplace-Beltrami operator) can be defined as the
 sum of the second-order directional derivatives, with respect to a local orthonormal basis, and is denoted
 A0(u) = V • V0( u). In Euclidean metric on Ud, we can write A = 32/3 u' + . . . + 32/3 u2d. At the boundary
 of il, the vector n9(u) denotes the unit length outward normal vector at the point u on the boundary 3f2.
 The normal derivative of a function </> is the directional derivative 3„0(u) = na(u) • V</>( u).

 An alternative to defining integration on general manifolds through mapping subsets into Ud is to
 replace Lebesgue integration with integrals defined through normalized Hausdorff measures (Federer,
 1951, 1978), here denoted //$(•)• This leads to a natural generalization of Lebesgue measure and inte-
 gration that coincides with the regular theory on Ud. We write the area of a ^/-dimensional Hausdorff
 measurable subset Ac^as 'A'q = Hq(1a), and the Hausdorff integral of a (measurable) function </> as
 //$(</>). An inner product between scalar- or vector- valued functions 0 and tp is defined through

 (<j>,ip)n = H&(<i>-ip)= [ 0(u)-V(u)H„(du).
 J uefi

 A function 0 : Q Um, m > 1, is said to be square integrable if and only if ||0||^ = (0, </>)n < oo, which is
 denoted 4>eL2{Sl).

 A fundamental relationship, that corresponds to integration by parts for functions on R, is Greens first
 identity ,

 (0, -A^)n = (V0, V^)n -

 Typical statements of the identity require 0 e C1 (Q) and ip e C2(Q), but we shall relax these requirements
 considerably in lemma 1 .

 We also need to define Fourier transforms on general manifolds, where the usual cosine and sine func-
 tions do not exist.

 Definition 1 (generalized Fourier representation). The Fourier transform pair for functions {4> e L2 : Ud i->-
 R} is given by

 4>(k) = CF<£)(k) = (<j>( u), exp(- ikTu))^(du),

 </>(u) = (JF-'^Xu) = (4>(k) exp(ikTu))R</(dk).

 (Here, we briefly abuse our notation by including complex functions in the inner products.)
 If Q is a compact manifold, a countable subset {Ek, k = 0, 1 , 2, . . .} of orthogonal and normalized eigen-

 functions to the negated Laplacian, -AEk = A kEk, can be chosen as basis, and the Fourier representation
 for a function {0 e L2 : Q R} is given by

 <£(*) = tF0)(*) = <0, Ek)n,
 oo ^

 (t>(u) = (F-l<j))(u) = Z<i>(k)Ek(u).
 k= 0

 Finally, we define a subspace of L2-functions, with inner product adapted to the differential operators
 that we shall study in the remainder of this paper.

 Definition 2. The Hilbert space Hx (17, k), for a given k ^ 0, is the space of functions {</> : Q R} with
 V0€ L2(Q), equipped with inner product

 (<t>, ^)«I<SU) =K2 i>)(l + (V0, VV>)S !•

This content downloaded from 129.241.15.186 on Tue, 09 Jan 2018 08:45:12 UTC
All use subject to http://about.jstor.org/terms



 448 F. Lindgren, H. Rue and J. Lindstrom

 The inner product induces a norm, which is given by ||0||^i(q,k) = (0> Ky b°undary case ^ = 0 is
 also well defined, since H^llwitfU) is a seminorm, and H] (Q, 0) is a space of equivalence classes of functions,
 that can be identified by functions with (0, 1)J2 = 0.

 Note that, for n > 0, the norms are equivalent, and that the Hilbert space TO is a quintessential Sobolev
 space.

 B.2. Generalized Gaussian random fields
 We now turn to the problem of characterizing random fields on We restrict ourselves to GFs that are
 at most as irregular as white noise. The distributions of such fields are determined by the properties of
 expectations and co variances of integrals of functions with respect to random measures: the so-called finite
 dimensional distributions.

 In classical theory for GFs, the following definition can be used.

 Definition 3 (GF). A random function x : Q h> IR on a manifold Q is a GF if (jc(ujt), k = ',...,n} are
 jointly Gaussian random vectors for every finite set of points {uk e ft, k = 1, . . . , n}. If there is a constant
 b ^ 0 such that £{x(u)2} ^ b for all u e ft, the random field has bounded second moments.

 The complicating issue in dealing with the fractional SPDEs that are considered in this paper is that,
 for some parameter values, the solutions themselves are discontinuous everywhere, although still more
 regular than white noise. Thus, since the solutions do not necessarily have well-defined pointwise meaning,
 the above definition is not applicable, and the driving white noise itself is also not a regular random field.
 Inspired by Adler and Taylor (2007), we solve this by using a generalized definition based on generalized
 functions.

 Definition 4 (generalized function). For a given function space JF, an ^-generalized function x:Q'-+U,
 with an associated generating additive measure x* : T i-> IR, is an equivalence class of objects identified
 through the collection of integration properties that is defined by (0, x)n =**(0), for all x* -measurable
 functions (freT.

 When x* is absolutely continuous with respect to the Hausdorff measure on ft, x is a set of regular
 functions, at most differing on sets with Hausdorff measure zero. The definition allows many of the regu-
 lar integration rules to be used for generalized functions, without any need to introduce heavy theoretical
 notational machinery, and provides a straightforward way of generalizing definition 3 to the kind of entities
 that we need for the subsequent analysis.

 Definition 5 (generalized GF). A generalized GF x on ft is a random L2(ft) generalized function such
 that, for every finite set of test functions {</>, € L2(ft), i = 1, . . . , n}, the inner products (</>,-, x)n, i = 1, . . . , n,
 are jointly Gaussian. If there is a constant b ^ 0 such that £"((0, x)2n) ^ b''cj)''2n for every 0 € L2(ft ), the gen-
 eralized field x has L2(Sl)-bounded second moments, abbreviated as L2(Q) bounded.

 Of particular importance is the fact that white noise can be defined directly as a generalized GF.

 Definition 6 (Gaussian white noise). Gaussian white noise W on a manifold Q is an L2(Q)-bounded
 generalized GF such that, for any set of test functions {</>, e L2(Q ), i = 1, . . . the integrals (0/, W)j2,
 i = 1, . . . , n, are jointly Gaussian, with expectation and covariance measures given by

 £«&,W)n) = 0,

 CO v«0/, W)i2, (0/, W)n) = (</>,-, </>j)n.

 In particular, the covariance measure of W over two subregions A, B c Q, is equal to the area measure of
 their intersection, | A fi B'n, so the variance measure of W over a region is equal to the area of the region.

 We note that the popular approach to defining white noise on Ud via a Brownian sheet is not applicable
 for general manifolds, since the notion of globally orthogonal directions is not present. The closest equiv-
 alent would be to define a set-indexed Gaussian random function W*(A) : {A; A such that
 £'{VV;*(A)} =0 and cov{W*(A), W*(£)} = 'A Pi B'n. This definition is equivalent to that above (Adler
 and Taylor, 2007), and the Brownian sheet is a special case that considers only rectangular regions along
 the axes of Md, with one corner fixed at the origin.
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 B. 3. Operator identities
 Identities for differentiation and integration on manifolds are usually stated as requiring functions in C1,
 C2 or even C°°, which is much too restrictive to be applied to generalized functions and random fields.
 Here, we present the two fundamental identities that are needed for the subsequent SPDE analysis; Green's
 first identity and a scalar product characterization of the half-Laplacian.

 B.3.1. Stochastic Greens first identity
 We here state a generalization of Green's first identity, showing that the identity applies to generalized
 fields, as opposed to only differentiable functions.

 Lemma 1. If V / € L2(Q) and Ajc is L2(Q) bounded, then (with probability 1)

 (/, -Ax)q = (V/, Vx)Q - (/, an*)9n.

 If Vjc is L2(H) bounded and A / € L2(fJ) , then (with probability 1)

 (x, - A/)n = (Vjc, V/)n - (x, dnf)m.

 For brevity, we include only a sketch of the proof.

 Proof. The requirements imply that each integrand can be approximated arbitrarily closely in the L2-
 senses using Cq -functions / and £, where q in each case is sufficiently large for the regular Green's identity
 to hold for / and x. Using the triangle inequality, it follows that the expectation of the squared difference
 between the left- and right-hand sides of the identity can be bounded by an arbitrarily small positive
 constant. Hence, the difference is zero in quadratic mean, and the identity holds with probability 1 .

 B. 3. 2. Half-Laplacian
 In defining and solving the SPDEs considered, the half-Laplacian operator needs to be characterized in a
 way that permits practical calculations on general manifolds. The fractional modified Laplacian operators
 {k2 - A)a/2, k9 a ^ 0, are commonly (Samko et al (1992), page 483) defined through the Fourier transform,
 as defined above:

 {T(k2 - A)Q/24>}(k) = (k2 + ||k||2)"/2(^)(k),

 on Rd;

 {j>V - a r/20}(*) = (K2 + 'k)a/2(Tm),

 on compact ft, where A*, k = 0, 1, 2, . . . , are the eigenvalues of - A. The formal definition is mostly of
 theoretical interest since, in practice, the generalized Fourier basis and eigenvalues for the Laplacian are
 unknown. In addition, even if the functions are known, working directly in the Fourier basis is computa-
 tionally expensive for general observation models, since the basis functions do not have compact support,
 which leads to dense covariance and precision matrices. The following lemma provides an integration
 identity that allows practical calculations involving the half-Laplacian.

 Lemma 2. Let 0 and ^ be functions in Wl(Q, k). Then, the Fourier-based modified half-Laplacians
 satisfy

 <(k2 - A )l/24>, ( K 2 - A)'/2V>)si = <0,

 whenever either

 (a) n = R'<,
 (b) Q, is closed or
 (c) Q is compact and (0, = (9n0, =0.

 For a proof, see Appendix D.2. Lemma 2 shows that, for functions ip fulfilling the requirements, we
 can use the Hilbert space inner product as a definition of the half-Laplacian. This also generalizes in a
 natural way to random fields x with L2(H)-bounded Vx, as well as to suitably well-behaved unbounded
 manifolds.

 It would be tempting to eliminate the qualifiers in part (c) of lemma 2 by subtracting the average of the
 two boundary integrals to the relationship, and to extend lemma 2 to a complete equivalence relationship.
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 However, the motivation may be problematic, since the half-Laplacian is defined for a wider class of
 functions than the Laplacian, and it is unclear whether such a generalization necessarily yields the same
 half-Laplacian as the Fourier definition for functions that are not of the class Acfi e L2(Q). See Ilic et al.
 (2008) for a partial result.

 Appendix C: Hilbert space approximation

 We are now ready to formulate the main results of the paper in more technical detail. The idea is to
 approximate the full SPDE solutions with functions in finite Hilbert spaces, showing that the approxi-
 mations converge to the true solutions as the finite Hilbert space approaches the full space. In Appendix
 C. 1, we state the convergence and stochastic FEM definitions that are needed. The main result for Matern
 covariance models is stated in Appendix C.2, followed by generalizations to intrinsic and oscillating fields
 in Appendix C.3 and Appendix C.4. Finally, the full finite element constructions are modified to Markov
 models in Appendix C.5.

 C. 1. Weak convergence and stochastic finite element methods
 We start by stating formal definitions of convergence of Hilbert spaces and of random fields in such
 spaces (definitions 7 and 8) as well as the definition of the finite element constructions that will be used
 (definition 9).

 Definition 7 (dense subspace sequences). A finite subspace Hln(Q, k) c k) is spanned by a finite
 set of basis functions • . . , fa}- We say that a sequence of subspaces {H'} is dense in if for
 every f eH} there is a sequence {/„}, fneH]r such that lim„^(||/-/Jwi(Si,;)) = 0.

 If the subspace sequence is nested , there is a monotonely convergent sequence {/„}, but that is not a
 requirement here. For given H', we can choose the projection of f onto Hln, i.e. the fn that minimizes
 II f fn II t~c 1 • The error / - fn is orthogonal to 7iln, and the basis co-ordinates can be determined via the
 system of equations (fa, fn)ni (a K) = (fa , f) n i (a K) , for all* = 1 .

 Definition 8 (weak convergence). A sequence of L 1 (Q)-bounded generalized GFs {xn } is said to converge
 weakly to an L2(Q)-bounded generalized GF jc if, for all f,ge L2(Q ),

 E((f,xn)ti)-+E((f,x)n),

 CO v((f,xn)n9 (0,*n)n)->cov((/,*)n, (g,x)n),

 as n -> oo. We denote such convergence by

 o{L2m}
 xn

 Definition 9 (finite element approximations). Let C be a second-order elliptic differential operator, and
 let S be a generalized GF on h. Let xn = E jipjWj e k) denote approximate weak solutions to the
 SPDE Cx = £ on Q, .

 (a) The weak Galerkin solutions are given by Gaussian w = {w>i,...,w„} such that

 E((fn,Cxn)n) = E((ftt,£)n),

 CO v((f„,Cx„)n, (9n,Cxn)n) = co'((fn9£)iU (gn,£)n)

 for every pair of test functions f„,g„ e Hln(Q, k).

 (b) The weak least squares solutions are given by Gaussian w = {w' , . . . , wn } such that

 E((Cfn,Cx„)n) = E((£fH9£)n)9

 co v((£fn,£x„)ii, (Cgn,Cxn)n)=cov((£fn,£)iu (Cg„,£)n)

 for every pair of test functions fn,gn e H)t (Q, k).
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 C.2. Basic Matern-like cases
 In the remainder of the appendices, we let C = (k2 - A). In the classic Matern case, the SPDE Ca/2x = W
 can, for integer a-values, be unravelled into an iterative formulation

 £V2yi=W9

 Cy2 = W,

 Cyk = yk-i, * = 3, 4,..., a.

 For integers a = 1, 2, 3, . . . , ya is a solution to the original SPDE. To avoid solutions in the null space of
 (. k 2 - A), we shall require Neumann boundaries, i.e. the solutions must have zero normal derivatives at
 the boundary of O. In the Hilbert space approximation, this can be achieved by requiring that all basis
 functions have zero normal derivatives.

 We now formulate the three main theorems of the paper, which show what the precision matrices should
 look like for given basis functions (theorem 2), that the finite Hilbert representations converge to the true
 distributions for a = 1 and a = 2 and dense Hilbert space sequences (theorem 3) and finally that the iter-
 ative constructions for a ^ 3 also converge (theorem 4). A sequence k) of piecewise linear Hilbert
 spaces defined on non-degenerate triangulations of ft is a dense sequence in Hl (H, k) if the maximal edge
 length decreases to zero. Thus, the theorems are applicable for piecewise linear basis functions, showing
 weak convergence of the field itself and its derivatives up to order min(2, a).

 Theorem 2 (finite element precisions). Define matrices C, G and K through

 Cij = (rl>i9rl>j)fi9

 Gij = (V^/,

 K = «2C + G

 and denote the distribution for w with N(0, Q"1), where the precision matrix Q is the inverse of the
 covariance matrix, and let xn = Y,k ipkWk be a weak Hln (H, «) approximation to Ca/2x = £, C = (k2 - A),
 with Neumann boundaries, and dnipk = 0 on 3Q.

 (a) When a = 2 and £ = W, the weak Galerkin solution is obtained for Q = KTC_1K.
 (b) When a = 1 and £ = W, the weak least squares solution is obtained for Q = K.
 (c) When a = 2 and £ is an L2(n)-bounded GF in H' (H, k) with mean 0 and precision Q^,„, the weak

 Galerkin solution is obtained for Q = KTC_1Q£:,nC~1K.

 Theorem 3 (convergence). Let x be a weak solution to the SPDE £a/2x = W, C = (k2 - A), with
 Neumann boundaries on a manifold and let xn be a weak Wln(Q, k) approximation, when W is
 Gaussian white noise. Then,

 D{L2(Q)}
 xn

 D{L2(Q)}
 Ca,2xn

 if the sequence {7-^(f£, k), n -> oo} is dense in 7il (O, «), and either

 (a) a = 2, and xn is the Galerkin solution, or
 (b) a = 1 and xn is the least squares solution.

 Theorem 4 (iterative convergence). Let y be a weak solution to the linear SPDE Cyy = £ on a manifold
 Q, for some L 2 (Q) -bounded random field £, and let x be a weak solution to the SPDE CyCx = £, where
 C = k2 - A. Further, let yn be a weak Hln (Q, k) approximation to y such that

 D{L2my
 yn

 and let xn be the weak Galerkin solution in Hln (H, ^) to the SPDEs Cx = yn on Q. Then,

 D{L2(Q)}
 Xn
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 D{L2(tt)}

 Cxn

 For proofs of the three theorems, see Appendix D.3.

 C.3. Intrinsic cases
 When k = 0, the Hilbert space from definition 2 is a space of equivalence classes of functions, correspond-
 ing to SPDE solutions where arbitrary functions in the null space of (- A)a/2 can be added. Such solution
 fields are known as intrinsic fields and have well-defined properties. With piecewise linear basis functions,
 the intrinsicness can be exactly reproduced for a = 1 for all manifolds, and partially for a = 2 on subsets
 of R2, by relaxing the boundary constraints to free boundaries. For larger a or more general manifolds,
 the intrinsicness will only be approximately represented. How to construct models with more fine-tuned
 control of the null space is a subject for further research.

 To approximate intrinsic fields with a ^ 2 and free boundaries, the matrix K in theorem 2 should be
 replaced by G - B (owing to Green's identity), where the elements of the (possibly asymmetric) boundary
 integral matrix B are given by Binj = 3, The formulations and proofs of theorem 3 and theorem 4
 remain unchanged, but with the convergence defined only with respect to test functions / and g orthogonal
 to the null space of the linear SPDE operator.

 The notion of non-null-space convergence allows us to formulate a simple proof of the result from
 Besag and Mondal (2005), that says that a first-order intrinsic conditional auto-regressive model on infinite
 lattices in 1R2 converges to the de Wij process, which is an intrinsic generalized Gaussian random field. As
 can be seen in Appendix A.l, for a= 1 and k = 0, the Q-matrix (equal to G) for a triangulated regular
 grid matches the ordinary intrinsic first-order conditional auto-regressive model. The null spaces of the
 half-Laplacian are constant functions. Choose non-trivial test functions / and g that integrate to 0 and
 apply theorem 3 and definition 8. This shows that the regular conditional auto-regressive model, seen as
 a Hilbert space representation with linear basis functions, converges to the de Wij process, which is the
 special SPDE case a = 1 , k = 0, in 1R2 .

