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Estimation and Prediction in Spatial Models
With Block Composite Likelihoods

Jo EIDSVIK, Benjamin A. SHABY, Brian J. REICH, Matthew WHEELER,
and Jarad NIEMI

This article develops a block composite likelihood for estimation and prediction
in large spatial datasets. The composite likelihood (CL) is constructed from the joint
densities of pairs of adjacent spatial blocks. This allows large datasets to be split into
many smaller datasets, each of which can be evaluated separately, and combined through
a simple summation. Estimates for unknown parameters are obtained by maximizing
the block CL function. In addition, a new method for optimal spatial prediction under
the block CL is presented. Asymptotic variances for both parameter estimates and pre-
dictions are computed using Godambe sandwich matrices. The approach considerably
improves computational efficiency, and the composite structure obviates the need to load
entire datasets into memory at once, completely avoiding memory limitations imposed
by massive datasets. Moreover, computing time can be reduced even further by distribut-
ing the operations using parallel computing. A simulation study shows that CL estimates
and predictions, as well as their corresponding asymptotic confidence intervals, are com-
petitive with those based on the full likelihood. The procedure is demonstrated on one
dataset from the mining industry and one dataset of satellite retrievals. The real-data
examples show that the block composite results tend to outperform two competitors;
the predictive process model and fixed-rank kriging. Supplementary materials for this
article is available online on the journal web site.

Key Words: Gaussian process; GPU; Large datasets; Parallel computing; Spatial
statistics.

1. INTRODUCTION

In recent years, there has been a tremendous increase in the magnitude and pervasiveness
of massive geocoded scientific datasets. The growth in size is to a large extent driven by
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new technologies such as GPS and remote sensing, as well as by the ever-increasing
storage capacity of digital databases. The explosion of interest in climate research has
brought these types of datasets into the spotlight. These developments have triggered
demand for more sophisticated statistical modeling and methodology for such data. The
computations required for inference and prediction in spatial Gaussian process models, the
central construct in spatial statistics, are challenging for large datasets because they require
manipulations of large covariance matrices. In particular, evaluation of the likelihood
function necessitates performing inverse and determinant operations, both of which are
computationally intractable for large matrices.

Several approaches have been proposed to mitigate this computational burden. Furrer,
Genton, and Nychka (2006), Kaufman, Schervish, and Nychka (2008), and Shaby and
Ruppert (2012) used covariance tapering, where the full covariance function is multiplied
by a compactly supported correlation function, yielding a sparse covariance matrix, which
enables specialized algorithms to be leveraged. Another strategy is to represent the spatial
process in a lower-dimensional subspace using low-rank models (e.g., Banerjee et al. 2008;
Cressie and Johannesson 2008; Stein 2008). Gaussian Markov random fields are also useful
for fast computation (Lindgren, Lindstrøm, and Rue 2011; Aune, Simpson, and Eidsvik
2014).

In this article, we implement a unified framework for parameter estimation and prediction
based on the composite likelihood (CL) (Lindsay 1988; Varin 2008; Varin, Reid, and Firth
2011). The CL is a product of several joint likelihoods of subsets of the data. One important
special case is the pairwise likelihood, which is the product of all bivariate marginal
likelihoods. Here, we use a form of the CL function defined as the product of joint density
functions of pairs of spatial blocks. The motivation behind the spatial blocking strategy
is that it captures much of the spatial dependence, while still providing the divide and
conquer aspect of the CL, which reduces computational complexity and facilitates fast
parallel computing. Unlike low-rank basis methods (Banerjee et al. 2008; Cressie and
Johannesson 2008; Stein 2008) and embedded lattice methods (Lindgren, Lindstrøm, and
Rue 2011), estimation and prediction with block CLs allow one to work directly with
full-rank continuous spatial processes.

In the parameter estimation context, the asymptotic properties of the CL are well-
understood. Maximum CL estimates are consistent and asymptotically normal (Varin
2008) under similar conditions as corresponding maximum likelihood estimates (i.e., under
expanding domain asymptotics; Mardia and Marshall 1984). The asymptotic covariance
for maximum CL estimates is given by a sandwich matrix (Godambe 1960; Godambe
and Heyde 1987) rather than the usual Fisher information matrix for maximum likelihood
estimators.

In addition to parameter estimation for Gaussian random fields, we show how to use the
CL for the crucial complementary problem of spatial prediction, which has not previously
been considered. We demonstrate how to construct predictions at unobserved sites that are
optimal under the block CL, the composite analogue to kriging. This approach allows fast
spatial prediction. We derive asymptotic prediction variances under the CL model, which
have the familiar sandwich form.