 C. 4. Oscillating and non-isotropic cases
 To construct the Hilbert space approximation for the oscillating model that was introduced in Section 3.3,
 as well as non-isotropic versions, we introduce a coupled system of SPDEs for a = 2,

 fh'- V-HjV - hi + V • H2V ' ( x' ' _ ( £' '
 U2-V-H2V /2,-V.H,V JU/ _ Ui ( '

 which is equivalent to the complex SPDE

 {h 1 + ih2 - V • (H' + iH2)V}{*i (u) + i*2(u)} = £' (u) + i£2(u). (34)

 The model in Section 3.3 corresponds to h ' =k2cos(7t6>), h2 = K2 sin(7r0), Hj =1 and H2=0.
 To solve the coupled SPDE system (33) we take a set {ipk,k= 1, . . . ,n} of basis functions for k)

 and construct a basis for the solution space for (x' jc2)t as

 (t)

 The definitions of the G- and K-matrices are modified as follows:

 (G k)LJ = (H^V^H 1/2 *=1,2,
 Kj. = hkC -f~ G/t , k- 1,2.

 Using the same construction as in the regular case, the precision for the solutions is given by

 /K, -K 2'T/C oy] (Q£ Owe ON-'/K, -K2WQ 0'
 'k2 K, J lo cj vo QJIO c) VK2 K, J~AO q)'

 where Q = Q (h ' , Hi ) + Q(/z2, H2), and Q(-, •) is the precision that is generated for the regular iterated model
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 with the given parameters. Surprisingly, regardless of the choice of parameters, the solution components
 are independent.

 C. 5. Markov approximation
 By choosing piecewise linear basis functions, the practical calculation of the matrix elements in the
 construction of the precision is straightforward, and the local support makes the basic matrices sparse.
 Since they are not orthogonal, the C-matrix will be non-diagonal, and therefore the FEM construction
 does not directly yield Markov fields for a ^ 2, since C-1 is not sparse. However, following standard prac-
 tice in FEMs, C can be approximated with a diagonal matrix as follows. Let C be a diagonal matrix, with
 Cn = Ej Cij = {ipt, 1 )n, and note that this preserves the interpretation of the matrix as an integration matrix.
 Substituting C-1 with C"1 yields a Markov approximation to the FEM solution.

 The convergence rate for the Markov approximation is the same as for the full FEM model, which can
 be shown by adapting the details of the proofs of convergence. Let / and g be test functions in k)
 and let fn and gn be their projections onto 7iln(Q, n), with basis weights and wg. Taking the differ-
 ence between the co variances for the Markov (*„) and the full FEM solution (. xn ) for a = 2 yields the
 error

 CO v((/, Cx„)q9 {g9 Cxn)n)- co v((/, Cxn)n , {g, Cxn)n) = wf(C- C)w9.

 Requiring WfWnHn, «)' IMIw'tti,*) ^ ^ f°U°ws from lemma 1 in Chen and Thomee (1985) that the covari-
 ance error is bounded by ch 2 , where c is some constant and h is the diameter of the largest circle that can
 be inscribed in a triangle of the triangulation. This shows that the convergence rate from expression (11)
 will not be affected by the Markov approximation. In practice, the C-matrix in K should also be replaced
 by C. This improves the approximation when either h or n is large, with numerical comparisons showing
 a covariance error reduction of as much as a factor 3. See Bolin and Lindgren (2009) for a comparison of
 the resulting kriging errors for various methods, showing negligible differences between the exact FEM
 representation and the Markov approximation.

 Appendix D: Proofs

 D. 1 . Folded covariance: proof of theorem 1
 Writing the covariance of the SPDE solutions on the interval = [0, L] c U in terms of the spectral repre-
 sentation gives an infinite series,

 oo

 cov{x(w), x(v)} = Ao 4- 5^cos(m7t/:/L) cos(u7r/:/L)AJt, (35)
 k= 1

 where A0 = {nlnL)~x and A* = 2 L~l{n2 + (n k/L)2}~a are the variances of the weights for the basis functions
 cos(«7t/:/L), k = 0, 1, 2,

 We use the spectral representation of the Matern covariance in the statement of theorem 1 and
 show that the resulting expression is equal to the spectral representation of the covariance for the solu-
 tions to the given SPDE. The Matern covariance on IR (with variance given by the SPDE) can be
 written as

 1 f°°
 rM(w,f) = - / (k2 + cu2)~a cos{(v - u)Lu}duj.

 2 71" J -oo

 Thus, with r(«, v) denoting the folded covariance in the statement of theorem 1,

 00

 r(u, v)= ^2 {rM(«, v - 2kL) + tm(«, 2kL - v)}
 k=- oo

 | oo r°°

 = - / (ft2 +t*;2)~a[cos{(i> - u - 2kL)u} + cos{(v + u - 2kL)u}]duj Ic=-ooJ - oo

 1 r°° oo
 = - / (K2+ix)2)~a [cos{(u - u - 2kL)uj} + cos{(f + w - 2kL)u}]du

 2n J_00 k= - oo
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 Rewriting the cosines via Euler's formulae, we obtain

 oo

 Y2 [cos {(v - u - 2kL)u} + cos{(i; + w - 2kL)u}]
 k=-oo

 1 00
 = - Y! {exp(iwu;) + exp(- iwu;)}[exp{i(t; - 2&L)o;} + exp{- i(i> - 2kL)u}]

 2 k=- 00
 00 00

 = cos(wu;){exp(ii;u;) exP(- 2'kLuj) + exp(- ivu) Qxp(2'kLuj)}
 k=-o o k=-o o

 00

 = 27rcos{uuj){exp(wu}) + exp(- ifcj)} ^ 6{2Luj - 2nk)
 k=-o o

 27t ™ / irk'
 = - cos(wa;) cos(i>uO 2_, olu;
 L k=-o o ' ^ /

 where we used the Dirac measure representation

 oc OO

 ^ exp(i/:5) = 27r ^ S(s - 27rk).
 k=-o o k=-o o

 Finally, combining the results yields

 1 f°° 00 f nk'
 r(u,v) = - (k2 +uu2)~a cos(uu) cos(vu) ^ <51 u

 L J -00 k=-oo ' ^ /

 -r. (?)T»<"?M")

 which is precisely the expression sought in equation (35).

 D.2. Modified half-Laplacian equivalence: proof of lemma 2
 For brevity, we present only the proof for compact manifolds, as the proof for Q = Ud follows the same
 principle but without the boundary complications. The main difference is that the Fourier representation
 is discrete for compact manifolds and continuous for Ud.

 Let A* ^ 0, & = 0, 1, 2, ... , be the eigenvalue corresponding to eigenfunction Ek of - A (definition 1).
 Then, with 4>(k) = the modified half-Laplacian from Appendix B.3.2. is defined through ^{(k2 -
 A)l/2(/)}(k) = (K2 + A*) 1/2 </>(/;), and we obtain

 / 00 ^00 '
 ((k2- A)1/20, (n2- A)1/2^)j2 = ( S(^2 + a*) 1/2 $(*)£*, £(a€2 + 'k>)l/2i>(k')Ek> ) ,

 u=o k'= 0 / q

 and, since we can change the order of integration and summation,

 00 ^

 «K2 - A )l/2<p, (k2 - A)i/2^)S! = J2(k2 + A k)4>(k)i>(k), ^
 k= 0

 since the eigenfunctions Ek and Ek> are orthonormal.
 Now, starting from the Hilbert space inner product,

 (<t>, 1p)n'iil.K) = V')!! + <V0, Vlp)il
 / OO ^ ' / 00 * 00 * '

 = k2 ( £>(*)£*, ^ £ m')Ek' ) + ( V £>(*)£*, * V Y. W)Ek. * )
 'k= 0 k'=0 / n ' k= 0 jfc'=0 / J2
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 and, since k) and Ek, Ek> e L2(fJ), we can change the order of differentiation and summation,

 /°°/v 00 * ' / °o ^ oo ^ '
 (<P,4>)hhsi, k)=«2 ( H<Kk)Ek, E </>(*')£*' * ) +(EWV£j,E^W ^ ^ >

 'k= 0 k'=0 / n '*=° *'=0 / ft

 and, since in addition VEk, VEk> e L2(17), we can change the order of summation and integration,

 oo oo A oo oo ,

 (4>, <«.«> = *2EE #*) A ^>n + EE <t>(k)i>(k'){VEkVEk,)n. ,
 k=0k'=0 k=0k'=0

 Further, Green's identity for (VE*, VE*/)n yields

 {V Ek,V Ek>)n = { Ek , - + (£*, dnEk')m = ^k,(Ek, Ek>)si + (£*, 9n£*')an-

 Since V</>, L2(H) we can change the order of summation, integration and differentiation for the
 boundary integrals,

 oo oo ,

 J2 £ mW)(Ek,dnEk>)dn = {<t>,dnip)3n-
 k=0k'=0

 By the boundary requirements in lemma 2, whenever Green's identity holds, the boundary integral van-
 ishes, either because the boundary is empty (if the manifold is closed), or the integrand is 0, so collecting
 all the terms we obtain

 OO 00 ^ oo ^

 (4>, tP)h> <n,«> = E E (K2 + Ai) m ^ W){Ek, Ev)a + 0 = E(« + A*) m ^ M),
 k-0k'=0 k=0

 and the proof is complete.

 D. 3. Hilbert space convergence
 D.3.1. Proof of theorem 2 (finite element precisions)
 The proofs for theorem 2 are straightforward applications of the definitions. Let w/ and wg be the Hilbert
 space co-ordinates of two test functions fn,gn€ «), and let C = k2 - A.
 For case (a), a = 2 and £ - W, so

 (A, £xn)n = Sw/.iWi, £i/>j)nWj
 ij

 = YjwfA«lci,j + Gi,j)Wj
 ij

 = wjKw

 owing to Green's identity, and

 CO v({/„, £*„)sj, (gn, Cx„)n) = wjKcov(w, w)Ktw„.

 This covariance is equal to

 COV«/„, W)n, (gn,W)n)={fn,9nh

 z=T,wf,i('>Phi>j)awg,j
 'J

 =T.wf,iCijwgj
 ij

 = wj Cw,

 for every pair of test functions /„, g„ when Q = cov(w, w)~' = K ' C1 K.
 For case (b), a = 1 and £ = W. Using the same technique as in (a), but with lemma 2 instead of Green's

 identity, {C 1 /2 f„ , C 1 12 xn ) n = (/„ , x„ ) H i <a K) = wjKw and

 cov«£'/2/„, W>n, (£l/2gn, W>„) = (C]/2f„,C>/2g„)n = (/„s.>wi(n.«, = wjKw,

 so Q = KtK"'K = K, noting that K is a symmetric matrix since both C and G are symmetric.
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 Finally, for case (c), a = 2 and S = £n is a GF on H' (SI, k) with precision Q£n . Using the same technique
 as for (a),

 CO v((/„, Cxn)iu {gn, £xn)n) = wjKcov(w, w)Ktw9

 and the finite basis representation of the noise Sn gives

 cov ({f„,Stt)nA9n,£n)n) = Wf CQ s)n Cw</ •

 Requiring equality for all pairs of test functions yields Q = KTC~ 1 Qs,n C~ 1 K. Here, keeping the transposes
 allows the proof to apply also to the intrinsic free-boundary cases.

 D.3.2. Proof of theorem 3 ( convergence)
 First, we show that expression (28) follows from expression (29). Let C = k2 - A, let / and g be functions
 in Hl (ft, k) and let / be the solution to the PDE

 £/(u) = /(u), u eft,

 dnf( u) = 0, uedQ,

 and correspondingly for g. Then / and g are in Hl (ft, k) and further fulfil the requirements of lemma 1
 and lemma 2. Therefore,

 {fixn)i} = xn)i 2 - {f •> xn )"H 1 (J2,k) = (f* £xn){h

 and

 (/, x)n = (Cf, x)n = (/, x)ni{{lK) = (/, Cx){u

 where the last equality holds when a = 2, since W is L2(ft) bounded. The convergence of xn to x follows
 from expression (29). In the Galerkin case (a), we have

 CO v((/, xn)iU (g, x„)n)=co v((/, Cxn){} , {g, £x„)n)

 -> CO v((/, Cx)n, (g, Cx){}) = CO v((/, x)n, (g, x)n),

 and similarly for the least squares case (b).
 For expression (29), let fn = E* and gn = £* be the orthogonal projections of / and # onto

 Hln(Q, k). In case (a), then

 (/, Cxn){} = (/, -AT/i ) 7-^ 1 (J2, /v) = (f ~ fn->xt + (//n (J2,k) = {fn->xn)nl(il,K)->

 and

 cov((/, Cx„)n,{g, £xnh) = cov((fn,xn)niillK)9(gn9x„)ni{{lK))

 = co v({f„,W)n,{9n,W)n) = {f«,9n)ii

 ->(/^>H = cov((/,W)«,<p,W)n)

 as a -» oo. Similarly in case (b), for any / e 'ft1 (ft, ac) fulfilling the requirements of lemma 2,

 ( C]/~f , = (/,

 and

 cov((£l/2/,£l/2.*„)Si, (£[/2gX,/2x„)n)=cov((fl„x„)7{liilK),(g„,xl,)HHilK))

 = cov((£l/2 /„, W)n, {Cl/2gn,W)u) = (fn,9n)nhn.K)

 -»• = <£'/2/, £'/2</>si = cov((£l/2/, W>n, (£l/2<?, W>„)
 as n-^ oo.
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 D.3.3. Proof of theorem 4 ( iterative convergence)
 First, we show that expression (31) follows from expression (32). Let / and g be defined as in the proof of
 theorem 3. Then, since C = k2 - A,

 {f,xtt)n = (f, £xn)u

 and

 (f>x)n = (f,

 and the convergence of xn to x follows from expression (32). For expression (32), as in the proof of theorem
 (f » £xn)il = (fn>xn)l-ll(S}, K)">

 CO v((/, £xn)n9(9, £xn)tl)=cov((fn9xn)niiQtK),(9n,xn)niiSltK))

 = cov((/„,y„>n, (gn,yn)n) = cow({f,yn)n, (g9yn)n)

 -► co v((/, y)n9 (g9 y)n) = cov((/, £r)n, {g9 £x)n)

 as n -> oo, owing to requirement (30).
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 Discussion on the paper by Lindgren, Rue and Lindstrom

 John T. Kent ( University of Leeds)
 This paper uses finite element methods to give a principled construction of Matern-type Gaussian models
 in a variety of spatial settings. A key property of such models is that they have a sparse inverse covariance
 or precision matrix. The paper gives a comprehensive treatment of these models and it seems destined to
 become a landmark paper in spatial analysis. In many ways the paper is a natural sequel to Besag's (1974)
 paper that was read to the Society, and it forms a fitting tribute to his memory.

 In earlier work often a great distinction was made between conditional auto-regression (CAR) and
 simultaneous auto-regression (SAR) models. In terms of a zero-mean Gaussian process {x/y } on the inte-
 ger lattice in U2 and the notation A(jc)0 = (jt;_u +x/+ij + +xiJ+')/a for the shrunken first-order
 neighbourhood average (a >4), the one-parameter versions are

 E (x{ j | X- (jj) ) = A (x) i j ,
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 varU',,) = ct(2::ar,

 (CAR) and

 xij-A(x)u = eij"°N(0,<TlAR)

 (SAR). In the first, the conditional distribution of Xjj given the values of the process at all the remain-
 ing sites depends only on the nearest neighbours; in the second a filtered version of the x-process equals
 (discrete) white noise. The second process is a discrete approximation to the stochastic partial differential
 equation (2) based on the differential operator DK n = (k2 - A)'v/2 with a = 2.

 The difference between the two processes can be seen most clearly in the spectral domain. Setting A (u;) =
 {2 cos(o;i ) + 2cos(Lj2)}/a and g( lj) = 1 - A(u>) for u; e (- tt, 7r)2, the two spectral densities are

 /sarMocsM"2.

 By taking suitable convolutions, both models can be extended to higher order neighbourhoods as described
 in the paper and, letting the even integer a ^ 2 denote the order of neighbourhood, we have

 SAR(a/2) = CAR(a;) % Af (i/), v = a- d/ 2,

 where the dimension is d = 2 here and M(u) stands for the Matern model of index v. In higher dimensions,
 I wonder to what extent we need to restrict a to be sufficiently large that v > 0, or at least v ^ 0. One of the
 clever observations in the paper is to note that this SAR and CAR identification can be extended to odd
 integers a ^ 1 where, for the approximate weak solution of the stochastic partial differential equation, the
 finite clement ideas from Section 2.3 are used.

 The role of the null space of a differential operator is not clear to me. Consider the stationary process
 on all of [R2 generated by DK a with k > 0 and a = 2. As noted in the paper, this differential operator has
 a null space which includes certain exponential functions. However, the random field is well defined even
 when specified to have mean 0. Further, if DK a is used to motivate a process on a finite domain using the
 finite element construction, it is not clear to me what happens to the null space.

 The situation is more delicate for intrinsic processes (Kent and Mardia, 1994). Consider the self-similar
 process on Ud generated by D0,«, which is intrinsic provided that the real parameter a is sufficiently large
 that v = a- d/2 > 0. The intrinsic order is p = [v], where [•] denotes the integer part. An intrinsic process
 is defined only up to the null space of polynomials of degree p. When a is an even integer, the differential
 operator D0,a has a null space given by the polynomials of degree r = a - 1, and this result extends to all
 integers a ^ 1 . For integer a in dimensions d- 1 , 2, it follows that p = r. However, if d ^ 3, then p < r. Thus,
 in the intrinsic setting, the question about the role of the null space of the differential operator also arises.

 Recall that a differential operator D can be used to define a smoothing spline with penalty term f (D</?)2
 for sufficiently smooth functions ip on Ud . For example, D0 2 leads to cubic and thin plate splines in dim-
 ensions d= 1, 2. As the paper continually emphasizes, this construction is computationally intensive for
 large n when d ^ 2. Hence it is natural to ask how successfully the finite element ideas of this paper can be
 used to yield a computationally efficient approximation.