The earliest use of the CL for random fields seems to be Heagerty and Lele (1998) and
Curriero and Lele (1999), who used the pairwise form of the CL to estimate covariance
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parameters and establish consistency and asymptotic normality. Several attempts have
been made to use spatial blocking. Among them is Caragea and Smith (2007), who used
averages of big blocks or products of small block likelihoods to construct estimators. They
also used hybrid schemes combining their big and small blocks methods, and studied
their asymptotic properties. Their ways of combining blocks are different from our block
CL approach. Stein, Chi, and Welty (2004) used a restricted likelihood version of the
telescoping conditional probability approximation of Vecchia (1988), which achieves fast
computations by reducing the conditioning set to a small subset of the data. It is not obvious
how to consistently combine parameter estimation and spatial prediction with this approach.

Whereas evaluating the likelihood requires O(n3) operations, the block CL model re-
duces the computational burden to O(n), where the hidden constant would depend on the
block sizes. Moreover, the usual memory restrictions for large datasets are avoided since
the blocks of data can be loaded into memory separately. Finally, the CL approach allows
parallel computing. We test the estimation procedure on a graphical processing unit (GPU)
and achieve a many-fold increase in computational efficiency. This speed-up comes on
top of the efficiency gains resulting from the structure of the CL function. Graphics cards
have evolved into massively parallel computational engines. Statisticians are beginning to
exploit the technology (Suchard and Rambaut 2009; Lee et al. 2010; Suchard et al. 2010).

Section 2 defines the block CL function. Methods for estimation and prediction are
presented in Section 3, and computational methods and parallelization issues are described
in Section 4. Section 5 provides simulation studies. Section 6 presents two data examples.
The computational details related to the CL function are in the Appendix (see online
supplementary materials).

2. BLOCK COMPOSITE LIKELIHOOD FOR SPATIAL DATA

2.1 GEOSTATISTICAL MODEL

Geostatistical settings typically assume, at locations s ∈ D ⊆ �d , d = 2 or 3, a Gaus-
sian response variable Y (s) along with a p × 1 vector of spatially referenced explanatory
variables x(s) that are associated through a spatial regression model

Y (s) = xt (s)β + w(s) + ε(s), (1)

where β = (β1, . . . , βp)t is the regression parameter, and ε(s) ∼ N (0, τ 2) is independent
error. The spatial residual w(s) provides structural dependence, capturing the effect of
unobserved covariates with spatial pattern. The covariance structure of the Gaussian process
w(s) is typically characterized by a small number of parameters. We denote the collection
of all covariance parameters θ , which includes the nugget effect τ 2. Some common models
for cov(w(s), w(s′)) = C(s′, s) are the exponential, Matérn and Cauchy covariance models.

We assume data are available at n locations {s1, . . . , sn}, and denote the collection of
data Y = (Y (s1), . . . , Y (sn))t . Then Y ∼ N (Xβ,�), where � = �(θ) = C + τ 2 In, with
C(i, j ) = cov(w(si), w(sj )). Moreover, row i of matrix X contains the explanatory variables
xt (si). Ignoring a scalar that does not depend on β or θ , the log-likelihood is

�(Y ; β, θ ) = −1

2
log |�| − 1

2
(Y − Xβ)t�−1(Y − Xβ). (2)
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Noting that � is n × n, the difficulty with the usual maximum likelihood method is apparent;
evaluating the log-likelihood requires computing |�| and a quadratic form that includes
�−1, both of which are computationally intractable for large n.

2.2 COMPOSITE LIKELIHOOD

In contrast to the full joint likelihood (Equation (2)), the CL function (Lindsay 1988) is
constructed from marginal likelihoods of subsets of the data, proceeding as though these
subsets were independent. Curriero and Lele (1999) used a spatial CL model based on
pairwise data differences.

We next present a block CL, where we partition the region D into M blocks D1, . . . , DM ,
with ∪kDk = D, Dk ∩ Dl = ∅, for all pairs of blocks k, l. Denote the response in block
k = 1, . . . ,M as Y k = {Y (si); si ∈ Dk}. The number of sites in block k is nk ,

∑
k nk = n.

Let Y kl = (Y t
k, Y t

l )
t be the collection of data in blocks k and l. We define the block composite

log-likelihood as

�CL(Y ; β, θ ) =
M−1∑
k=1

∑
l>k

�(Y kl ; β, θ )

=
M−1∑
k=1

∑
l>k

[
− 1

2
log |�kl| − 1

2
(Y kl − Xklβ)t�−1

kl (Y kl − Xklβ)

]
. (3)

Here, Xkl = (X t
k, X t

l )
t is the collection of all covariates in block k and l, and �kl is the

(nk + nl) × (nk + nl) covariance matrix

�kl =
[

�kl(1, 1) �kl(1, 2)

�kl(2, 1) �kl(2, 2)

]
, (4)

where �kl(1, 1) is the nk × nk covariance matrix of Y k , �kl(2, 2) is the nl × nl covariance
matrix of Y l , and �kl(1, 2) = �t

kl(2, 1) is the nk × nl cross-covariance between Y k and
Y l . If M = 1 or 2, the block CL in Equation (3) is equal to the full likelihood in Equation
(2); if M = n, we get the pairwise likelihood. The block CL is a natural compromise for
spatial models, as the number of blocks M represents a trade-off between computational
and statistical efficiency.

The CL expression is simplified by omitting distant pairs of blocks from Equation (3),
assuming negligible dependence between blocks if they are not neighbors. Let Nk denote
the neighbors of block k. Figure 1(a) shows an illustration of a regular block design with
M = 5 · 5 = 25 blocks on a 2D domain, while Figure 1(b) shows a Voronoi/Delaunay
design. Here, blocks are neighbors if they share a common border. A neighbor structure is
easy to represent as a graph. The edges of block 12 are shown in Figure 1. In Figure 1(b),
block 7 has a border with 14, and this prevents block 8 from being a neighbor of 12.

This neighbor set Nk can be split into a forward part N→
k = {l > k} ∩ {l ∈ Nk} and a

backward part N←
k = {l < k} ∩ {l ∈ Nk}. These two are displayed using black and gray

edge lines in Figure 1. By only considering these neighboring blocks, the second sum in
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Figure 1. Observation sites illustrated by “.” and predictions sites by “x.” A block CL splits the spatial domain
into regular (a) or irregular (b) blocks. Each block communicates pairwise with each of its neighbors. For the
regular grid (a), an interior block has eight neighbors. For a random or adaptive grid (b), the number of neighbors
varies. In both displays, the block indexed 12 has four neighbors with higher indices (black edges).

Equation (3) is only evaluated over l ∈ N→
k , so that

�CL(Y ; β, θ ) =
M−1∑
k=1

∑
l∈N→

k

[
− 1

2
log |�kl| − 1

2
(Y kl − Xklβ)t�−1

kl (Y kl − Xklβ)

]

=
∑

j

[
− 1

2
log |�j | − 1

2
(Y j − Xjβ)t�−1

j (Y j − Xjβ)

]
. (5)

The shorthand notation with index j represents the set of edges (k, l) | l ∈ N→
k . For instance,

in Figure 1(a), the set of j = (k, l)’s is (1, 2), (1, 6), (1, 7), (2, 3), (2, 6), . . . , (24, 25). The
edge notation induces the corresponding shorthand for the block-pair variables �j = �kl ,
Y j = Y kl , and Xj = Xkl defined in Equations (3) and (4).

For data on a regular grid, and with a regular block design, the relative distances between
sites in block-pairs are the same, giving identical covariance matrices �j for all equal-
configuration block-pair neighbors j = (k, l), under stationarity and isotropy assumptions
on the random field. In this case, only a few required determinants and inverses need to be
computed for every block CL evaluation. We note that other methods (in particular spectral
methods) can also exploit regular grids for additional speed-ups.

2.3 GUIDELINES FOR BLOCKING

The optimal blocking will depend on the sampled spatial locations as well as the spatial
correlation model and therefore cannot be determined in general. Nonetheless, we provide
guidelines on how to create the blocking structures that performed well in our experiments.

The aim is to maximize the number of blocks (for computational speed), while minimiz-
ing the correlation between observables not in a block-pair (for statistical efficiency). We
recommend computing the empirical variogram first, and to use this for selecting the blocks.
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Block widths equal to the effective spatial range is a rule of thumb, but smaller blocks also
work well in our examples. The block structure could be adapted based on exploratory
analysis; if preliminary analysis (e.g., directional variograms) suggests anisotropy, grids
can be elongated in the direction of stronger spatial dependence. In addition, specific ap-
plications may have inherent structure that could be used to guide the blocking scheme.
From a computational perspective, it is desirable to have a similar number of points in
each block. This is achieved by using equi-sized blocks for regularly sampled data, while
irregular designs require smaller blocks in regions with high sampling density. In our data
examples, we experiment with both approaches.

Given the relative insensitivity with respect to blocking choices that we have observed
(Tables 1–3), iterative modification of the blocking scheme, for example based on pre-
diction results of initial blocking structures, seems too computationally demanding to be
worthwhile. We instead recommend trying different number of blocks and block sizes,
and checking that the results are insensitive to this choice. In practice, we find it useful to
work with hundreds to thousands of sites per block. This balances the need for fast matrix
factorizations with desire for statistical efficiency. More intricate blocking designs, such as
overlapping blocks or including some points outside the block (similar to suggestions in
Stein, Chi, and Welty 2004), are nevertheless possible.

3. INFERENCE AND PREDICTION USING BLOCK COMPOSITE
LIKELIHOOD

3.1 PROPERTIES OF THE MAXIMUM COMPOSITE LIKELIHOOD ESTIMATOR

The maximum CL estimates of θ and β are given by

(β̂CL, θ̂CL) = argmaxβ,θ [�CL(Y ; β, θ )] .