 The paper mentions briefly how deformations can be used to introduce non-stationarity in a real-
 valued Gaussian process. Gaussian models can also be used to construct deformations of Euclidean
 space. Bookstein (1989) suggested the use of thin plate splines, and Michael Miller and his colleagues
 (e.g. Christensen et al. (1996)) developed more sophisticated models using non-linear partial differential
 equations motivated by continuum mechanics. My former doctoral student, Godwin (2000), constructed
 deformations which were constrained by elastic penalties and discretized by using finite element methods.
 In this case a pair of interacting partial differential equations for the horizontal and vertical displacement
 is obtained, depending on two parameters called the Lame coefficients; changing the ratio between them
 can have a dramatic effect on the fitted deformation.

 In summary, I found this to be an extremely stimulating paper and it gives me great pleasure to propose
 the vote of thanks.

 Peter J. Diggle (Lancaster University)
 This paper is an important contribution to an important topic. Latent Gaussian fields are widely used as
 components of geostatistical models (Diggle et al , 1 998) and of point process models (Moller et al. , 1 998).
 I believe that they should also be more widely used for the analysis of spatially discrete data. Consider,
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 for example, data consisting of counts K, associated with each of n subregions Az that partition a region
 of interest, A. A standard class of models for data of this kind is that

 Yi'X - Pois(^), fa = ex p(a + X,-), (36)

 where the Xt form a Markov random field in which

 Xi'{Xj-.jiti}^N(^XhT2/ni),

 where Xt is the average of the values of Xj associated with the n, subregions Aj that are considered to be
 neighbours of A,. The usual approach to defining the neighbours is through contiguities: At and Aj are
 neighbours if they share a common boundary. This is appealing in a regular geography; less so when the
 Ai vary substantially in size and shape. An alternative is to assume that

 y;-|X(-)~Pois(/i/), fii = J exp{a + X(w)}dw, (37)
 where now X(-) is a spatially continuous Gaussian field.
 A pragmatic reason for preferring class (36) over class (37) has long been that the associated computa-

 tions are much less burdensome. The remarkable computational efficiency that the methods in this paper
 achieve should instead allow a chioce between classes (36) and (37) to be made on the basis of their merits
 as models.

 Another important aspect of the paper is its delivery of appealing non-stationary constructions through
 the paper's equation (12). In this respect, it is a pity that the restriction to integer a excludes the expo-
 nential correlation function (k = 0.5) in the two-dimensional case. The popularity of the Matern family of
 correlation functions stems from the fact that the integer part of k corresponds to the mean-square differ-
 entiability of X( ). But k is difficult to estimate, and a widely used strategy is to choose its value among
 a small number of qualitatively different candidates, say k; = 0.5, 1.5,2.5, corresponding to continuous,
 differentiable and twice-differentiable fields X(-) respectively.

 The paper also gives a new slant on low rank approximations by representing the field X( ) as

 X(u) « £ il>k(u)Wk, W - MVN(0, E).
 k='

 Here again, computational efficiency is crucial as the number of terms in the summation needs to be large
 when the range of the spatial correlation is small relative to the dimensions of the region of interest.

 The paper uses integrated nested Laplace approximations as the basis for inference, building on Rue
 et al (2009). For the applications that are considered in tonight's paper, the focus on marginal posteriors
 is a little too restrictive. If, as is often the case in applications, the focus of scientific interest is on predictive
 inference for one or more non-linear functional of the unobserved realization of X( ), we need a reliable
 approximation to the joint predictive distribution of the whole field X(-), which is in practice approximated
 by its joint distribution on a fine grid spanning the region of interest.

 The ability to fit models of this kind without resorting to Markov chain Monte Carlo methods is very
 welcome. My strong impression is that, for problems of this degree of complexity, the tuning and empir-
 ical assessment of convergence of Markov chain Monte Carlo algorithms remains something of a black
 art. However, is tuning still necessary for the methods that are proposed in the paper to deliver accurate
 inferences, and if so how delicate is this tuning?

 The acute myeloid leukaemia (AML) data that are analysed in the paper consist of the residential loca-
 tions and (censored) survival times of all recorded cases in an area of north-west England. The authors'
 analysis follows earlier published analyses in treating these as geostatistical data, implicitly assuming that
 the locations have been sampled independently of the survival process. But this may not be so - the data
 are a realization of a marked point process with carrier space J'f x 1Z+ , where A f is the set of all locations
 of people resident in the study region who are at risk of contracting AML. This does not invalidate the
 authors' analysis, which addresses the spatial variation in survival prognosis conditional on contraction
 of AML. But if the wider objective is to identify spatially varying factors that are involved in the aetiology
 of AML it potentially tells only half of the story, as there may be unrecognized spatially varying factors
 that affect both disease risk and survival prognosis; for a discussion of some of the methodological issues
 that are involved, see Diggle et al (2010). For the AML data, although there is clear evidence of a marginal
 association between a simple circle counting estimate of the local density of cases and the hazard for sur-
 vival ( p < 0.001 in a Cox proportional hazards analysis), this is accounted for by the authors' adjustments
 for sex, white blood cell count and deprivation ( p = 0.349). However, a thorough joint analysis of risk and
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 survival prognosis should also take into account the spatial variation in the local density of the population
 at risk.

 It is with great pleasure that I second the vote of thanks for what will be, I am sure, a very influential
 paper.

 The vote of thanks was passed by acclamation.

 J. B. Illian (St Andrews University ) and D. P. Simpson ( Norwegian University of Science and Technology,
 Trondheim)

 Explicitly linking Gaussian fields and Gaussian Markov random fields - relevance for point process modelling
 We congratulate the authors for this inspiring paper which we are sure will have a strong influence on spa-
 tial and spatiotemporal modelling for years to come. The stochastic partial differential equation approach
 provides an alternative representation for a large class of non-stationary Gaussian random-field models
 without needing explicitly to derive a covariance function. A piecewise linear Gaussian Markov random-
 field approximation is constructed that globally approximates the true random field up to a given resolution.
 This is a particularly interesting feature in the context of spatial point process modelling.

 Fig. 10. Map indicating the structure of the Zackenberg valley and its boundaries
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 A log-Gaussian Cox process is a spatial point process that models the log-intensity field as a Gaussian
 random field defined continuously over the whole observation window. A common model fitting approach
 is to place a fine lattice over the observation window (Moller and Waagepetersen, 2007) and to count the
 number of points that are present in each grid box (Rue et al. , 2009; Illian and Rue, 2010; lllian et al. , 201 1).
 This count value has a Poisson distribution and the latent spatial structure is modelled through a Gaussian
 Markov random field. Using this approach, the computational lattice has two roles: to estimate the latent
 Gaussian field, and to approximate the position of the points through a binning procedure. The first of
 these aims is entirely natural, whereas the second is an artefact of the approximation and leads to finer
 lattices than are really necessary. This is wasteful. As the stochastic partial differential equation approach
 constructs a continuously indexed random field, it is no longer necessary to bin the data over the lattice.
 It is then possible to construct a numerical approximation to the point process likelihood and to perform
 inference as normal. In particular, it is possible to perform extremely fast approximate inference for real-
 istically complicated marked point process models by using the integrated nested Laplace approximations
 framework of Rue et al. (2009).

 This approach begets a whole host of modelling questions. Consider the point pattern that was discussed
 in Illian and Hendrichsen (2010) and in Illian et al (201 1) consisting of the locations of muskoxen herds
 in Zackenberg valley in eastern Greenland; see Fig 10 for the location of the study area within Greenland
 and a map of the area. The observation window has a complicated boundary structure; it contains hard
 boundaries (the sea to the south), permeable boundaries (a river that the muskoxen may, reluctantly,
 cross) and artificial boundaries (the end of the observation window in the north). The stochastic partial
 differential equation approach allows us to incorporate this important information into our models. This
 is impossible with standard covariance-based models.

 We thank Mads Forchhammer from Greenland Ecosystem Monitoring, and Ditte Hendrichsen for
 introducing us to the Zachenberg muskoxen data as an example of different boundary characteristics
 within a study site.

 Tilmann Gneiting and Michael Scheuerer ( Universitat Heidelberg)
 We congratulate Lindgren, Rue and Lindstrom on an exceptionally rich and original paper that builds
 bridges between statistics, probability, approximation theory, numerical analysis and applied fields, and
 opens up a wealth of new perspectives.

 We share the authors' excitement about the ease with which the stochastic partial differential equation
 approach allows for the modelling of non-stationarity, both on Euclidean spaces and on manifolds. As the
 authors note, an appealing interpretation of the non-stationary model (12) is that of a locally stationary
 Matern field, whereas the actual form of its correlation function is unknown. Would members of the locally
 stationary Matern correlation function that was developed by Stein (2005) and Anderes and Stein (201 1)
 be candidates?

 We second the authors' call for 'more physics-based spatial modelling' (Section 5) with enthusiasm.
 In this context, Balgovind et al (1983) derived a spatial statistical model for the errors in numerical
 weather prediction schemes from the physics of large-scale atmospheric flow. Their arguments lead to
 the stochastic dynamic differential equation (2.7) for the geopotential error field, which is of form (12)
 in this paper with a = 2, where the k(u) term varies smoothly with geographic latitude. This defines a
 spatial model on the sphere and so provides an applied instance where the manifold setting is essen-
 tial, similarly to the global temperature example in the paper. On more general types of manifolds, ap-
 proaches developed by approximation theorists may prove related, and useful; see, for example, Narcowich
 (1995).

 Perhaps the strongest limitation of the authors' ingenious approach is the restriction to a small set of
 feasible values for the Matern smoothness parameter (Section 2.3, remark (e)). In view of well-known
 sample path properties of Matern fields (see Guttorp and Gneiting (2006), and references therein), this
 creates what could be called a 'roughness gap', particularly in U , where smoothness parameters v =
 1,2,... allow for Gaussian fields with differentiable sample paths only. What value of v was used in
 the global temperature example, where the spatial domain is the sphere, and what are the implica-
 tions?

 In a way, the restriction just mentioned is natural, as any probabilistically principled approximation of
 Gaussian fields by discretely indexed Gaussian Markov random fields can be expected to yield Markov
 models in the continuum limit, which is indeed what happens, leading to processes with reciprocally poly-
 nomial spectral densities (Section 2.3, remark (f)) and the (intrinsic, generalized) de Wijs field (Appendix
 C.3).

This content downloaded from 129.241.15.186 on Tue, 09 Jan 2018 08:45:12 UTC
All use subject to http://about.jstor.org/terms



 464 Discussion on the Paper by Lindgren, Rue and Lindstrom

 R. Furrer and E. Furrer (University of Zurich) and D. Nychka ( National Center for Atmospheric
 Research , Boulder)
 The authors are to be congratulated for this timely paper describing a very useful and practical method-
 ological approach and computational procedure. There are many statisticians who are still working with
 Gaussian random fields simply because it is 'virtually' trivial to embed non-stationarity in the covari-
 ance function. With the stochastic partial differential equation approch, non-stationary modelling using
 Gaussian Markov random fields has become straightforward as well and this will take much wind out of
 the so-called 'big rf problem research.

 We would like to point out a link from the presented work with recent developments concerning the
 asymptotics of the kriging predictor. It is well known that spline smoothing and kriging prediction are
 related in the sense that kriging prediction can be interpreted similarly to smoothing splines as a penalized
 minimization problem where the roughness penalty is determined by the covariance function of the under-
 lying spatial process. For both settings the basic idea lies in representing the estimator or predictor as a
 weighted average of the observations by using a weight function, which is - in contrast with kernel meth-
 ods - not known in closed form. On the basis of Nychka (1995), we have exploited an approach of how to
 approximate this weighting function by using its reproducing kernel properties. For the kriging predictor in
 a stationary setting this so-called equivalent kernel is shown to have a simple form in terms of the Fourier
 transform of the covariance function of the process. The equivalent kernel can also be characterized as
 the Green function of a pseudodifferential operator, which is closely related to the one of the paper.

 In our research we aim to use the equivalent kernel to analyse the asymptotic behaviour of the kriging
 predictor in terms of bias and variance (Furrer and Nychka, 2007; Furrer, 2008). For this we need to show
 that it satisfies the so-called exponential envelope condition, which is accomplished for fractional smooth-
 ing parameters v by using complex analysis (Furrer et al. , 201 1). It is our hope that the use of reproducing
 kernel methodology and of techniques from complex analysis, especially in the case of fractional values
 of a , could also be beneficial to the presented work.

 On a second note, we were surprised to see that the range parameter of the fitted climate field was
 smallest around the equator and increased towards both poles. Although the observational data cannot be
 directly compared with general circulation model output, the latter usually exhibits the inverse behaviour.
 This is partially due to larger ocean proportions in the mid-latitudes, compared with the high latitudes in
 the northern hemisphere and due to sea ice components around the pole.

 Paul Fearnhead (Lancaster University)
 I congratulate the authors on their principled approach and elegant (yet easily implementable) solution to
 the important computational bottleneck of inverting covariance matrices that arises in spatial statistics.
 I have two comments, one relating to experience of constructing their Gaussian Markov random-field
 (GMRF) approximations in one dimension, and the other to the restrictions on the covariance models for
 which GMRF approximations can be calculated.

 To see how easy it is to construct the GMRF approximation, and how accurate it is, I ran some exper-
 iments for approximating one-dimensional Gaussian processes. Firstly, constructing the approximation
 was relatively simple to implement, and computationally cheap. (I imagine that the main difficulty in higher
 dimensions will come from needing to construct the triangulation.) In terms of accuracy, results for v- '
 and three different values of p = ^/(8v)/k are shown in Fig. 11.

 The covariance structure of the GMRF approximation varied little with the number of basis vectors
 used, and Fig. 11 shows the result by using 100 basis vectors. The key observation is that the GMRF
 approximation is excellent except for within a distance p of the boundary of the interval considered; this
 is particularly noticeable for the marginal variance. A question to the authors is how should the GMRF
 approximation be constructed in practice to avoid these issues of deteriorating accuracy at the boundary?
 One simple approach would be to construct the GMRF approximation over an interval that extends a
 distance p beyond the data.

 Secondly, a comment on the generality of the method: Stein (1999) argued for the use of the Matern
 covariance model on the basis of its flexibility. The argument is based on the ability to vary v to allow
 for different degrees of smoothness in the underlying spatial model. So, is the restriction of the authors'
 approach to integer values of v + d/2 a practically important restriction on the flexibility of models that
 can be fitted to the data?

 One way to extend the class of covariance models that can be used is to consider a spatial process X(u),
 defined as

 X(u) = F(u) 4- Z(u),
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 where Y( u) and Z(u) are independent Gaussian fields with different Matern covariance functions (but each
 restricted to integer values of i/ + d/ 2). It is possible to analyse such models by using Markov chain Monte
 Carlo methods (or even integrated nested Laplace approximations), in such a way that you need only to
 invert the covariance matrices of F(u) or Z(u), but not X(u). Hence the GMRF approximations could be
 used to do the needed calculations efficiently.

 Peter Challenor, Yiannis Andrianakis and Gemma Stephenson ( National Oceanography Centre,
 Southampton)
 We congratulate the authors on what we believe will be a significant paper. Our own application of Gaussian
 fields is in the statistical analysis of computer experiments (see for example Kennedy and O'Hagan (2001)).
 Large computer simulators are used in many areas of science. In essence we follow the following procedure.

 (a) We carry out a designed experiment, running the computer simulator as few times as possible to
 span its input space.

 (b) What is known as an emulator is built by fitting a Gaussian field to the results of this experiment,
 linking the simulator inputs to its outputs.

 (c) A second experiment is often used for diagnostic purposes to check that we have a good emulator.
 (d) The emulator is used to make inferences about the simulator.

 For further details see www . mucm . ac . uk. Although the methods used are very similar to the analysis of
 spatial data we work in a much larger number of dimensions. We have one dimension for each uncertain
 parameter in the computer code being analysed . Challenor et al. (20 1 0) examined a climate simulator with 1 6
 uncertain input parameters. However, because runs of the computer simulator are often expensive we have
 a limited number of data points from a designed experiment: usually about 10 per dimension (Loeppky
 et al , 2009). This means that we have a different big n problem. Unlike the geostatistics problem we have
 a relatively small number of data points but a large dimension - a big d problem rather than a big n. The
 framework presented here is very attractive because of the ease of including, for example, non-stationarity
 through the stochastic partial differential equation formulation, it can handle data on manifolds and the
 theory is appropriate for Rd . We are not sure that the implementation in many dimensions will be as simple
 as for Rl or R2. The triangulation will be complex and since we often work in a sequential way modifying
 the emulator as additional experiments are carried out. Since our experiments are designed we might be
 able to anticipate the positioning of our future data points when we build the triangulation and make it
 part of the design process. One possibility we are considering is whether a more complex choice of basis
 function than piecewise linear would allow a simpler triangulation and, at the expense of computational
 complexity, gain in the set-up costs.

 Jesper Meller ( Aalborg University )
 This important and impressive paper by Lindgren, Rue and Lindstrom provides a computationally feasible
 approach for large spatial data sets analysed by a hierarchical Bayesian model. It involves a latent Gauss-
 ian field, a parameter 6 of low dimension, Gaussian Markov random-field approximations to stochastic
 partial differential equations for covariance functions, and the integrated nested Laplace approximations
 package for the computations instead of time-consuming Markov chain Monte Carlo methods. Other
 recent papers by the authors (Simpson et al , 2010; Bolin and Lindgren, 2011a) compare the approach
 in this paper with kernel convolution methods (process convolution approaches) and covariance taper-
 ing methods, and conclude that the Gaussian Markov random-field approximation to stochastic partial
 differential equations is superior.

 The Matern covariance function plays a key role, where for example in the planar case the authors assume
 that the shape parameter v is a non-negative integer when considering the stochastic partial differential
 equation. Is there some link to the fact that this stationary planar covariance function is proportional to
 the mixture density of a zero-mean radially symmetric bivariate normal distribution jV2(0, WI2) with the
 variance W following a (v+ l)-times convolution of an exponential distribution?