In general, the maximum CL estimators are known to be consistent and asymptotically
normal under the same conditions as maximum likelihood estimators (Lindsay 1988). In
the case of spatial Gaussian processes, conditions such as those in the literature by Mardia
and Marshall (1984) yield the desired asymptotic properties for the resultant maximum CL
estimators (e.g., Curriero and Lele 1999; Varin 2008).

A useful place to begin analytical exposition is with the vector-valued block composite
score function, defined as ∂�CL(Y ; β, θ )/∂θr , r = 1, . . . , R, where R is the dimension of
the parameter θ . For notational simplicity, we assume here that Y is a mean-zero Gaussian
random field. Differentiating Equation (5) with respect to θr , the score (see Appendix in
the online supplementary materials) can be expressed as

∂�CL(Y ; θ )

∂θr

=
∑

j

[
− 1

2
trace

(
Qj

∂�j

∂θr

)
+ 1

2
Y t

j Qj

∂�j

∂θr

Qj Y j

]
,

where Q = �−1
j . Taking expectations and using E(Y t BY ) = trace(B�), we see that

E

(
∂�CL(Y ; θ )

∂θ r

)
=

∑
j

[
− 1

2
trace

(
Qj

∂�j

∂θr

)
+ 1

2
trace

(
Qj

∂�j

∂θr

) ]
= 0,
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revealing that the block composite score is an unbiased estimating function for θ for any
blocking scheme.

As is typical of asymptotically normal estimators resulting from unbiased estimating
functions, the asymptotic covariance of θ̂CL under expanding domain asymptotics has
a sandwich form (Godambe 1960), and then θ̂CL ∼ N (θ, G−1) under suitable regularity
conditions (Varin 2008). Here, the sandwich information is

G = G(θ ) = H(θ ) J−1(θ)H(θ),

H(θ ) = −E

(
∂2�CL(Y ; θ )

∂θ2

)
, J(θ) = var

(
∂�CL(Y ; θ )

∂θ

)
.

We note that in the case of the full likelihood function, H(θ) J−1(θ) = I , so G(θ ) is just
the Fisher information. For the block CL, analytical expressions are available for both
H(θ) and J(θ ). The negative expected Hessian (see Appendix in the online supplementary
materials) has elements

Hrs(θ ) =
∑

j

1

2
trace

(
Qj

∂�j

dθs

Qj

∂�j

dθr

)
, r, s = 1, . . . , R. (6)

The expression for J (θ) is in the Appendix (see online supplementary materials). In practice,
we evaluate H(θ) and J(θ) at θ̂CL.

To reintroduce covariates into the model, we simply substitute (Y j − Xj β̂CL) for Y j into
the above expressions. For fixed θ , the regression estimate β̂CL is analytically available by
writing out the quadratic form in Equation (5) in terms of β. This gives

β̂CL = A−1b, A =
∑

j

X t
j Qj Xj , b =

∑
j

X t
j Qj Y j . (7)

The covariance matrix of the limiting normal distribution of β̂CL also has a sandwich form,
which is computed from the expected Hessian H(β) = A and the variance of the score:

J = var

(
∂�CL(Y ; θ )

∂β

)
=

∑
j

∑
j ′

cov
(
X t

j Qj Y j , X t
j ′ Qj ′ Y j ′

)

=
∑

j

∑
j ′

X t
j Qj cov(Y j , Y j ′ ) Qj ′ Xj ′ . (8)

In practice, we only sum over terms with edges j = (k, l) and j ′ = (k′, l′) that have common
nodes among the blocks (k, l, k′, l′).

3.2 PREDICTION USING BLOCK COMPOSITE LIKELIHOOD

Suppose that we want to predict the value of Y (s0) at an unobserved site s0. The best
linear unbiased prediction of Y (s0) given the data Y is

Ŷ (s0) = xt (s0)β + �0,1:n�
−1(Y − Xβ), (9)

where �0,1:n is the cross-covariance between s0 and all observation sites {s1, . . . , sn}. The
computational difficulty is related to matrix factorization for large n. The prediction in
Equation (9) is the well-known kriging equation. It is the optimal prediction based on the
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Gaussian likelihood. In this section, we describe the optimal prediction based on the block
CL. The composite prediction is fast to compute and avoids storing the entire dataset at
once. Throughout this section, we assume the parameters β and θ are known, but in practice
we use plug-in values β = β̂CL and θ = θ̂CL.

Consider the task of making predictions at nk0 ≥ 1 unobserved sites, all situated within
block k. The first step is to augment the data vector with an unobserved vector Y k0 at
nk0 prediction locations s0 such that the augmented vector Y a

k = (Y t
k0, Y t

k)t . By including
Y k0 as unobserved data in the block CL and setting the derivative of �CL with respect to
Y k0 equal to 0, we obtain the composite predictions Ŷ k0.

The contribution of the unobserved data Y k0 to the CL is given by block terms (k, l),
l ∈ Nk , looking both forward and backward in the graph of block-edges. We organize these
pairs such that block k is at the top in every block-pair. The (nk0 + nk + nl) × (nk0 + nk +
nl) precision matrix for (Y at

k , Y t
l )

t is denoted Q0kl = { Q0kl(i, j )} with indices i, j for blocks
0 (prediction sites in block k), 1 (data sites in block k), and 2 (data sites in block l). The
block CL at the unobserved locations is thus

�CL(Y k0) =
∑
l∈Nk

[
const − 1

2
(Y k0 − Xk0β)t Q0kl(0, 0)(Y k0 − Xk0β)

− (Y k0 − Xk0β)t Q0kl(0, 1)(Y k − Xkβ)

− (Y k0 − Xk0β)t Q0kl(0, 2)(Y l − X lβ)

]
, (10)

now regarded as a function of Y k0, and where the nk0 × p matrix Xk0 collects the explana-
tory variables at prediction sites in block k.

The first and second derivatives of �CL(Y k0) are easily obtained by differentiating the
quadratic form in Equation (10). The first derivative is

d�CL(Y k0)

dY k0
= −

∑
l∈Nk

[ Q0kl(0, 0)(Y k0 − Xk0β) + Q0kl(0, 1)(Y k − Xkβ)

+ Q0kl(0, 2)(Y l − X lβ)]. (11)

Setting the derivative in Equation (11) equal to 0 gives the block composite prediction

Ŷk0 = Xk0β + A−1
0 b0,

A0 =
∑
l∈Nk

Q0kl(0, 0), b0 = −
∑
l∈Nk

[ Q0kl(0, 1)(Y k − Xkβ) + Q0kl(0, 2)(Y l − X lβ)].

(12)

Since the mean of Y k is Xkβ, for any k, it is easily seen that Equation (11) is an unbiased
estimating function for Y k0 by checking that E (d�CL(Y k0)/dY k0) = 0. Here, the expecta-
tion is taken over Y , including the random Y k0. Given Ŷ (s0) on a fine grid of prediction
locations s0, the residual spatial surface is estimated using Ŷ (s0) − xt (s0)β, assuming we
know the covariates at s0. At data locations, the nonstructured error residual is Y (s) − Ŷ (s).

The asymptotic variance of the composite prediction is described by a Godambe sand-
wich;

G0(Y k0) = H0(Y k0) J−1
0 (Y k0)H0(Y k0),
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H0(Y k0) = −E

(
d2�CL(Y k0)

dY 2
k0

)
, J0(Y k0) = var

(
d�CL(Y k0)

dY k0

)
. (13)

The prediction variances at locations s0 are the diagonal elements of G−1
0 (Y k0). The Hessian

is the fixed quantity d2�CL(Y k0)/dY 2
k0 = −A0 defined in Equation (12). The variance

that defines J0(Y k0) is computed over Y , including the random Y k0. By introducing the
nk0 × (nk0 + nk) matrix Bk0 = [

∑
l∈Nk

Q0kl(0, 0),
∑

l∈Nk
Q0kl(0, 1)] from Equation (11)

we get

J0(Y k0) = var

(
d�CL(Y k0)

dY 0,k

)
= Bk0var

(
Y a

k

)
Bt

k0

+ 2
∑
l∈Nk

B0kcov
(
Y a

k , Y l

)
Qt

0kl(0, 2)

+
∑
l∈Nk

∑
l′∈Nk

Q0kl(0, 2)cov(Y l , Y l′ ) Qt
0kl′ (0, 2). (14)

The derivations of the sampling properties of the composite prediction contained in this
section are computed from a somewhat different standpoint than the analogous deriva-
tions for parameter estimation above. In Section 3.1, the parameters were considered fixed
and unknown, while in this section we have considered the prediction variable as a ran-
dom quantity. This distinction resembles that between confidence intervals and prediction
intervals in traditional regression analysis.

We note that if we fix the block boundaries and allow the data density to increase to
infinity, the block CL prediction converges to the kriging prediction, and thus enjoys the
same infill asymptotic properties as the optimal predictor.