 Despite its popularity and flexibility for modelling different degrees of smoothness, is this three-parameter
 Matern covariance function really sufficiently flexible for modelling large spatial data sets? Would a flexible
 non-parametric Bayesian approach be more appropriate for 'huge' spatial data sets, although this of course
 may be computationally slow? The dimension of 6 may then be expected to be so high that integrated nested
 Laplace approximations (Rue et al , 2009) would not work; as the dimension of 0 may even be varying, a
 reversible jump Markov chain Monte Carlo method (Green, 1995) may be needed when updating 0 from
 its full conditional. When updating the Gaussian field from its full conditional (corresponding to a finite
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 Fig. 12. Bivariate Matern random field with negative correlation

 set of locations), a Metropolis-Hastings algorithm may apply (Roberts and Tweedie, 1996; Moller and
 Waagepetersen, 2004).

 The authors do not discuss model checking. The integrated nested Laplace approximation provides
 quick estimates of the marginal posterior distributions of the Gaussian field and of 0. For model checking
 based on the joint posterior distribution, e.g. when comparing the data with simulations from the posterior
 predictive distribution, I presume that Markov chain Monte Carlo algorithms still are needed.

 Finally, using a triangulation for a finite element representation of a Gaussian field is an appealing idea.
 For a spatial point pattern modelled by a log-Gaussian Cox process (Moller et al. , 1998), I expect that a
 regular triangulation would be used, since both the point pattern and the 'empty space' provide important
 information.

 Xiangping Hu and Daniel Simpson {Norwegian University of Science and Technology, Trondheim)
 We congratulate the authors on their excellent contribution to practical spatial statistics. We are partic-
 ularly excited about the local specification of these random fields, which is markedly different from the
 constructs that are used for traditional spatial models. This stochastic partial differential equation specifi-
 cation is particularly useful in that it aviods any considerations of positive definiteness - if a solution exists
 it is automatically a Gaussian random field with a valid covariance function. Following from the comment
 in Section 3.3 of the paper, we have been investigating the extension of these methods to multivariate
 Gaussian random fields.

 The construction of valid eross-covariance functions for multivariate Gaussian random fields is a very
 difficult problem and thus far only very specialized methods exist (see Gelfand and Banerjee (2010), and
 sources cited therein). The stochastic partial differential equation specification, however, automatically
 constructs valid cross-covariance functions! Inspired by the multivariate Matern fields constructed by
 Gneiting et al (2010), we define our multivariate random field x(s) = (x' (5), jc2(.s))t as the solution to

 b''{K] 1 - A)Q|,/2xi(j) + fo12(K?2- A)a'2/2*2(.s) = /iO), (38)

 i>22(«22- A)a^2X2(s)+b2l(K22l - A)a»/2Xl(s) = f2(s), (39)

 where bi j € 1R, hijj > 0 and fi(s) are independent (but not necessarily identical) noise processes. If we choose
 our exponents as atj = 0, 2, 4, . . . and take the noise processes f{(s) to be Markov, then following the pro-
 cedure outlined in Section 2.3 we arrive at a bivariate Markov random field. A sample from a negatively
 correlated bivariate random field is given in Fig. 12.

 We conclude this comment by noting that all the extensions mentioned in Section 3 of this excellent
 paper can be applied to this situation, In particular, we can construct non-stationary, spatiotemporal
 Gaussian random fields over fairly arbitrary manifolds. We plan to expand on this in future work.

 David Bolin ( Lund University)
 The methods presented in the paper are indeed useful in a wide range of applications; however, if the Gaus-
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 Fig. 13. Simulation results using the SPDE formulation of a Laplace moving average model: (a) histogram
 of the samples from 1000 simulations together with the true density; (b) empirical covariance function for
 X(50) together with the true Matern covariance; (c) simulation of the process on U

 sianity assumption cannot be justified one cannot apply the methodology directly. Although the authors
 look only at Gaussian applications, the extension to certain non-Gaussian models is fairly straightforward.

 A non-Gaussian model can be obtained by changing the Gaussian white noise to some other non-
 Gaussian process, i.e. define X as the solution to

 (k2 - A )Q/2 X(s) = Z(s), (40)

 for some non-Gaussian process Z. What then differs in the method is the calculation of the elements on
 the right-hand side of the weak formulation of the stochastic partial differential equation, i.e. the integrals
 of the basis functions (p with respect to the noise,

 f ip(s) Z(ds). (41)
 Jn

 An interesting class of non-Gaussian fields are the generalized asymmetric Laplace fields (Aberg et al. ,
 2009). If Z is of this type, integral (41) can be expressed as a Gaussian variable with mean 7 fn (p(s) ds +
 fi fQ <p( s) r(ds) and variance a2 fQ <p2(s) T(ds), where T is a gamma process. Thus, the weak solution to
 equation (40) can be expressed as a GMRF conditionally on the integrals with respect to T. The solu-
 tion to equation (40) can be viewed as a Laplace moving average model (Aberg et al , 2009; Aberg and
 Podgorski, 2010) with a symmetric Matern kernel /. The covariance function for X is Matern and the
 marginal distribution for X(s) is given by the characteristic function

 ¥>*(«) = exp J V) f(t)u - log j 1 - iu f(t) + f2 (0 1 d/j . (42)
 In Fig. 1 3, a simulation of the process on U is shown when /jJ = ^ = a = K='.ln Fig. 13 we can also observe
 close agreement between the empirical covariance function based on samples from 1000 simulations and
 the true Matern covariance, as well as close similarity between the empirical density and the true density
 calculated by using numerical Fourier inversion of equation (42). This indicates that the method works for
 this non-Gaussian case.

 Besides providing a computationally efficient method for simulation, an advantage with the stochastic
 partial differential equation formulation is that it simplifies parameter estimation, which usually must be
 done using the method of moments for these models (Wegener, 2010). However, the stochastic partial dif-
 ferential equation formulation facilitates estimation in a likelihood framework using the EM algorithm.
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 Fig. 14. Results of a GMRF approximation analysis of the leukaemia data, using a regular square grid
 assuming a piecewise constant random effect within grid cells: (a) posterior mean; (b) posterior standard
 deviation

 Laplace processes are a special case of the Levy processes of type G (see for example Wiktorsson
 (2002)), and the method extends to this larger class and possibly other non-Gaussian models as well. This
 is currently being investigated together with the parameter estimation problem for these models.

 The following contributions were received in writing after the meeting.

 Patrick E. Brown ( Cancer Care Ontario, Toronto, and University of Toronto)
 This is a very interesting paper which is certain to enable a wide range of spatial analyses which were
 previously intractable. Particular credit is due to the authors for making their excellent software available.

 The interpretation of the Markov random-field approximation on the regular square grid could be
 slightly modified to allow for its use with irregularly spaced data. Rather than evaluating the surface X(s)
 only at a set of grid points , could we not use the Jtiy to approximate the continuous X(s) by a surface
 which is piecewise constant within grid cells centred at s/7? This would be a special case of the method used
 for irregular data, with a regular square grid in place of irregular triangles and constant basis functions
 within cells in place of the linear basis functions. An important difference between the piecewise constant
 grid approximation and that used in the paper is that observations need not lie on the vertices of the grid.

 Fig. 14 shows the regular grid, piecewise constant approximation fit to the leukaemia data by using the
 R-inla software. Grid cells are 1/ 100th the size of the ^-dimension of the study region, and the grid is
 extended by 20 cells beyond the study region in each direction to avoid edge effects. The posterior means
 and standard deviations are nearly identical to those shown in Fig. 3 of the paper. The disadvantage of
 this analysis is that it appears to be more computationally demanding (taking roughly 10 min on an eight-
 core computer), though it is likely to scale quite well as increasing the number of observations would not
 increase the number of vertices on the lattice.

 Can the authors offer advice on the choice of grid? How would we compare the quality of the approxi-
 mation for a fine regular grid with piecewise constant bases to a much coarser triangular grid with linear
 basis functions? There is certainly a limit to roughness of a surface approximated by a coarse grid, and
 presumably a limit to how smooth a Markov surface on an extremely fine grid can be.

 Michela Cameletti ( University of Bergamo) and Sara Martino ( Norwegian University of Science and
 Technology, Trondheim)
 We congratulate the authors for this excellent paper that defines a link between Gaussian fields with Matern
 covariance function and Gaussian Markov random fields. From our point of view, the stochastic partial
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 differential equation (SPDE) approach, combined with the integrated nested Laplace approximations
 algorithm proposed by Rue et al. (2009), introduces a new modelling strategy that is particularly useful
 for spatiotemporal geostatistical processes. The key point is that the spatiotemporal covariance function
 and the dense covariance matrix of a Gaussian field are substituted respectively by a neighbourhood struc-
 ture and a sparse precision matrix, that together define a Gaussian Markov random field. In particular,
 the good computational properties of Gaussian Markov random fields and the computationally effective
 approximations of the integrated nested Laplace approximations algorithm make it possible to overcome
 the so-called 'big n problem'. This issue refers to the infeasibility of linear algebra operations involving
 dense matrices and arises in many environmental fields where large spatiotemporal data sets are available.

 The authors mention in Section 3.5 the possibility of extending the SPDE approach to non-separable
 spatiotemporal models. In this regard, we wonder whether it is possible to use the SPDE approach for
 approximating a spatiotemporal Gaussian field with a non-separable covariance function belonging to
 the general class defined by Gneiting (2002). As described in Cameletti et al. (201 1) for air quality data,
 models characterized by these non-separable covariance functions are extremely computationally expen-
 sive because they involve matrices whose dimension is given by the number of data in space and time.
 Thus, parameter estimation and spatial prediction become infeasible by using Markov chain Monte Carlo
 methods. Moreover, such non-separable covariance functions are defined by a large number of parameters
 and the convergence when using Markov chain Monte Carlo methods can be an issue. Thus, if the SPDE
 approach could deal with the general class of non-separable covariance functions given in Gneiting (2002),
 it would be an important result for spatiotemporal geostatistical modelling.

 Daniel Cooley and Jennifer A. Hoeting ( Colorado State University, Fort Collins)
 We congratulate the authors for establishing this important link between Gaussian fields (GFs) and Gauss-
 ian Markov random fields (GMRFs). To a large extent, GFs provide the foundation for geostatistics. Even
 when one restricts assumptions to only a mean and covariance function, a GF is not far removed from any
 geostatistical analysis since there is always a GF with these first- and second-order properties. For kriging
 the best linear unbiased predictor and the conditional expectation of a GF correspond and, if performing
 maximum likelihood estimation, the GF assumption is explicit.

 Rather than dealing with point-located geostatistical data, GMRFs have their origin in modelling areal
 or lattice data. In comparison with geostatistical methods, statistical practice for areal data has seemed
 ad hoc. Whether assessing auto-correlation (e.g. Geary's C or Moran's I) or constructing models (GMRFs
 or other auto-regressive models), areal data methods have relied on an adjacency matrix constructed from
 researchers' a priori assumptions of spatial dependence. Modelling a GMRF often includes justifying a
 dependence structure described by a small number of parameters and constructing an adjacency matrix.
 The process of constructing a dependence structure from an adjacency matrix is typically heuristic at
 best and particularly difficult for irregular lattices. However, the computational advantages of GMRFs
 and other auto-regressive models usually outweighed the disadvantages. The authors' link between GFs
 and GMRFs allows for the construction of a meaningful dependence structure in a GMRF setting for
 both regular and irregular lattices, allows for the use of GMRFs on point-located data and enables fast
 computation that has always been the advantage of GMRFs over GFs.

 That the GF-GMRF link is made through a Matern covariance function is important as the Matern
 function is often defended as the most theoretically justifiable. In geostatistical practice, estimating the
 Matern function's smoothness parameter is challenging. Often the smoothness parameter v is fixed accord-
 ing to an a priori belief of the smoothness of process realizations. One can view the choice of template for
 a regular grid given in Section 2.2 as equivalent to setting the smoothness parameter at the outset, as is
 common practice.

 A challenge in spatial statistics is that complex models require large sample sizes to estimate model
 parameters reliably (Irvine et al. , 2007), but many modelling procedures are too computationally complex
 for large sample sizes. The link between GFs and GMRFs will allow more researchers to investigate impor-
 tant statistical issues like model selection, precision of parameter estimates (especially spatial covariance
 parameters), sampling designs and more.

 Rosa M. Crujeiras and Andres Prieto ( University of Santiago de Compostela)
 We thank the authors for such an interesting paper, which forms a bridge between Gaussian fields and
 Gaussian Markov random fields by means of stochastic partial differential equations (SPDEs). The recent
 developments in numerical methods for PDEs may play an important role, by suitable modifications in
 the stochastic context. Our comments are focused on the procedure for solving the SPDE (2) by means
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 of finite element methods (FEMs), concerning the mesh construction, the FEM approximation and the
 boundary conditions imposed.

 The construction of a triangulated lattice to approximate the Matern field is required for constructing
 the FEM approximation. The authors point out that the vertices are placed on sample locations and a
 heuristic refinement is used to minimize the total number of triangles satisfying the mesh constraints. Such
 a generation is explicitly determined by the geometric requirements of sample locations and the geometry
 of the observation region. However, the mesh design could be driven additionally by the Matern field
 itself, by means of an iterative procedure, which adapts the mesh to the behaviour of the SPDE solution
 minimizing an a posteriori error estimate. This is a well-known procedure in the engineering literature
 called /z-adaptivity (see Ainsworth and Oden (2000) for further details).

 Also in the FEM approximation, low order (piecewise linear) elements are used to approximate the
 Matern field in the computational domain. These elements provide satisfactory approximations in the
 stationary case, but other choices are possible. For instance, discontinuous Galerkin methods (Hesthaven
 and Warburton, 2008), Petrov-Galerkin methods or finite volume methods (see LeVeque (2002)) are pos-
 sible alternatives. In fact, finite volume methods may be more suitable in the non-separable space-time
 models, with a dominant transport term.

 As the authors remarked, there is a boundary effect in the covariance approximation due to boundary
 conditions. In this approach, Neumann conditions are imposed on the boundary of the computational
 domain when solving the SPDE. Rue and Held (2005) showed that the effect of boundary conditions is
 negligible if the length of the computational domain is sufficiently large compared with the effective range
 of the covariance, which enables us to capture the variability of the process. Nevertheless, this embedding
 drawback due to the non-exact homogeneous Neumann boundary conditions (which are not satisfied by
 the Matern class) could be overcome by settling other boundary values in the second-order elliptic prob-
 lem: non-local DtN operators (Givoli, 1999), absorbing boundary conditions (Keller and Givoli, 1989) or
 perfectly matched layers (see Bermudez et al (2010)).

 Marco A. R. Ferreira ( University of Missouri, Columbia)
 I congratulate Dr Lindgren and his colleagues for their valuable contribution to the area of spatial statistics
 modelling and computation. In addition, I commend the authors for making their methodology publicly
 available in the R-inla package.

 Lindgren and colleagues build on a stochastic partial differential equation based explicit link between
 Gaussian fields and Gaussian Markov random fields to develop fast computations for Gaussian fields
 with Matern covariance functions. In addition, the stochastic partial differential equation may be thought
 of as a generator process that produces Matern Gaussian fields. Within this stochastic partial differential
 equation framework, Matern fields on manifolds and non-stationary fields arise naturally.

 However, in this work the authors consider the smoothness parameter v fixed and taking values only
 on the set of positive integers. This contrasts with one of the advantages of the use of the Matern class of
 covariance functions: the smoothness parameter v may be estimated from the data. Thus, the use of the
 Matern class allows the degree of mean-square differentiability of the process to be data adaptive. In the
 current work, this particular advantage of the Matern class is lost in favour of fast computation.

 Finally, I am curious about what were the priors used by the authors for the hyperparameters. Even
 though the data sets considered are fairly large, some strange things may happen when one analyses spatial
 data. For example, improper uniform priors may lead to improper posterior distributions (Berger et al ,
 2001).

 Geir-Arne Fuglstad ( Norwegian University of Science and Technology, Trondheim )
 I congratulate the authors for their work on bringing together modelling with stochastic partial differential
 equations (SPDEs) and computations with efficient (sparse) Gaussian Markov random fields. This is an
 elegant way of creating (space-time) consistent models, which take advantage of the computational bene-
 fits of sparse precision matrices. I wish to comment on the brief statement at the end of Section 3.5 about
 how this method can be extended to a non-separable space-time SPDE. I used an approach that is similar
 to the one described there, but with a different spatial discretization. The steps that were used are described
 briefly in what follows.

 Consider the non-separable space-time SPDE

 ^-u(x,t)--^-ru(x,t) dxz = W(x,t), (x, t) € [0, A] x [0, 7"], (43) dt dxz
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 Fig. 1 5. One realization of the SPDE (43), with A = 5, T = 1 0, von Neumann boundary conditions du/dx = 0
 on the spatial boundaries and the starting condition given in equation (44)

 where W is standardized Gaussian white noise and A, T>0 are constants. The spatial discretization is
 done by a finite volume method, and the Gaussian variable associated with each cell in the grid is allowed
 to be a Gaussian process in time. This reduces the space-time SPDE to a linear system of SDEs in time,

 ^U(t) = CU(t) + D(t),
 at

 where U is the vector of Gaussian processes associated with the cells, C is a sparse matrix relating the
 derivative to the value at the cell itself and neighbouring cells and D is the vector of Gaussian white noise
 processes associated with each of the cells.

 This system is then approximated with the backward Euler method. The use of the backward Euler
 method gives a Markov property in time, as each time step is only conditionally dependent on the closest
 time steps, thus still giving the desired speed-up compared with a dense precision matrix.

 The results of this procedure proved quite good and the finite volume method extends to transport terms
 in a natural way. One simple example of using this procedure is the case with von Neumann boundary
 conditions at the spatial boundaries and a fixed starting state. Fig. 15 shows one simulation from such a
 situation with the starting condition

 urx ' 0) ' - / 0<*^2.5, /44x ' 0) ' - I -10, 2.5^x^5.
 Hence the approach briefly indicated in Section 3.5 does indeed seem to be a viable approach for space-time
 SPDEs.