4. COMPUTATION

4.1 COMPUTING THE BLOCK COMPOSITE ESTIMATOR

Optimization of the block CL proceeds iteratively, alternately solving for β̂CL given θ̂CL,
and for θ̂CL given β̂CL. While each optimization with respect to the regression parameters
β can be expressed analytically (see Equation (7)), the optimization for θ must be done
numerically. We define a starting value θ (0) and use Fisher-scoring updates according to

θ(b + 1) = θ (b) − E

[
∂2�CL(Y ; β, θ (b))

∂θ2

]−1
∂�CL(Y ; β, θ (b))

∂θ
. (15)

The score ∂�CL(Y ; β, θ )/∂θ and the expectation of the second derivative of the block CL can
be derived analytically (Section 3.1 and online Appendix). Convergence typically occurs in
about five Fisher-scoring updates. The expressions in Equation (15) require the derivatives
of the covariance function. For most covariance models in common use, the derivatives
∂�j /∂θr are available in closed form. For instance, the exponential covariance function
�j (i, i ′) = τ 2I (i = i ′) + σ 2 exp(−φh), h = ‖si − si ′ ‖, has derivatives

∂�j (i, i ′)
∂σ 2

= exp(−φh),
∂�j (i, i ′)

∂φ
= −hσ 2 exp(−φh),

∂�j (i, i ′)
∂τ 2

= I (i = i ′).
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An efficient algorithm for the Fisher-scoring update is given in Algorithm 1. Note that
many of the derivatives and matrix factorizations are the same for the score and Hessian,
and hence can be reused.

Algorithm 1 Computation for a Fisher-scoring update for the block CL

Require: θ = (θ1, . . . , θR)t , initialize ur = 0 andHrs = 0, r = 1, . . . , R, s = r, . . . , R.
1: for k = 1 to M − 1 do
2: for l ∈ N→

k do
3: Build and factorize �kl = Lkl Lt

kl . Qkl = �−1
kl = L−t

kl L−1
kl

4: Compute qkl = Qkl(Y kl − Xklβ)
5: for r = 1 to R do
6: Compute W klr = Qkl

d�kl

dθr

7: ur ← ur − 1
2 trace(W klr ) + 1

2qt
kl

d�kl

dθr
qkl

8: for s = r to R do
9: Hrs ← Hrs + 1

2 trace(W klr W kls)
10: end for
11: end for
12: end for
13: end for

14: return d�CL
dθ

= (u1, . . . , uR)t ,−E
(

d2�CL
dθ r dθs

)
=

⎛
⎜⎜⎝

H11 · · · H1R

...
. . .

...

H1R · · · HRR

⎞
⎟⎟⎠,

θ = θ + H−1u.

4.2 COMPUTATIONAL EFFICIENCY AND PARALLEL COMPUTING

To study computational aspects of the block CL approach, we compare computing times
for a variety of sites per block, nk = c, and data sizes, n = cM . Under the assumption
of fixed c and increasing n, the computational complexity of the block CL is O(n). This
follows since the for-loop goes over n|N→

k |/c steps, and at every step the computation
time is O(c3) for the smaller (fixed-size c) matrix factorization. This kind of linear order
in n is usually required for massive datasets. It holds for most basis representations such as
fixed-rank kriging (Cressie and Johannesson 2008). In contrast, Fourier approximations are
O(n log n), while Gaussian Markov random fields (Lindgren, Lindstrøm, and Rue 2011)
are O(n3/2) for two-dimensional spatial data and O(n2) for three spatial dimensions, unless
one embeds the process in a low-rank representation.

In addition to the order-n computational complexity, the block CL approach has no limit
on data size due to computer memory. Since the CL, score, and Hessian computations are
sums over independent calculations for each pair of blocks, the only in-memory information
is that pertinent to the current pair.

The block CL approach is highly amenable to parallelization. First, the CL expression
is a sum over independent calculations for each pair of blocks, and these can be performed
in parallel. Second, the main computational cost is due to linear algebra subroutines, for
example matrix decompositions, which are also highly parallelizable (Galoppo et al. 2005;
Volkov and Demmel 2008). We investigate the use of GPUs to accelerate computation and
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allow for analysis of large datasets. The two approaches we assessed were a MATLAB tool-
box called Jacket and Compute Unified Device Architecture (CUDA) C. Both approaches
require CUDA-capable NVIDIA GPUs.

5. SIMULATION STUDY

5.1 INFERENCE AND PREDICTION

In this synthetic data example, we vary the number of spatial blocks to investigate the way
blocking schemes trade off statistical for computational efficiency. We generate a spatial
design with n = 2000 observation sites on a spatial domain (0, 1) × (0, 1). The selected
design is of a regular plus random infill type (Diggle and Lophaven 2006). We generate
262 = 676 regular points over the domain, then select 100 of these at random, and draw
10 random points around each of them from a U (−0.04, 0.04) in both coordinates. The
remaining 324 sites are drawn randomly within the unit square. We define 500 prediction
sites drawn from U (0, 1) in both coordinates and not included in the n = 2000 data.

With n as small as 2000, we can compare CL with full likelihood results. Co-
variates are xt (si) = (1, si1), with true regression parameters β = (−1, 1)t . We use a
Matérn covariance model with smoothness parameter 3/2, that is, �(i, i ′) = τ 2I (h =
0) + σ 2(1 + φh) exp(−φh), h = ||si − si ′ ||.