 Andrew Gelman ( Columbia University, New York)
 When using Bayesian inference (or, more generally, structured probability modelling) to obtain precise
 inferences from data, we have a corresponding responsibility to check the fit and the range of applicability
 of our models. Using expected values and simulated replicated data, we can graphically explore ways in
 which the model does not fit the data and broadly characterize particular inferences as interpolation or
 extrapolation. I am wondering whether the authors have considered using their powerful computational
 machinery to understand and explore the fit of their models. I think that graphical exploration and model
 checking could greatly increase the utility of these models in applications.

 Peter Guttorp ( University of Washington, Seattle, and Norwegian Computing Center, Oslo ) and
 Barnali Das ( Westat, Rockville)
 This is a very important paper in spatial statistics. The late Julian Besag used to argue that the Markov
 random-field approach was better than the geostatistical approach, both from the computational and the
 conceptual point of view. The difficulty was always the requirement to have observations on a regular grid.
 Le and Zidek (2006) solved this by creating a grid containing the observations, and treating most of the
 grid points as missing, but then only a small fraction of the data are non-missing. The approach by Rue
 and his colleagues adapts the tessellation to the data and, in our opinion, proves that Julian once again
 was right.

 The current approaches to estimating global mean temperature suffer from several difficulties. They are
 not truly global in character, they do not take into account the non-stationarity of the global tempera-
 ture field and the covariance structure is local, not global. One of us (Das, 2000) developed an approach
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 to estimating non-stationary processes on the globe. The idea was based on the deformation approach
 (Sampson, 2010), by mapping the globe to a sphere, on which isotropic covariance functions are fully char-
 acterized (Obukhov, 1947). The implementation consisted of alternating transformations of latitude and
 longitude. Fig. 16 shows the resulting deformation, which expands the southern hemisphere (indicating
 smaller correlation length) and compresses the northern hemisphere.

 Owing to the computational complexity of this fitting procedure, only 724 stations in the Global His-
 torical Climate Network version 2 data set with a record of at least 40 years were used (115 randomly
 selected stations were reserved for model evaluation). Fig. 17 shows the resulting correlation estimates
 around three different points on the globe, showing a clear indication of inhomogeneity. The computa-
 tional complexity of this fitting, not to mention spatial estimation of the global temperature field, has been
 reduced by several orders of magnitude in the work by Rue and his colleagues.

 It appears that the temperature analysis by Rue and his colleagues has reasonable results; for example,
 the coefficient for regression on altitude is similar to what has been seen in the literature. We do wonder
 whether the estimates of the uncertainty of the various published global temperature series are similar to
 those computed by the new approach. Also, to what extent would inclusion of ocean temperature data
 change the estimates and their uncertainties?

 Ben Haaland (. Duke-National University of Singapore Graduate Medical School) and David J. Nott
 ( National University of Singapore)
 As the authors emphasize perhaps the greatest value of this paper lies in the non-stationary and other
 extensions their results provide. One potential application area is Gaussian field (GF) emulation of com-
 puter models. Modelling output of computer models as GFs is useful for constructing emulators, which
 are computationally cheap mimics of computer models providing appropriate descriptions of uncertainty
 (Santner et al. , 2003). The computer model involves inputs A, and we have run the model at designed
 values Af , i = 1, . . . , n say. There has been recent interest in dynamic emulation where the computer model
 output is a time series. Conti and O'Hagan (2010) discussed dynamic emulation with GFs. One approach
 treats time as an additional input, but for long time series this treats a large data set as an observation
 of a GF and we are in the realm of the 'big n problem'. Correlations are often highly non-stationary in
 the input space and time. Although appropriate covariates in the mean sometimes help, currently used
 models do not seem sufficiently flexible. The methods provided have great potential, but we have some
 questions. First, the authors focus on the two-dimensional case and we wonder whether computational
 benefits decrease as the dimensionality increases. Secondly, we wonder in higher dimensions whether the
 boundary effects are more problematic.

 Whereas the explicit representation discussed by the authors concerns positive integer a, the represen-
 tation has broad applicability. Draws from a GF with Matern covariance are functions in a Sobolev space
 Ha(Q) (Wendland, 2005). For integer a, these functions have a square integrable derivatives. The value
 of a is typically selected so that the function estimate has sensible properties and fractional values are
 not ordinarily chosen. These function spaces are nested decreasing, ffa(Q) D Ha+e(Q) for s > 0. Hence, a

 Fig. 16. Deformation of the globe (from Das (2000))
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 Fig. 17. Estimates of non-stationary spatial correlation around three points on the globe (Australia, West
 Africa and North America) (from Das (2000))
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 function with fractional smoothness a > 1 can be approximated by a function in //LqJ (Q) and the conver-
 gence results hold. The infinitely smooth function space corresponding to the commonly used Gaussian
 covariance is contained in all Sobolev spaces. So, a Markov representation of a Matern covariance with
 large smoothness could be used to approximate a Gaussian covariance. A balance must be found between
 better computational properties of less smoothness and better approximation properties of more smooth-
 ness. However, we wonder to what extent the convergence (theorems 3 and 4) and sparsity (Appendix C.5)
 results depend on using the typical finite element basis.

 John Haslett, Chaitanya Joshi and Vincent Garreta ( Trinity College Dublin)
 We congratulate the authors on a most stimulating paper, and we see applications everywhere.

 One application that concerns us at the moment is a multivariate space-time process in which the tem-
 poral changes can be much longer tailed than Gaussian. The simplest ease is a univariate process at a
 single point in space. We have found that the normal inverse Gaussian distribution provides a flexible basis
 for temporal increments (see, for example, Barndorff-Nielsen and Halgreen (1977)). This model and its
 extensions are now widely used in finance (see, for example, Kumar et al (201 1)). Its multivariate exten-
 sion (Wu et al, 2009)) provides a basis for the spatiotemporal version. The multivariate normal inverse
 Gaussian distribution can be motivated as a scale mixture of Gaussian distributions.

 Impressed by the link between Gaussian fields and the Gaussian Markov random fields presented in this
 paper, we wonder whether it may be possible to extend the existing methodology to include non-Gaussian
 fields. If so, we suspect that one approach may be via subordination , which is one way of changing the
 distributional properties of a stochastic process.

 Let X(f) be a random process, and let T(r) be a monotone, non-decreasing Levy process; then the process
 X{T(r)} is said to be subordinated to the process X(t) and T(0 is called the directing process.

 Subordination is an elegant way of producing both subdiffusive and superdiffusive motions from regular
 diffusive motions such as random walks and Brownian motion; see for example Sokolov (2000) and Eliazar
 and Klafter (2004). In particular, temporal subordination has been widely used to model systems whose
 subjective 'operational time' is different from the objective 'physical time', such as those often found in
 statistical physics (see for example Eliazar and Klafter (2005)) and econometrics (see for example Clark
 (1973) and Carr et al (2003)). In particular, subordination has been shown to result in processes which are
 more leptokurtic (Clark, 1973).

 We therefore wonder whether, by using a (spatially) subordinated Brownian motion W{U(u)}, it might
 be possible to modify the stochastic partial differential equation in equation (3)

 (k2- A)a/2 x(u) = W{U(u)}, ueMd, a = v + d/ 2, k>0, u>0, (45)

 where the directing process U(u) is any suitable monotone, non-decreasing Levy process, so that a (non-
 Gaussian) weak solution to this equation exists.

 We would like to know the author's views regarding this approach or any other approach leading to
 non-Gaussian fields.

 Michael Hohle ( Robert Koch Institute, Berlin )
 The work presents innovative numerical solutions for geostatistical modelling. Despite the complexity of
 its mathematical detail, an open source implementation including an R interface is provided. This encour-
 ages potential users, including those without advanced mathematical knowledge, to apply the methods in
 practice. I congratulate the authors on their work regarding both the theoretical and the applied dimension.

 As a comment, I miss explicit mention of how the methodology proposed can be used for inference in
 spatial point processes - specifically log-Gaussian Cox processes where Gaussian fields play an important
 role. In Rue et al (2009), a proposal is given on how to use a Gaussian Markov random-field approxima-
 tion in this case. It would therefore be of interest to see a comparison between this approximation and
 the current proposal. Furthermore, the leukaemia application in the paper provides the important link of
 using latent Gaussian fields in spatial regression modelling: it bridges between the joint posterior of the
 latent field and the hyperparameters as given by Rue et al (2009), page 321. With specific application of
 Gaussian fields in spatiotemporal point process modelling in mind, how well does the integrated nested
 Laplace approximations approach allow for a likelihood where 7r(y|x, 0) is not simply a product of the
 individual observations anymore? Of particular interest would be whether the approach proposed is usable
 for adding Gaussian field random effects to regression models of the conditional intensity function, e.g.
 as in the stochastic epidemic model of Hohle (2009).
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 Table 1 . Matern inverse correlations - range = 30

 Lag Correlations for the following lags:

 0 12 3 4

 0 1.000 -0.510 0.187 -0.063 0.021
 1 -0.510 0.167 -0.020 -0.005 0.005
 2 0.187 -0.020 -0.011 0.006 -0.002
 3 -0.063 -0.005 0.006 -0.001 0.000
 4 0.021 0.005 -0.002 0.000 0.000

 Table 2. Matern inverse correlations - range = 1 00

 Lag Correlations for the following lags:

 0 12 3 4

 0 1.000 -0.512 -0.220 0.204 0.208
 1 -0.512 0.179 0.062 0.072 0.045
 2 -0.220 0.062 0.189 -0.047 -0.165
 3 0.204 0.072 -0.047 -0.157 -0.142
 4 0.208 0.045 -0.165 -0.142 0.054

 L. Ippoliti and R. J. Martin ( University G. d'Annunzio Chieti-Pescara) and R. J. Bhansali (University of
 Liverpool)
 We congratulate the authors for developing a power Gaussian Markov random-field approximation to
 the correlation function of the Matern class of Gaussian random fields, extending Besag's (1981) approx-
 imation using A'o to the completely symmetric conditional auto-regressive CAR(l) process, and Whittle's
 (1954) approximation using K' to the completely symmetric simultaneous auto-regressive SAR(l) process.

 We have two questions for the authors.
 For large distances, both correlations (Matern and approximating power CAR) are small, and the

 difference is small. From Abramowitz and Stegun (1965), equation (9.7.2),

 z" Ar„(z)~cz"-°-5exp(-z).

 Do the authors have any results on behaviour of the power CAR correlations for large distances?
 The other question is on the interpolation. If the number of points to be interpolated is small

 the Gaussian Markov random-field specification has several advantages: compared with kriging, an
 inverse covariance-based predictor should be much quicker and more accurate, and avoid the common
 ill-conditioning problems of However, this assumes that the precision matrix of the Matern function is
 well approximated by that of the power CAR with power v + 1 . Consider the Matern function with v = 2.
 Using a 512 x 512 torus lattice Tables 1 and 2 show some low lag inverse correlations for ranges 30 and 100.
 The inverse correlations (the same values for both ranges to three decimal places) of the corresponding
 power CAR are given in Table 3.

 Despite the good fit for the correlation function, the power CAR is not a good approximation to the
 inverse correlations within the CAR neighbourhood, and also the Matern values can be appreciably differ-
 ent from 0 outside the neighbourhood. More importantly, the interpolation variance can be appreciably
 larger for the approximating power CAR - Table 4. Do the authors have any views on how much accuracy
 it is reasonable to sacrifice to obtain faster predictions?

 Note that the Gaussian correlation structure, the limit as z/-> oo of the Matern function, has an exact
 explicit form on the rectangular planar lattice for the inverse variance matrix, or for the finite CAR rep-
 resentation, which can be obtained from the results in Martin (2000).
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 Table 3. Inverse correlations of the completely symme-
 tric power CAR

 Lag Inverse correlations for the following lags:

 0 12 3 4

 0 1.000 -0.508 0.107 -0.009 -
 1 -0.508 0.214 -0.027 - -
 2 0.107 -0.027 0.000 - -
 3 -0.009 - - - -
 4 0.000 - - - -

 Table 4. Interpolation variance for Matern and com-
 pletely symmetric power CAR for two different values
 of v and ranges

 v Range Interpolation Interpolation
 variance, variance,
 Matern CAR

 1 30 0.0308 0.0498
 1 100 0.0311 0.0500
 2 30 0.0025 0.0089
 2 70 0.0023 0.0089

 Finally, some results comparing directly specified CAR models with integrated continuous processes
 over irregular areas are given in Martin and Dwyer (1994).

 Venkata K. Jandhyala and Stergios B. Fotopoulos ( Washington State University, Pullman)
 We congratulate the authors for a timely and inspiring paper on a topic that is at the forefront of con-
 temporary statistical modelling and computational statistics. The advantages of working with Gaussian
 Markov random fields have been well exploited for fitting hierarchical Bayesian models for spatial data.
 However, as pointed out by the authors, one often wishes to model data drawn from Gaussian fields
 (GFs). In the absence of the Markovian property, GFs are dense and are not easily amenable for compu-
 tations. In this regard the authors have come up with a breakthrough result where they have demonstrated
 (with the necessary technical details) that any GF with a Matern covariance function can be suitably
 replaced by an equivalent Gaussian Markov random field whose precision matrix is sparse. The depth
 of their result becomes evident by the general nature of spatial domains to which the result has been
 extended in the paper, e.g. to irregular lattices and manifolds. Thus, the authors have done a remarkable
 job.

 We believe that the authors' results can be useful to address the change-point problem for spatiotempo-
 ral GFs, which is a problem that has been well formulated recently by Majumdar et al. (2005). Estimating
 the unknown change-point for retrospective data has been approached under both maximum likelihood
 estimation and Bayesian methods. Recent simulation studies performed by Fotopoulos et al (2010) and
 Jandhyala et al (201 1) for estimating the change-point when changes occur in the mean vector alone or
 in the mean and/or covariance matrix of a multivariate Gaussian series have shown that the maximum

 likelihood estimate (MLE) performs marginally better than the Bayesian estimate, in most cases. Asymp-
 totic distribution of the change-point MLE developed in both Fotopoulos et al (2010) and Jandhyala
 et al (2011) appear to be extendable to spatiotemporal Gaussian Markov random fields when changes
 occur in the elements of the precision matrix at some unknown time point. However, taking advantage of
 the main contribution of the present paper, it seems that asymptotic distribution of change-point MLEs
 can be extended to GFs with Matern covariance functions. Thus, the results derived by the authors not
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 only are useful for Bayesian hierarchical model fitting but also seem to apply quite well to asymptotic
 distribution of the MLE in a change-point setting. One of the limitations of the change-point MLE in
 the treatment of Fotopoulos et al. (2010) and Jandhyala et al. (201 1) is that its asymptotics require the
 assumption of independence over time. It seems that such an assumption about the MLE should extend
 to spatiotemporal GFs also, which may not be satisfactory, and this is where the Bayesian approach to
 change-point structure can be advantageous.

 Mikyoung Jun ( Texas A&M University, College Station)
 It is my honour to congratulate the authors on this excellent paper. Gaussian random-field models with
 a Matern covariance function are popular, useful and commonly used in geostatistical applications, but
 the computation is problematic with large data sets. This paper provides a computationally efficient way
 for such a model through the Gaussian Markov random-field framework.

 I have a few comments to add. My first comment is regarding the smoothness parameter v. As the
 authors acknowledge in Section 2.3, the current link between a Gaussian random field with Matern
 covariance function and the Gaussian Markov random-field model is only possible for integer values of
 a (and thus integer increments of v), which, in my view, could be a little limited. Given that we cannot
 distinguish well ^-values larger than 3 or so, this gives only two or three possible values of v for the appli-
 cation. I wonder how this might affect the model performance, especially parameter estimation and spatial
 prediction.

 Regarding the above point, how is the estimation of the parameter v done? Is it fixed, or do you fit
 possible values separately and compare the fit? In Section 4.3, the authors mention that spatial covariance
 parameters are difficult to interpret individually (I am not sure whether I completely agree with this) and
 do not provide detail on how each parameter is estimated and what the estimates look like. I am also
 wondering, if you misspecify ^-values, how this might affect the estimation of the rest of the parameters,
 and the spatial prediction.

 I am particularly interested in the development for the processes on a sphere and non-stationary (and
 non-isotropic) models for the processes on a sphere. One of the limitations of the covariance models in
 Jun and Stein (2007, 2008) is that they are singular at the poles without some constraints. It appears that
 the approach suggested here may not suffer from this limitation. Is any constraint required for the model
 in this paper, to guarantee this? Do you need to have vertices at the poles or is any constraint required on
 the triangularization near the poles?

 My last comment is that the third issue in Section 5 seems to me very interesting. Incorporating external
 covariates such as wind speed or wind direction in the covariance structure should be useful for envi-
 ronmental applications. However, as the authors point out, it may be difficult to do it in a way that the
 resulting covariance model is guaranteed to be valid. The method proposed may naturally provide ways
 to develop such physics-based covariance models.

 Havard Wahl Kongsgard (Peace Research Institute, Oslo)
 I congratulate Lindgren, Rue and Lindstrom for an excellent paper and for the computational implemen-
 tation. In conflict studies, microeconomics and related fields, spatial inquiries have become increasingly
 popular. For these fields, large data sets with multiple variables are often favoured.

 However, most scholars nevertheless refrain from utilizing spatial regression as methods are often poorly
 computationally implemented and computer intensive. Consequently, spatial independence remains a
 major concern.

 With great effect I recently applied the methods implemented in R-inla on a series of large point-
 based conflict data sets from Vietnam, Afghanistan and Iraq (Kongsgaard, 201 1). When combined with
 spatial-temporal visualization, this type of analysis can be of value for tactical risk assessment, in a mil-
 itary or humanitarian capacity. Lindgren, Rue and Lindstrom's work is especially interesting as the new
 approaches make it possible to adjust for relative spatial distance.

 Although the method introduced is an approximation with limitations, it is easy to use and can be
 applied in a streamlined fashion. Given rugged low level computational implementation and support for
 large sample sizes, the new functions will be a good supplement to the R-inla library. It is my opinion
 that these methods have great potential within fields of application.

 Giovanna Jona Lasinio (" Sapienza" University of Rome) and Alessio Pollice ("Aldo Moro" University
 of Bar i)

 First, we congratulate the authors for their extremely interesting work that sheds new light on Gaussian
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 Markov random-field (GMRF) modelling. A connection is established with Matern Gaussian fields
 through a weak solution of a linear fractional stochastic partial differential equation (SPDE) driven by a
 Gaussian white noise process. One of the main theoretical results is stated in theorems 3 and 4, where the
 authors prove the weak convergence of the finite Hilbert representation of the solution for positive integer
 values of the parameter a to the continuous solution. Recently Bolin and Lindgren (201 la) have charac-
 terized a class of non-Gaussian random fields as the solution to a nested SPDE driven by Gaussian white
 noise. Could the authors comment on the possible further extension of their results to the case of SPDEs
 driven by more general non-Gaussian laws as stable or Levy processes, in view of obtaining tools suitable
 for rates or concentrations, which do not typically follow a normal distribution? When d = 2, the integer a
 restriction of theorems 3 and 4 implies that also the parameter v is integer in the Matern class specification.
 Within this class, the exponential covariance function, one of the most popular in many applied fields,
 corresponds to the value v - 0.5. Is the exponential covariance model definitively excluded by the approach
 proposed? In the discussion the authors recognize that 'the approach comes with an implementation and
 preprocessing cost for setting up the models, as it involves the SPDE solution, triangulations and GMRF
 representation'. We would be interested in some more comments on the possible qualifications of this cost
 from an applied statistical point of view. A more detailed comparison of the GMRF solution to competing
 modelling approaches from a predictive perspective would also be of considerable interest. Here we mainly
 refer to low rank (Banerjee et al , 2008; Cressie and Johannessson, 2008; Eidsvik et al , 2010; Crainiceanu
 et al , 2008) and process convolution methods (Higdon, 1998; Higdon et al , 1999) when estimation is
 carried out with the same technique (either integrated nested Laplace approximation or Markov chain
 Monte Carlo methods).

 Incidentally we think that the geographical interpretation of Fig. 6(b) would benefit from a more detailed
 description.

 Chihoon Lee ( Colorado State University, Fort Collins)
 First of all, I congratulate the authors on their interesting and stimulating paper. Although this work is
 clearly an important contribution to the field of spatial statistics, its impact on the field of stochastic par-
 tial differential equations (SPDEs) cannot be overlooked as it ties in the probabilistic and mathematical
 treatment of SPDEs to spatial statistical modelling and geostatistics.

 The authors' Gaussian Markov random-field construction via the SPDE link offers a natural definition
 of a Materm field on manifolds with an intuitive interpretation. By employing a stochastic finite element
 approximation to the SPDE, practitioners can easily obtain finer resolution around any area of interest on
 the manifold. It seems promising that the authors' explicit mapping from the parameters of the Gaussian
 field model to the elements of a Gaussian Markov random-field precision matrix will yield new approaches
 to parameter estimation, for example, of a scaling parameter n > 0 of the Matern field, which is of great
 importance in practice but generally difficult to analyse directly.

 More precisely, one can construct an estimator (e.g. from maximum likelihood or the method of mo-
 ments) kn based on observations, using a finite element representation of the full solution to the SPDE
 as presented in expressions (9) and (10). The next step is to verify that Kn indeed converges (in an appro-
 priate sense) to the true parameter k as the finite Hilbert space, spanned by a finite set of basis functions
 {ipi , . . . , ipn}, approaches the full space. Such parameter estimation procedures circumvent the complexity
 that stems directly from dealing with the estimation problem of the fractional SPDE (2). Furthermore,
 this approach will shed light on estimating underlying physical parameters, corresponding to various co-
 variates which could be incorporated into more physics-based SPDEs. For example, in a weather model,
 meteorological covariates such as wind speed or temperature may be incorporated (e.g. as appropriate
 drift terms) into underlying SPDEs. This would move beyond the purely statistical treatment of the SPDE
 (2) by combining theoretical (physical) models and statistical (data-driven) models.

 Wayne T. Lee and Cari G. Kaufman ( University of California, Berkeley)
 We congratulate the authors on an important theoretical achievement with exciting computational impli-
 cations. It is true that we tend to set n 'a little higher than the value that gives a reasonable computation
 time'. We expect that 'reasonable' will now be redefined according to what is possible by using the authors'
 explicit link. For example, we simulated a Matern-like field of size 750000 (approximately the number of
 spatial grid boxes for a climate model with 25-km resolution) on a laptop in 8 s. Although a little slow for
 a long Markov chain Monte Carlo run, it is no longer completely unreasonable!

 We would like to address the Gaussian Markov random field as an approximation in the context of like-
 lihood-based estimation for geostatistical models. We hope that the authors can clarify the implications of
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 Fig. 18. Estimates for <j2k2u with effective range of 10 on a 20 x 20 unit grid with v = 1 and a2 -2 (the
 x-axis shows the maximum likelihood estimate, whereas the y-axis shows estimators maximizing two ap-
 proximations to the likelihood): V, naive implementation with no boundary correction; •, implementation with
 embedding; ■, true parameter value

 the treatment of the boundary points in this context. Although many will undoubtably use these models
 in their non-stationary versions, non-stationarity that is an artefact of the boundary is undesirable and
 may introduce bias in estimating the geostatistical parameters.
 We simulated 100 replications of a mean 0 Gaussian field on a 20 x 20 unit grid, using a Matern covari-
 ance function with v = 1 and a1 = 2, and effective range 10 (k « 0.283). The large effective range highlights
 the boundary issue, but we think that high auto-correlation is also not uncommon in geostatistical data.
 We fixed v at its true value and considered three possible estimators for a2 and n. The first is the maximum
 likelihood estimator under the original model. The second maximizes an approximate likelihood that
 replaces the covariance matrix £(<r2, /c) by <j2Q(k)~1 /ct^(ac), where Q(k) is constructed by using the for-
 mulation from Section 2.2.1, with no special treatment of the boundary points, and ct^(ac) is the marginal
 variance for the stochastic partial differential equation solution. The third treats the boundary points by
 using the embedding method suggested in Section 5.1.4 of Rue and Held (2005) under which we use the
 true model for a boundary set of thickness m = 2 and the Gaussian Markov random-field approximation
 for the conditional distribution of the interior set. The drawback is the computational cost of calculating
 the boundary model.
 Fig. 18 shows estimates of ct2k2u , the consistently estimable parameter under the fixed domain asymp-
 totics (Zhang, 2004). We observe a clear bias in the embedding estimates, whereas the naive approximation
 estimates have less bias but have high variability. We have not implemented the authors' approach using
 the Neumann boundary conditions.

 Bo Li (Purdue University, West Lafayette) and Marc G. Genton ( Texas A&M University, College Station)
 In this very stimulating paper, the authors created a new path to deal with the computational challenge
 caused by large spatial data sets. Whereas most of the previous approaches mainly focused on screening
 out information that is relatively less important to gain computational efficiency (see Sun et al. (2011)
 for a recent review), this newly proposed method sought an explicit link between some Gaussian fields
 (GFs) and Gaussian Markov random fields (GMRFs) and thus enabled a direct application of the inherent
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 computational advantage in GMRFs to GFs. The GFs with Matern covariance structure play a central
 role in spatial data modelling. Although the GMRF representation is developed only for the GFs with
 certain values of smoothness, we expect a wide application of this new approach since the smoothness
 parameter in the Matern function is nevertheless difficult to estimate precisely. We genuinely appreciate
 the novelty and practical value of this paper. However, recently emerged data sets are often indexed by
 locations in both space and time, and many have more than one variable observed. Analyses with those
 data sets are more challenging owing to the cubic growth of computations in terms of the sample size.
 North et al. (201 1) derived Matern-like space-time correlations from evolving GFs governed by a white-
 noise-driven damped diffusion equation arising from simple energy balance climate models on the plane
 and on the sphere. It appears that those results could be used directly to extend the link between GFs and
 GMRFs to spatiotemporal data. Further extensions to a multivariate context remain open.

 The authors gave an example of modelling non-stationary global temperature GFs and then mak-
 ing inference on the temperature process via GMRFs in conjunction with the integrated nested Laplace
 approximation. This can be very useful for the palaeoclimate community because one popular approach for
 large-scale palaeoclimate reconstructions is through Bayesian hierarchical models (Li et al , 2010) where
 it is crucial to identify an appropriate model for the random process of climate variables. Such a model
 needs to be sufficiently flexible while still keeping the inference computationally feasible. The explicit link
 developed in this paper combined with the integrated nested Laplace approximation seems a promising
 direction. Since the proxy data used for the reconstruction carry various types of noise, a nugget effect may
 need to be considered. Would the approach be directly applicable if nuggets are included in the covariance
 model? An ambitious goal in palaeoclimate studies is simultaneously to reconstruct the entire space-time
 process of the temperature and other climate variables. Therefore, it again requires computational effi-
 ciency for spatiotemporal and multivariate data. We look forward to seeing further developments on this
 topic and in the mean time congratulate the authors for their outstanding work!

 Georg Lindgren (Lund University)
 I would like to add to the impressive list of applications of the Gaussian Markov random field-stochastic
 partial differential equation (SPDE) link, namely its use in ocean wave modelling. Traditionally, stochastic
 wave models have been based on linear Fourier analysis, possibly including low order interactions between
 the Fourier components. Such models are seen as approximations to the basic hydrodynamical (determin-
 istic) partial differential equations for water waves. These equations have, in themselves, little room for
 stochastic forces.

 One of the common spectra used in ocean modelling is the Pierson-Moskowitz spectrum

 S( u, 0) = Apmcj"5 exp(-BPM/^~4) cos2*(0 - 60).

 The SPDE approach, developed in the paper presented, offers a promising link between the hydrodynamic
 and Fourier view on random ocean waves. It has recently been shown by David Bolin and Finn Lindgren
 (see Bolin and Lindgren (201 lb) for the general theory and Bolin (2009) and Lindgren et al (2010) for the
 wave application) that the solutions to a nested SPDE,

 (K2 - A)(l+2)/2X(t) = (BtV)s lV(t), t e IR2,

 has a spectral density

 9 > = C7TTT-^ (g2 K,2 uj4)n cos2s(e ~ e »)• (g2 K,2 uj4)n

 with g equal to Earth's acceleration. The vector B = (b' , bi)1 determines the main direction So of the direc-
 tional spectrum. For large 5, this is close to the Pierson-Moskowitz wave spectrum and, thus, the SPDE
 approach could turn out to be a flexible alternative to the Fourier approach.

 K. V. Mardia ( University of Leeds)
 I found the paper very timely and stimulating. The problem of dealing with large spatial data has a long
 history and the authors have given a comprehensive way forward. Mardia (2007) has given a historical
 background to the maximum likelihood methods for spatial data and pointed out that it seems there are
 still two main communities - one mining practitioners and the other mainstream statisticians.
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 Fig. 1 9. Strategy for composite likelihood for the criss-cross pixel by using a random selection of three points
 in a unilateral scheme, m = 3

 The Matern covariance function has now been accepted by statisticians as a reasonable covariance func-
 tion, and rightly, in general, the smoothing parameter v is taken as a tuning parameter. But there are some
 scientific problems where the estimation of v is the main interest, for example, when the geovariables are
 sampled intensively as for a computer-scanned image in petrology or in a high resolution image in remote
 sensing. Another example is of water head-piezometrics level u where the hydraulic gradient map is the
 main interest (Pardo-Iguzquiza et al. , 2008); the deterministic equation which describes the movement of
 groundwater is a particular case of equation (2).

 Pardo-Iguzquiza et al. (2008) have given the background to a computer program for the estimation of all
 the parameters of the Gaussian random field with Matern covariance function (n, v , a and drift; geometri-
 cal anisotropy). The code is available at http : / /www. iamg. org/ CGEdi tor /index, htm and as far
 as we are aware the geostatistics community has found this software useful. But the program works for n
 only up to 700. To extend this work for large data sets, in my joint work with Pardo-Iguzquiza, we have
 used various composite likelihood strategies extending Vecchia (1988) and Pardo-Iguzquiza and Dowd
 (1997). In particular, we have found unilateral random selection as shown in Fig. 19 useful for lattice data,
 and the method is extended for irregular data by using random permutation (even a priori for lattice data)
 where m is the number of the sites used in conditioning. We obtain the value of m through cross-validation
 but it is normally 5-15 for various large sets (images) we have experimented with. Indeed, the program
 takes a few minutes for n as large as 250000, the total number of operations being proportional to n.
 The recent efficiency results given in Mardia et al (2010) on composite likelihood are also encouraging
 and relevant. I welcome a comprehensive comparison of the composite likelihood approach and the finite
 element method that is used in this paper.

 Jorge Mateu ( University Jaume I, Castellori)
 The authors are to be congratulated on a valuable contribution and a thought-provoking paper. Spatial
 data are frequently modelled as realizations of random fields. Gaussian fields (GFs) have a dominant
 role in spatial statistics and form an important building block in modern hierarchical spatial models. A
 common approach is to model spatial dependences through a covariance function. However, from the
 computational side, GFs are hampered by the big n problem , as the authors outline. In the way to over-
 come such a problem, rather than applying covariance tapering, we argue the use of compactly supported
 covariance functions which considerably reduce the computational burden of kriging, and allow the use
 of computationally efficient sparse matrix techniques, thus becoming a core aspect in spatial prediction
 when dealing with massive data sets. In addition, by considering a class of convolution-based flexible mod-
 els, we can generate classes of non-stationary, compactly supported spatial covariance functions (Mateu
 et al, 201 1).

 Rather than assuming that the GF is built through a Matern covariance function, have the authors
 thought about considering other covariance radial basis functions with some positive definite kernel? Alter-
 native stochastic partial differential equations to equation (2) could be brought into play. In their main
 result 2, the authors use a particular finite element method. An alternative could be using a Tikhonov reg-
 ularization scheme with particular adapted functionals, like those shown in Montegranario and Espinosa
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 (2007). This regularization method has the mathematical advantage of using properties of compact oper-
 ators in Hilbert spaces (Vapnik (1998), chapter 7).

 I would like to draw the authors' attention to the use of basis functions to construct a finite element

 representation of the solution to the stochastic partial differential equation. First, they use n (the number
 of vertices) functions, and this is basically oversmoothing the solution. An objective criterion following
 a kind of cross-validation approach (as in functional geostatistics) should be considered. Second, the
 authors do not explicitly explain which appropriate basis functions could be used. They use harmonic
 and 5-splines: why not wavelets or any other smoothing functions? Recall that some of these bases make
 orthogonality an issue in computation. Functional geostatistics is a field providing huge amounts of
 data, I would like to ask the authors whether they have ever thought about the possibility of having a
 GF of functions as in Giraldo et al. (2011). Do the authors have any tangible results on this emerging
 issue?

 Debashis Mondal ( University of Chicago)
 The first main result of this paper was familiar to me (and to my late colleague Julian Besag) because of our
 work on the de Wijs process. In particular, note sections 4.2 and 5 of Besag and Mondal (2005) that allude
 to such results from a frequency domain perspective and from a computational point of view. Consider for
 example a sequence of Gaussian Markov random fields on sublattices Z' with spacing 1/m, m = 1, 2, . . . ,
 which have individual spectral densities of the form

 (j2
 f(cj,77) =

 m2(l - 4/?m+4/3m[sin {(l/2m)a;} + sin {('/2m)rj}])

 '(3m'<l 1S = 0,1,2,....

 Here v - 1 corresponds to the first-order conditional auto-regressions at increasingly dense sublattices,
 v = 2 suggests Whittle's simultaneous auto-regressions at increasingly dense sublattices and so on. Now
 assume, as m-^oo, 4m2(l -4 /3m)^K2 and mu~lam->a/2u . Then converges to

 a2
 V) = ( 2 i 2 _L 2M/ '

 ( (k2 2 + i ur 2 _L + r}zy 2M/

 from which it follows that the corresponding continuum Gaussian random fields (generalized if v = 0, 1
 or if v > 1 , k = 0) emerge as scaling limits of the Gaussian Markov random fields on regular lattices. One
 point I make here is that the above explicitly describes the rescaling of parameters needed, particularly
 when we want to choose a suitable sublattice (e.g. to embed irregular sampling locations into a grid or to
 approximate irregular regions by unions of grid cells when observations themselves are aggregates over
 such regions). This is important for both estimation and inference of continuum random fields from the
 approximate Gaussian Markov random field, but it did not receive much attention in the current paper.
 In addition, rescaling of parameters would also be required for the triangulation scheme discussed in the
 second main result of the paper, and it would be interesting to see the effect of numeric convergences as
 one considers denser triangulations.

 Delaunay triangulation provides a way to place a dependence graph on irregularly sampled obser-
 vations. Then the idea is to use a Gaussian Markov random field on this triangulation to approximate
 the continuum Gaussian random field. For this, the use of the graph Laplacian becomes important,
 and one can proceed with alternative calculations. Here I draw attention to the work of Coifman and
 Maggioni (2004) on diffusion wavelets that allow fast and approximate computations of functional
 of inverse Laplacian and related diffusion-like operators on manifolds, graphs and other non-homo-
 geneous media. A study of the strengths and weaknesses of this procedure will be a matter of future
 research.

 Werner G. Miiller and Helmut Waldl {Johannes-Kepler- Universitat Linz)
 The authors thankfully further strengthen the bridge connecting the somewhat disparate areas of geo-
 statistics and spatial econometrics. We would like to draw attention towards a rather neglected aspect
 of establishing a link as above, namely the potential effect on the respective optimal sampling designs.
 We shall illustrate our points on the leukaemia survival example from Section 2.3, utilizing some of the
 authors' calculations.

 In geostatistics the optimal sampling design is often based on the kriging variance over the region
 of interest, frequently by minimizing its maximum. Accounting for the additional uncertainty due to
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 Fig. 20. (a) MIP (horizontal) versus EK (vertical) criterion values and (b) MIP (horizontal) versus CD0 99
 (vertical) criterion values

 estimating covariance parameters Zhu and Stein (2006) and Zimmerman (2006) have employed a mod-
 ification termed the empirical kriging (EK) criterion by the latter. In spatial econometrics it is com-
 mon to test tor spatial auto-correlation by specifying a spatial linkage matrix and to utilize an overall
 type of measure such as Moran's /. Therefore Gumprecht et al. (2009) have suggested to maximize the
 power of Moran's /-test under a hypothesized spatial lattice process, call it the Moran /-power (MIP)
 criterion.