We use a parameterization on the real line, with log precisions and log-range parameter:
θ1 = − log(σ 2), θ2 = log(φ), and θ3 = − log(τ 2). This parameterization makes the Fisher-
scoring optimization robust. The scale parameters used to generate the data are θ1 = 0,
θ2 = 3, and θ3 = 2. The so-called effective range, the distance at which the correlation
decays to 5%, is 0.24. The asymptotic normality for parameter estimation essentially relies
on expanding domain asymptotics (Cressie 1993), which holds well when the correlation
range of the process is small compared to the spatial domain (Zhang and Zimmerman
2005). Here, the range is 1/4 of the domain, which is reasonably large in most contexts.

The results of mean square error (MSE), asymptotic relative efficiency (RE), coverage
probabilities, and computing time are given in Table 1. For the CL, we use regular blocks
(Figure 1(a)) of lattice size 9 = 32, 25 = 52, 49 = 72, and 100 = 102. The results are
averages over 1000 replicates of n = 2000 data for the same spatial design. The asymptotic
RE is defined by the ratio of the asymptotic variances obtained by the Hessian (likelihood)
and the Godambe sandwich (CL).

For all models, the increase in MSE for the block CL models is small relative to the full
likelihood model, in particular for predictions. The asymptotic RE (in parentheses) show
that standard deviations of the parameter estimates are larger for the CL models. For all
block CL models, the prediction efficiency is near 1. The coverage probabilities are close
to the nominal level, and not much smaller for the block CL models than for full likelihood.
The slight undercoverage seen in both the CL and the full likelihood is caused by the
imperfect accuracy of the asymptotic approximation to the finite sample problem, rather
than by the omission of terms in the CL expression. Notably, the prediction coverages are
excellent in all cases, including all composite models. The computing time is reduced by a
factor 7 when using the 49 or 100 block CL model instead of the full likelihood.

We next study the performance by cross-plotting the CL and likelihood results. In
Figure 2(a), we show the parameter estimates for log-precision (left), log-range (middle),
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Table 1. Synthetic data with Matérn (3/2) covariance function (n = 2000). The asymptotic CL variances, relative
to full likelihood (L), are shown in parentheses. Results are averages over 1000 replicates

L CL9 CL25 CL49 CL100

MSE β̂1 (Asymp. RE) 0.05 (1) 0.05 (0.81) 0.06 (0.77) 0.06 (0.74) 0.06 (0.79)
MSE β̂2 (Asymp. RE) 0.17 (1) 0.21 (0.82) 0.24 (0.77) 0.23 (0.74) 0.23 (0.79)
MSE θ̂1 (Asymp. RE) 0.014 (1) 0.018 (0.80) 0.019 (0.78) 0.019 (0.80) 0.018 (0.85)
MSE θ̂2 (Asymp. RE) 0.0036 (1) 0.0043 (0.80) 0.0048 (0.77) 0.0052 (0.76) 0.0054 (0.76)
MSE θ̂3 (Asymp. RE) 0.0007 (1) 0.0008 (0.86) 0.0008 (0.88) 0.0008 (0.88) 0.0008 (0.87)
Coverage (0.95) β̂1 0.96 0.95 0.96 0.96 0.96
Coverage (0.95) β̂2 0.93 0.92 0.93 0.92 0.92
Coverage (0.95) θ̂1 0.93 0.92 0.92 0.91 0.91
Coverage (0.95) θ̂2 0.94 0.94 0.93 0.91 0.91
Coverage (0.95) θ̂3 0.95 0.95 0.95 0.95 0.94
MSPE (Mean Asymp. RE) 193 (1) 195 (1) 198 (1) 200 (0.99) 204 (0.97)
Mean coverage (0.95) 0.95 0.95 0.95 0.95 0.95
Computing time (sec), no GPU 76 39 16 12 12

and log-nugget precision (right) using maximum likelihood (x-axis) versus that of CL with
100 blocks (y-axis). The points fall near the straight line with unit slope, showing that the
maximum CL estimates are very close to the maximum likelihood estimates. In Figure 2(b),
we similarly show the asymptotic standard deviations based on the Hessian of the likelihood
and the Godambe sandwich for the 100-block CL model. The points are above the straight
line, visualizing the slight decrease in efficiency when using the block CL.

Figure 2(c) shows cross-plots of predictions, which fall tightly along the straight line
with unit slope. Figure 2(d) shows the associated prediction standard errors. The points are
near the straight line, indicating that the block CL model does not lose much prediction
efficiency. The clusters of points off above the y = x line in Figure 2(d) correspond to
predictions near the block boundaries. The increased prediction variance in these regions
is caused by edge effects, where the CL ignores some of the dependency effects outside the
block-pair interactions. The sandwich standard errors correctly account for this effect.