 From the example one sensible design question we could pose is which out of the 24 districts should we
 sample if we are limited to a number k<24 for financial reasons, say k = 3, which allows for (234) = 2024
 different configurations? Randomly sampling 20 locations from those as designs we can then draw a scatter
 plot of the values of the above criterion to judge for a potential linkage (Fig. 20(a)). EK reduces to scalar
 operations localized at p = 0.26, the only free covariance parameter. For the MIP we use the corresponding
 precision matrix provided by the authors, the linkage matrix assigned 1 to point pairs within the range
 p. Although the evident link between the criteria does not extend well into the lower right-hand corner
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 where the optima lie, it looks as if we could achieve reasonably high design efficiencies by substituting the
 criteria for each other.

 Both criteria, however, are computationally quite intensive and it thus makes sense to look for cheaper
 alternatives. Motivated by traditional connections between estimation- and prediction-based criteria
 ('equivalence theory'), Miiller and Stehlik (2010) have suggested replacing the EK criterion by a com-
 pound criterion for determinants of information matrices with a weighing factor a , call it compound D
 optimality, CDa. A scatter plot of its values (assuming a constant trend) against the MIPs (Fig. 20(b))
 shows high efficiencies on the MIP criterion for the computationally extremely cheap compound-Z)-
 optimal design.

 Summarizing, we believe that we have demonstrated that the relationships between the two linked
 approaches can go far beyond mere estimation issues.

 Alessandro Ottavi and Daniel Simpson ( Norwegian University of Science and Technology, Trondheim)
 The Markov property, which is so important in temporal and discrete models, has long been absent
 in continuous spatial models, and the authors are to be congratulated for reminding us that it ex-
 ists and is useful. In particular, the connection between stochastic partial differential equations and
 Gaussian random fields gives a practical method for specifying the local properties of a random field.
 Within this context, we are interested in using local effects to model non-stationarity. In particular,
 we are interested in non-stationarity induced by local topography, especially in the context of Bayesian
 smoothing.

 Constructing Bayesian smoothers over complicated regions (i.e. regions that are not U2) is a difficult
 problem and most successful efforts have involved, in some way, partial differential operators (Wood et al. ,
 2008; Ramsay, 2002). We note in passing that the techniques described in the paper under consideration
 yield an efficient Bayesian extension of the FELSPLINE method of Ramsay (2002), which does not suffer
 the large sample size drawbacks of soap film smoothing (Wood et al ., 2008). In fact, as these models are
 defined over an irregular tessellation, we can represent any hard physical boundary (almost) exactly and
 we can control either the (deterministic) value of the field on, or the flow through, the boundary by using
 standard finite element techniques.

 Whereas a river, lake or mountain may provide a hard physical boundary, in other situations the con-
 straints may simply impede or discourage movement. Such soft constraints are difficult to deal with properly
 and we propose to model them by locally deforming the physical space into the third dimension (see Samp-
 son and Guttorp (1992)). This deformed space can then be directly tessellated and non-stationary SPDE
 models can be built on it. A caricature deformation is provided in Fig. 21, which shows the covariance
 centred at one point. The covariance can be clearly seen to wrap around the deformation in a sensible
 way.

 Fig. 21 . Covariance function centred at the darkest point of the non-stationary random field induced by a
 deformation: the contours of the covariance function can be clearly seen to distort locally around the object,
 whereas the far away covariances remain almost unchanged
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 Omiros Papaspiliopoulos ( Universitat Pompeu Fabra, Barcelona) and Emilio Porcu (University of
 Castilla la Mancha and University of Gottingen)
 We congratulate the authors for this beautiful paper. We have some suggestions that may be considered
 by the authors for a more general view of the problem.

 (a) Main result 1 does not hold when the parameter v is not an integer. A more general setting would
 allow us to index the fractional Sobolev space associated with the Gaussian random field (GRF)
 with a Matern covariance function and thus allow us to study the properties of such a GRF in terms
 of fractal dimension. Such information seems to be lost with the approach proposed by the authors.
 In this respect, the tapering approach proposed in Gneiting (2002) seems to be more promising.

 (b) The Matern model is very popular also because it is very handy; having a closed form for the related
 spectrum, it has been widely used, for instance, to apply Yadrenko's (1983) theory for the equiva-
 lence of GRF measures. But there are other covariance functions, such as the generalized Cauchy
 (Gneiting and Schlather, 2004) and the Dagum (Berg et ai, 2008) functions, which allow the sep-
 aration of the fractal dimension and the Hurst effect of the associated GRF. This is a significant
 advantage for statistical estimation, and such a property is not offered by the Matern covariance,
 which has light tails. The generalized Cauchy model

 C„,7( u, v) := (1 + II v - uirr7, u, v e [RJ, (46)

 is positive definite on Ud for all deN, for 0 < a ^ 2 and 0 < 7, whereas the Dagum model admits
 the expression

 / My - u II ' ^
 ^7(u,v):=l- (-!!- My

 ' 1 + || V - ll|| /

 for which sufficient conditions of positive definiteness on UJ for all d are ^7 ^ 1 and /3 < 1 .
 Recently, Ruiz-Medina et al. (2011) have shown that, for a GRF with a generalized Cauchy

 or with a Dagum covariance function, we have a local pseudodifferential representation, in the
 mean-square sense, of the type

 (-A)"X(u) = W(u), u€lRJ, (48)
 where -A denotes the negative Laplacian operator and W is Gaussian white noise and where
 p is identically equal to (d + a)/4 and (< d + 7/3)/4 for the generalized Cauchy and the Dagum
 functions respectively. It would be interesting to consider whether some type of Gaussian Markov
 random-field approximation applies to these GRFs.

 Marc Saez ( University of Girona and Consortium for Biomedical Research Network in Epidemiology and
 Public Health, Barcelona) and Jorge Mateu ( University Jaume I, Castellon)
 We first congratulate the authors for this excellent and innovative work, providing an authoritative review
 of the 'big n problem'. We indeed believe that the paper will become a seminal paper in the context of
 computational spatial statistics. We focus on comments on some aspects that we believe merit further
 discussion; in particular on how the stochastic partial differential equation generalizes to non-separable
 space-time models. Whereas in other extensions (the case of manifolds or non-stationary fields) the authors
 adequately extend the basic approach, in the non-separable space-time case the explanations given on how
 to obtain a Gaussian Markov random-field representation are not self-contained. It is not clear to us what
 the resulting system of coupled temporal stochastic differential equations is, or how the system can be
 discretized, even though the authors suggest using an Euler method. Can the authors be more specific in
 this respect? Another question related to this extension is to know which regularity conditions are violated
 when the noise process is not white in time. There is no doubt that this assumption is too restrictive, and
 we would like to know whether it could be relaxed in some way.
 In relation to the aspects that deserve more discussion, we first would like to refer to the edge effects

 and boundary conditions and, secondly, to the issues of spatial scale. It is known that, at least in small
 databases or spatial data with a large spatial scale, edge effects can have an effect on the spatial pattern
 near the edge. It would be necessary, therefore, to investigate how to incorporate a varying edge in the
 representation. When considering covariates, it is also important to investigate the optimal spatial scale,
 i.e. the resolution, to avoid overfitting. The resolution of the spatial effect should not be less than the spatial
 scale of the covariates because otherwise the spatial effect, and not the covariates, explains the data. Since
 there is a trade-off between the accuracy of the Gaussian Markov random-field representation and the
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 number of vertices, further research is needed on the optimal number of triangles, i.e. the resolution, in
 conjunction, if possible, with the presence of varying edge effects.

 Alexandra M. Schmidt ( Universidade Federal do Rio de Janeiro)
 The idea of approximating continously indexed Gaussian fields through Gaussian Markov random fields
 is extremely appealing because of the sparseness of the precision structures of Gaussian Markov random
 fields. Even with current computational power, this is a real gain, especially in the case of large data sets.
 Moreover, the approach proposed provides a wide class of spatial models, allowing for the construction
 of Matern fields on the sphere, and also non-stationary and oscillating covariance structures.

 I shall concentrate my comments on the non-isotropic models aspect of the model proposed. Schmidt
 and O'Hagan (2003) proposed a Bayesian approach to the deformation idea of Sampson and Guttorp
 (1992). The idea is to assign a Gaussian process prior to the deformation function /(•) that maps the
 original locations in R 2 into the latent space (also in R2). The smoothness of the deformation is defined by
 the smoothness of the covariance function of /(•). Schmidt and O'Hagan (2003) used a Kronecker prod-
 uct between a covariance matrix describing the covariance between the axes that define the latent space
 and the correlation between the monitored locations in the original space. This correlation is modelled
 through a squared exponential correlation function, which is equivalent to assuming a Matern correlation
 function for which v^oo. This assumption leads to an infinitely mean-squared differentiate function
 and a smooth mapping. The idea behind this structure is to obtain a deformation that is not very different
 from the original configuration but is still sufficiently flexible to capture the non-stationarity in the data.
 In Section 3.4, the authors obtain a non-stationary stochastic partial differential equation (SPDE) that
 reproduces the deformation method assuming Matern co variances. This is done by fixing a = 2 which is
 equivalent to v = 1 , when d = 2. Therefore, the original Matern correlation function of the mapping func-
 tion /(•) assumes /(•) is only one time mean-square differentiate. This might lead to undesirable folding
 of the configuration of points in the latent space. The authors also claim that one advantage is that the
 parameters of the resulting SPDE do not depend directly on the deformation itself. Although this might
 be an advantage for inference, it is important to recover the posterior distribution of /(•) to understand the
 non-stationarity in the data. More recently, Schmidt et al. (201 1) extended the mapping onto Rd for d> 2,
 by making use of covariates to define the other dimensions of the latent space. Increasing the dimension
 of the latent space helps to avoid the foldings mentioned above. They also discuss a simpler version of the
 model which also makes use of covariates. It is appealing that the SPDE provides another possibility for
 exploring covariates in the spatial covariance structures.

 Daniel Simpson ( Norwegian University of Science and Technology, Trondheim )
 I congratulate Lindgren, Rue and Lindstrom on their outstanding contribution to the spatial statistics
 literature. In the simplest case, when the field is stationary and isotropic, it is easy to write down the Green
 function of the partial differential operator and, therefore, to derive the convolution representation of the
 corresponding Matern field. When v = a - d/2 is the smoothness parameter and k is the range parameter,
 this representation is

 'w = TvSv Siw I <W0.
 where rj = (u - d/2) /2 may be negative. It is tempting to approximate this by a finite sum using the method
 introduced by Higdon (1998). This does not workl The kernel convolution method, besides being less effi-
 cient than the method in the paper under discussion, produces posterior fields with noticeable artefacts
 (Bolin and Lindgren, 2009; Simpson et al., 2010).

 Of course, the paper considers much more than the simplest case with great success, The finite ele-
 ment method introduced succeeds in these complicated cases because it directly approximates the required
 random function in a stable consistent manner. When considering a bounded domain in Ud, the proof of
 the convergence result (equation (1 1) in the paper) boils down to an application of Cea's lemma, which
 says that the error in the Galerkin approximation to an elliptic partial differential equation is bounded
 above by the error of the best approximation to the solution over the approximation space chosen. The
 space of piecewise linear functions is extremely well studied and its approximation properties have formed
 the backbone of finite element theory since the middle of last century.

 I am extremely excited that the authors have extended the spatial statistics toolbox to include the finite
 element method, which is the workhorse of applied mathematics, physics and engineering. My excite-
 ment stems mostly from the fact that, given Gaussian data, the mean of the posterior random field can be
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 approximated in linear time by using multigrid methods. For non-Gaussian data, the maximum a posteriori
 estimate can be computed efficiently by solving a non-linear partial differential equation (see Hegland
 (2007) and Griebel and Hegland (2010), who considered this in the context of density estimation). The
 obvious challenge for the computational statistics community is to compute uncertainty in linear time. If
 this can be done, it will be possible to solve truly huge problems.

 Alfred Stein ( Twente University, Enschede)
 This paper is a fine contribution to spatial statistics. We may have been aware that Gaussian Markov
 random fields and the Gaussian fields are connected, but the paper provides a solid explanation on the
 basis of mathematical theory. It raises several items for discussion.

 (a) The choice of Gaussianity is particular and I doubt whether equally elegant results can be obtained
 for non-Gaussian random fields, in particular for spatial count data. Also, the explicit link exists
 for two, relatively wide classes of covariance functions: the Matern class and periodic covariance
 functions. However, there are more permissible covariance functions, like spherical covariances.
 It is not immediately obvious how the current procedure can be expanded. Finally, multivariate
 spatial data are natural expansions of the univariate case presented; for example a bivariate Gauss-
 ian random field may have an explicit link with the bivariate Gaussian Markov random field in an
 almost trivial way, but it would be good to hear the authors say the final word on it.

 (b) Applying the method apparently requires a triangularization of the area. I cannot believe that it is
 always as simple and straightforward as in the examples now. Moreover, results may be sensitive to
 a particular choice. In an image analysis, it is natural to have a square grid of pixel values, whereas
 traditional geostatistics have data irregularly spread over an area, and a map on a square grid
 contains a visualized output map as an essential result. It is not entirely clear yet what the effects
 are of such choices in the final results.

 (c) This brings me then to my final comment, namely the issue of quality of data. In the current setting,
 the quality of data is entirely governed by a choice of the (Gaussian) distribution. For many data
 that is not enough, as locations may be uncertain, or refer to an aggregated area, whereas in other
 studies the data themselves are poorly defined. Yet, scientists collect and analyse them, simply
 because they are the best available to tell a scientific story- they are fit for use. A good example
 refers to data that are obtained from interpreting a soil layer and that are poorly defined just because
 the soil classes are poorly defined. Scientists rely on fuzzy approaches here. I wonder how the theory
 presented could proceed in such circumstances.

 As these are all promising aspects for future research, for now I can only compliment the authors on
 their achievements.

 Paul Switzer ( Stanford University)
 I have a concern regarding spatial models based on a direct specification of local conditional distribu-
 tions, although these enjoy substantial computational advantages compared with approaches that use the
 unconditional Gaussian field (GF) covariance function for local estimation. Nevertheless, the conditional
 specification is not completely satisfactory, for example because it says nothing about how to construct
 models in a consistent way for different grid spacings. Your approach to this problem is insightful- estim-
 ate parameters of the unconditional covariance by using available data and then find a local conditional
 model that is approximately consistent with this estimated GF.

 If you are starting with a GF then a device used to sidestep the large n problem for local inference is
 to condition arbitrarily only on observations within a neighbourhood by relying on the 'screen' effect of
 the closest data. Data weights for filtering or interpolation are determined by applying the GF specifica-
 tion restricted to the estimation location and a small number of neighbouring observations, via kriging.
 Whereas kriged maps will typically resemble maps of posterior means, this may not be so for local esti-
 mation precision which is more model dependent.

 GF parameter estimates should be about the same regardless of the grid mesh that is used to sam-
 ple a realization of a GF, i.e. the parameter v in the Matern covariance does not depend on how
 the GF is sampled. This would seem to imply that the Gaussian Markov random-field representation
 would have the same order neighbourhood regardless of the grid spacing that is used to sample the
 GF.

 The covariance of an isotropic GF for a two-dimensional field is the same as the one that we would
 obtain if the two-dimensional field were restricted to a one-dimensional linear transect. So the Matern
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 parameter v would be the same whether estimated from one-dimensional data or two-dimensional data,
 although the implied neighbourhood order would be different for d - 1 and d = 2.

 Finally, I am curious how local estimation is affected by the choice of triangulation that is imposed
 on the observation domain for irregularly spaced data. Your suggestion, to have smaller triangles where
 there are more data makes sense but can anything more be said? For d = 1 how should we think about
 triangulation for unevenly dense observations?

 Kamil Turkman ( University of Lisbon)
 I congratulate the authors for this excellent work which will have significant consequences in modelling
 spatial data.

 The objective of the paper is to find ways to treat the data as point referenced and to use a Gaussian field
 (GF) as the model, and to do the computations as if the data are discretely indexed by using an appropriate
 Gaussian Markov random-field (GMRF) model which represents the GF in the best possible way. The
 authors stress the word representation rather than approximation, perhaps indicating that this GMRF,
 although it is the best representation, may not approximate GFs to a desired level.

 To switch from one model to another in this manner during the different phases of the modelling, we
 must assume that the likelihoods under the GMRF and GF models do not differ or deviate much. Indeed,
 this point was clearly expressed in Rue and Held (2005), where the GMRF representation was chosen by
 minimizing a metric of discrepancy of the form

 us, - Soil =E{n(/y)
 i,j

 where Ei and E0 denote respectively the covariance matrices of the GF and GMRF over the observed
 data locations, and r' (i j ) and r0(i j ) are respectively the elements of Ei and E0. The weights are chosen as
 being inversely proportional to distances. In contrast, the normal comparison lemma and its refinements
 (Piterbarg, 1996) suggest that the metric of discrepancy should be based on

 ^2'rdij)-r0(ij)',
 i>j

 since

 F{ (x) - Fq (x) = {n (U) ~ ro ( ij ) } f Fh(x'xhi=xhxhj = xj)<l>h (x{ , xj) d h (49)
 i>j JO

 where F' (x) and F2W are the density functions of the vectors X' and X0 corresponding to GF and GMRF
 processes at the data locations, Xh = XXy/(' -h) + X0y/h for some, h e (0, 1), fa (xi9 xj) is the joint density
 function of Xhi and Xhj and Fh(x'-) is the conditional distribution function of Xh.
 From this equality, a sharp inequality can be found:

 'Fy(x)~ Fo(x)'^Y,'r'(ij)~ro(ij)' [ <fo(*/»*y) d/i,
 /> j Jo

 In this paper, the optimal GMRF representation for a specific class of GFs and for a given irregular
 grid configuration is obtained in a different norm. However, it is not clear what sort of discrepancy this
 representation induces on the covariances, and hence on the likelihoods under GF and GMRF models and
 its consequence on the inference. The worrying point is that, in accordance with the normal comparison
 lemma, the total error of approximation is additive in the LI covariance errors.

 Christopher K. Wikle ( University of Missouri, Columbia) and Mevin B. Hooten ( Utah State University,
 Logan)
 First, we congratulate the authors on another important contribution in what is quickly becoming a
 renaissance on approximate Bayesian methods. Given that our interest in correlated random fields has
 been primarily from a continuous spatial perspective rather than a discrete one, this latest paper is quite
 intriguing. The general concept of thinking about common forms of dependence as a solution to a spec-
 trally defined stochastic partial differential equation (SPDE) is clever and similar in spirit to other general
 ideas we have been fond of in the past.

 As we have spent a considerable amount of time thinking about dynamic spatiotemporal models and the
 origin of spatial processes, we see this paper as a potentially very valuable contribution. Indeed, the notion
 of discretizing SPDEs to form the basis of Markovian statistical models from both the spectral (e.g. Wikle
 et al. (2001)) and physical space (e.g. Wikle (2003), Wikle and Hooten (2006, 2010) and Hooten and Wikle
 (2007)) perspectives has been a primary focus of our own research. A heuristic summary of the relationship
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 between such approximations and their theoretical counterparts can be found in Cressie and Wikle (201 1).
 A key component of these presentations is the full exploitation of the hierarchical framework that allows
 us to place dependent random processes on the parameters that control the dynamical interactions (i.e. the
 parameters in the SPDE), for which no analytical solution exists. We have focused on building models true
 to the aetiology of the underlying processes - which is, more often than not, in the (Markovian) dynam-
 ical evolution. Furthermore, it is important to remember that real world processes are non-linear. The
 development of analytical covariance functions for the governing SPDEs of such processes are typically
 intractable, yet the motivating Markovian models suggested by the discretization (either in physical or
 spectral space) are quite tractable and flexible (for example, see Hooten and Wikle (2007)). Wikle and
 Hooten (2010) discussed a general form for 'quadratic interaction models' and showed the connection to
 various classes of spatiotemporal PDEs. Wikle and Holan (201 1) extend this to higher order interactions.

 From a computational perspective, we have found that the algorithms of Rue and Martino (2009) are
 very computationally efficient when a solution can be found. Thus, for very large and well-behaved con-
 tinuous physical systems where sufficient data exist and correlation structures are smooth, the approach
 outlined by Lindgren and his colleagues may be quite valuable for computational reasons alone.

 The authors replied later, in writing, as follows.

 We are delighted by the deluge of insightful comments, the details of which we can only begin to answer
 here. We have grouped our responses into a few common themes, mentioning commentators' names only
 when referring to specific issues.

 Triangulations
 As pointed out by Cooley, Hoeting and Brown, it is not necessary to place the triangulation vertices at
 observation points. Indeed, the observation matrix in the global temperature example in Section 4.2 was
 introduced for this very reason. For a given triangulation, the matrix can be used to extract any observable
 linear combination of field values, allowing observations in arbitrary locations as well as regional averages.
 For point observations, each row of the matrix contains three non-zero elements, one for each corner of
 the triangle containing the point, and the sparsity structure of the posterior precision matrix is unaffected.
 There is also no requirement to use a regular grid for such models. The triangulation implementation in
 R-inla has a parameter for a minimum required distance between data-located vertices. In the temper-
 ature example this was set to 10 km, allowing the vertex placement to follow the data density, without

 Fig. 22. Target covariance (

 ance envelopes (

 point distance within the domain; the linear interpolation is accurate at grid nodes, but the GMRF approxima-
 tion is closer to the target overall
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 generating excessively small triangles. An example where the triangulation was chosen completely inde-
 pendently of the data locations is given by Bolin and Lindgren (201 lb). Crujeiras and Prieto add that the
 triangulation could be chosen adaptively on the basis of local approximation error estimates, and we agree
 that this can potentially be useful for non-stationary anisotropic models.

 Approximation properties
 Ippoliti, Martin and Bhansali note that the stochastic partial differential equation (SPDE)-Gaussian
 Markov random-field (GMRF) precision coefficients do not match those obtained by inverting the covari-
 ance matrix of a field sampled on a regular grid. However, the approximation is not aiming to approximate
 the field only at the vertices of the triangulation, but also at the intermediate points obtained via linear
 interpolation. If the same interpolation method is used with the sampled covariances, the overall field
 covariances are underestimated, whereas the SPDE-GMRF approach gives an overall closer approxi-
 mation. The upper and lower envelopes of all the pairwise covariances for the two settings are shown
 in Fig. 22, together with the target covariance function. Bolin and Lindgren (2009) investigated how this
 effect influences the kriging results, comparing with tapering and kernel convolutions, as well as alternative
 choices of basis functions in the GMRF construction, including wavelets and 5-splines.

 Kernel methods

 Kernel convolution methods, as mentioned by Furrer, Furrer and Nychka, are useful theoretical tools,
 but can in practice be cumbersome and computationally intensive (Bolin and Lindgren, 2009). The ker-
 nel generated by the SPDE operator for a Matern field takes the shape of another Matern covariance
 with different shape parameter. The kernels are singular for a ^ d, and non-differentiable for a ^ d -I- 2,
 so the commonly used discrete kernel sums result in kriging and parameter estimation artefacts and do
 not yield either the correct pointwise distribution or correct distributions for regional averages, unless
 the range is large compared with the kernel placement distances. Also, since the kernels have non-com-
 pact support, they yield dense matrices for the posterior precisions. Using compactly supported kernels
 as suggested by Mateu is similar to moving average processes in time series analysis and is problematic
 unless the data are densely and evenly located on the domain of interest, whereas the GMRF models
 are counterparts to auto-regressive models, that are much more flexible tools for approximating general
 dependence structures.

 Parameter estimation

 Both when estimating parameters and calculating kriging interpolations, the results are influenced by the
 choice of boundary conditions. The easiest method for avoiding these effects is to extend the triangulation
 beyond the study region by an amount that is sufficiently large to cover the correlation range of the field,
 since this allows the boundary effects to drop off to virtually zero before reaching the data locations that
 influence the likelihood. As seen in Fig. 23(a), this eliminates the bias in the maximum likelihood estimates

 Fig. 23. Estimated (a) a2, (b) k and (c) r~2 <x<t2k2 for an h = 1 lattice GMRF (□), an h = 1 lattice with
 irregular extension (O) and an h = ' lattice with irregular extension, all with Neumann boundary conditions,
 plotted against the corresponding estimates based on a sampled covariance matrix: the estimations were
 computed on 10 samples from a v = 1 stationary Matern field, with exact observation at a 20 x 20 lattice
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 of the field variances a2. The bias for the rescaling parameter t'2 is reduced when the triangulation
 resolution is increased, as seen in Fig. 23(b). The parameter a2n2u that was used in the comparison by
 Lee and Kaufman is equivalent to r~2 in the SPDE models used in the paper. We believe that the highly
 variable results in their comparison is explained by noting that the precision matrix was chosen by sim-
 ply deleting rows and columns, which is equivalent to conditioning, in this case leading to approximate
 Dirichlet boundary conditions. To compensate for the resulting small variances near the boundary of such
 a model, the variance parameter needs to be greatly overestimated. The combined comparisons show that
 Neumann boundaries are safer, and that extending the boundary further reduces the bias.

 Boundaries

 In the paper, we used Neumann boundary conditions for simplicity and ease of characterization of the
 properties of the resulting models. For intrinsic models, these conditions are too restrictive and need to be
 relaxed to achieve the desired field properties. The key lies in how the boundary conditions affect the null
 space of the differential operator. The ^-matrix that is used in Appendix C.3 relaxes the constraints on
 the null space, leading to intrinsic models. Normally, the rank deficiency of the precision matrix is used to
 determine the order of intrinsicness. However, since only some of the eigenfunctions of the Laplacian can
 be represented exactly in the piecewise linear basis, the rank deficiency does not tell the whole story. For
 a more complete picture, the continuous domain problem needs to be analysed more carefully.

 A common alternative to Neumann conditions is to let d2n = 0, which is easily accomplished for
 regular grids by replacing the two-dimensional grid Laplacian with the one-dimensional Laplacian
 along the boundaries. For a unit square domain, the resulting null space is spanned by the four func-
 tions 1,mi,m2 and u'u2 but the rank deficiency is only 3, since the last function is not piecewise linear.
 Although this gives approximately the standard polynomially intrinsic models on 1R2, the construction
 also hints at a more general method for more general SPDE models currently under investigation. The
 idea is to start with a fully intrinsic precision for the interior of the domain and to add appropriate
 penalties generated by SPDE models within the boundary. For one-dimensional models, this eliminates
 the boundary effects entirely, and the higher dimension cases show promising results.

 Model checking
 We have not yet investigated the model checking issue mentioned by Gelman and Moller, since this is a gen-
 eral problem for spatial models, and not specific to the SPDE-GMRF approach. However, there appear
 to be opportunities for using the GMRF increments in similar ways to residual analysis for time series
 models, and also using the close link to the continuous space SPDE formulation itself when interpreting
 the results.

 Priors

 Choosing priors for the model parameters is a general issue for spatial models, but the handling of the
 boundary in the SPDE formulation may present further complications. When the correlation range is
 longer than the size of the domain, estimating n becomes very difficult. In such situations, the intrinsic
 models (« = 0) can be used, reducing the set of parameters to an overall scaling factor. This also handles
 applications with only a single realization of the random field, where it is impossible to separate a long
 correlation range from a fixed spatial trend, and the posterior distribution for k typically becomes degen-
 erate, requiring a careful choice of prior. A heuristic approach when not using intrinsic models is to specify
 a prior for n that puts low probability for range longer than the diameter of the domain. In the temper-
 ature example, we used independent Gaussian priors of that type for the weights for the basis functions
 controlling log(r) and log(*;2). We are currently extending the temperature example into a full analysis,
 where the prior for all the SPDE parameters is constructed jointly, giving more control over the behaviour.

 Simultaneous auto-regressions

 Kent astutely noted the connection to simultaneous auto-regressions that, for even integer values of a, pro-
 vides another direct link between Markov models and SPDEs; the GMRF construction in the paper also
 takes this form. Using the notation from theorem 2 in Appendix C.2, for a = 2 we have £,• A^jt/^yVCO, C„),
 where C is the diagonal matrix from Appendix C.5. In our early experimentation, we approached the
 GMRF construction problem by various attempts at modifying the graph Laplacian mentioned by Mon-
 dal. In hindsight, the current approach that builds more directly on the continuous domain Laplacian
 feels more natural to us when the goal is to build spatially consistent Markov models. The results do
 resemble the graph Laplacian but, as the SPDE models are extended to non-stationary models and fields
 on manifolds, the graph becomes less useful as such and is purely a computational device. This becomes
 particularly clear when extending the methods to fractional SPDEs.
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 Fractional operators
 Although the results as presented in the paper are limited to integer values for a in the SPDE-generating
 Matern field, the GMRF construction can be extended into a more general class of continuous domain
 Markov models, which contains close approximators of Matern models with fractional a. The result from
 Rozanov (1977) that was mentioned in Section 2.3 means that a stationary random field is a Markov field
 if and only if the spectral density is the reciprocal of a polynomial. In the isotropic case, such spectra take
 the form

 S(k) = (2K)-d(j:bi''k''2^

 where p is the degree of the polynomial and Z?, are coefficients in a strictly positive polynomial, and the
 corresponding discretized precision matrix can be obtained as

 G = E^C(C-'Gy.
 /•= 0

 We need to find coefficients bt so that the model that is defined by S_(k) is an appropriate approximation
 of a model defined by the Matern spectrum S(k) = (2ir)~d(K2 + ||fc||2) ".A sensible choice is to let p= 'a] ,
 and we use a convenient weighting function u;(k) for the deviation between the spectra, such that

 f (S(k) - S(k)}2 w(k)dka f iza - J2bi(z - «2)'} z~2p~x~x dz.
 Jud Jk 2 I /=o J

 Taking derivatives with respect to all b{ and evaluating the integrals, we obtain a linear system of equations
 that can be solved easily. For 'a] = ' and fa] =2, the coefficients are given through

 (bo'_K2a(' IV 1/(2 + A) l/(l+A)y7l/(2 + A - an
 UikV VO 1 A 1/(1 + A) 1/A J v 1/(1 + A - a)/'

 / b0 ' /II l'/l/(4 + A) 1/(3 + A) 1/(2 + A)' /l/(4 + A - a)'
 ( b'K2 1 =K2n' 0 1 2 ) I 1/(3 + A) 1/(2 + A) 1/(1 + A) I 1/(3 + A-a)
 'b2K4J '0 0 1 / ' 1/(2 + A) 1/(1 + A) 1/A / V 1/(2 + A -a))

 respectively.
 The limiting case A^oo is equivalent to Taylor approximation at k = 0 and gives (b0,b') = K2a~2(K2,a)

 for 'a] = 1 and (b0, b{, b2) = K2n~4 {k4 , an2 , a(a - l)/2} for [a] = 2. These limiting approximations pro-
 vide good agreement for integrals of the field over regions but, for better behaviour of the short distance
 covariances, A needs to be chosen more carefully. For a given measure of deviation between the desired
 and approximate covariance functions, the optimal A can be determined numerically, as a function of a.
 For fractional a between 0 and 2 on R2, the parsimonious choice A = ol-'ol ' approximately minimizes the
 maximal absolute difference between the covariance functions. As noted by Cooley and Hoeting, a is in
 practice often chosen only from the integers and half-integers, and we obtain (b0, b') = k~1 (3k2/4, 3/8) for
 a= ' and (Z?o,^i,^2) = ^_1(15^4/16, 15k2/8, 15/128) for a= |. Combined with the recursive construction
 for a > 2, this provides GMRF approximations for all positive integers and half-integers. This includes the
 exponential covariance in [R2, which corresponds to a= The resulting covariance is shown in Fig. 24,
 together with the covariance from the spectral Taylor approximation. Further investigations are needed
 to determine how well the measurement noise model can incorporate the resulting deviation in small scale
 variation that is introduced by the approximation. Also shown in Fig. 24 is the covariance for a model
 with a = 2, showing the same qualitative behaviour at zero, but different mid-range behaviour.

 Long-range dependence
 As discussed by Bhattacharya et al. (1983), apparent long-range dependence in data cannot be distin-
 guished from a non-stationary mean or trend. An alternative to constructing covariance functions with
 such behaviour is therefore to use a two-stage model, where the local behaviour is treated separately from
 the long-range behaviour. In practical situations, spatially varying basis functions are often used to capture
 large-scale variations, leaving the rest for a spatial field component. This can easily be extended to allow the
 basis weights to differ between realization of the field, in effect increasing the spectral density near zero.
 For identifiability reasons, intrinsic models can be preferable, but alternatives such as conditioning on
 zero integral for the field can also be used, and are implemented in R-inla. As suggested by Fearnhead,
 another even more general approach is to model the observed field as the sum of several latent fields with
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 different range. Care must be taken to handle the near non-identifiability of such models, noting that each
 individual latent component may be of less interest than their sum.

 In some cases, these approaches can be motivated by considering the physical interpretation of the
 observed system, where long-range dependence may appear owing to an unobserved latent physical pro-
 cess, e.g. deep water processes with long-term memory affecting surface water processes that interact more
 rapidly with external forces. The rational spectra that are generated by the nested SPDE approach due to
 Bolin and Lindgren (201 lb) allows more general models even with just a single latent process. Although not
 Markov as such, they are Markov on an augmented state space, leading to almost the same computational
 efficiency as the pure Markov models.

 Deformations
 When using the non-stationary SPDE reparameterization of the deformation method, all distances are
 interpreted within a fixed topology, and the issue of folding is transformed into requiring strictly positive
 definite diffusion tensors. By parameterizing with scalar and vector fields, the estimated parameter fields
 can be used to interpret and understand the non-stationarity. A simple example is shown by Ottavi and
 Simpson. Furthermore, this yields a larger practical class of models, since the parameters need no longer
 correspond to a simple deformation. When using a Matern process prior in a traditional deformation
 model, Schmidt rightly points out that fixing a = 2 for the deformation field would give undesirable fold-
 ings due to insufficient differentiability. Increasing a should alleviate the problem to the same extent as
 any other choice of more differentiate deformation field model would do. Similarly the parameters in the
 non-stationary SPDE models can be constructed via general Gaussian fields, but direct comparison with
 the more general deformation methods is difficult, since the models would need to be constructed on the
 embedding space, whereas the SPDE as used in this paper is defined on the manifold itself, regardless of
 any embedding.

 General extensions

 It is important to note that the GMRF models can be combined in hierarchical modelling frameworks to
 allow highly non-Gaussian observation processes. Log-Gaussian Cox processes are of particular note, as
 mentioned by Diggle, Illian, Simpson, Moller and Hohle. The likelihood can be rewritten in a form that
 allows the use of the integrated nested Laplace approximatons method for inference, and as Diggle notes
 one can choose freely between gridded count data and using the actual point data themselves.

 Functional data can be treated either directly in the general observation model, or by incorporating
 desired basis functions into the finite element basis itself, leading to block matrices in the precisions. In a

 Fig. 24. Covariances-based spectral approximation: desired exponential covariance (

 and range 5), Taylor approximation (

 ance for a = 2 (

This content downloaded from 129.241.15.186 on Tue, 09 Jan 2018 08:45:12 UTC
All use subject to http://about.jstor.org/terms



 Discussion on the Paper by Lindgren, Rue and Lindstrom 495

 setting with a local set of temporal basis functions {£lk , . . . , fj? } for each spatial triangulation vertex k, the
 resulting elements of the joint K-matrix take the form

 {i>k&, Clpk'Sy) nxR = {ipkXMn&k&R

 for a given spatial differential operator C , and similarly for the other matrices in the precision construction.
 For more general spatiotemporal SPDE models, we agree with Crujeiras and Prieto that a finite volume

 approach is preferable to finite elements, and Fuglstad presents an example of such a solution. The diag-
 onal approximation to the C-matrix is precisely what a simple finite volume method would produce in the
 purely spatial case, lending further weight to the appropriateness of the approximation.
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