The results show that the statistical efficiency decreases moderately with increased
number of blocks. For prediction purposes, the effect is very small. We also tried other
covariance functions, and the type of correlation model does not seem to affect the results
much. Increasing the effective correlation length while keeping the domain fixed degrades
the accuracy of the inference for parameter estimation because it decreases fidelity to the
expanding domain asymptotics. This effect is largest for the spatial range parameter, while
predictive performance remains quite good.

5.2 COMPUTING TIME ON THE GPU

To assess the computational aspects of the CL algorithm in parallel computing environ-
ments, we perform simulation studies with varying block sizes and numbers of observations
and record the total run time. For easier comparison we fix the number of points in the
blocks nk = c, for all k. This entails a spatial design with c random sites in every block. We
study performance for various c and data sizes n. We again use regular blocks covering the
domain (0, 1) × (0, 1), and a Matérn (3/2) covariance function with effective correlation
range of about 0.24.
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Figure 2. Synthetic data: comparison of full likelihood (x-axis) and CL (y-axis). (a) Estimates. (b) Asymptotic
standard deviation of estimators. (c) Predictions. (d) Prediction standard deviations. The CL is based on 100 blocks.
The number of prediction sites is 500, and results are computed over 1000 replicates of data at n = 2000 observation
sites. θ1 is a precision parameter, θ2 is a range parameter, and θ3 is a nugget precision parameter.

First, we instruct MATLAB/Jacket to use the gfor loop on the GPU. The best perfor-
mance gain we attain using gfor is less than 10-fold relative to MATLAB code without
Jacket. It may be possible to increase these gains with a thorough understanding of how
Jacket interfaces with the GPU, and the associated memory allocation.

Instead, we study the computational gain when using parallel computing for matrix
decomposition using CUDA C. We next show the resulting CUDA C computing times for
the Fisher-scoring algorithm on synthetic datasets of varying sizes and CL models. The
number of points per blocks c ranges from 128 to 4096 on the CPU, the largest block size
available on a 32-bit machine, and 6464 on the GPU, the largest available block size within
the GPU memory constraints, and for different dimension n. Thus, using quadratic regular
grids of blocks, the smallest dataset has 128 × 3 × 3 = 1152 observations and the largest
dataset has 6464 × 13 × 13 = 1,092,416 observations.

Figure 3(a) shows GPU computation times as a function of data size for different block
sizes. This display clearly shows the linear scaling of the algorithm with data size for fixed
number of points c per block. Figure 3(b) shows the associated computation times for fixed
data sizes and varying block sizes on both the CPU and GPU. The computation times
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Figure 3. (a) Computation times for a single Fisher-scoring iteration on a NVIDIA C2050 GPU as a function of
data size for a variety of block sizes. (b) Computation times, plotted on a cube-root scale, on both the CPU and
GPU for a single Fisher-scoring iteration as a function of block size for specific data sizes.

are plotted on a cube-root scale to emphasize that the Fisher-scoring algorithm has cubic
complexity in c, the number of points per block. The speed-up when running the equivalent
algorithm on the GPU compared with the CPU is linear in block size and essentially constant
within a given block size. The speed-up was 1.4-fold at c = 128, 13-fold at c = 512, 29-
fold at c = 1024, and 112-fold at c = 4096. In our experience, the Fisher-scoring algorithm
takes about five iterations to reach convergence. This speed-up would allow a one million
observation dataset to be fully analyzed in half a day using c = 1024 or about 2 days using
c = 4096. Of course, one could also use parameter estimates from smaller block sizes as
starting values for larger blocks, etc.

A more sophisticated implementation on the GPU would allow more speed-up for the
CL model, using a parallel for-loop and running matrix decompositions in parallel. This is
future work.

6. REAL DATA EXAMPLES

To study the performance of the block CL in real-world settings, we test it on one dataset
from the mining industry and one of total column ozone (TCO) generated from satellite
retrievals. For the mining dataset, we compare CL with the predictive process model that
easily accommodates three-dimensional data. For the massive satellite dataset, we compare
block CL with fixed-rank kriging, which has been used previously to analyze this dataset
(Cressie and Johannesson 2008).

6.1 MINING DATASET

We study a joint-frequency dataset acquired in an iron mine in Norway. Such borehole
data are useful for predicting the stability requirements in the mine and for avoiding rock-
fall. The raw data are aggregated to 4 m blocks along the boreholes, and the total number of
measurements is n = 11,107. Ellefmo and Eidsvik (2009) analyzed a subset of this dataset.
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Figure 4. Mining data: (a) Data sites in a Norwegian iron mine. The data size is n = 11,107, collected in about
200 boreholes. (b) Histogram of shifted log-transformed data of joint frequencies. (c) Empirical variogram.

In Figure 4(a), we display the three-dimensional locations of the measurements. The
logarithm of the joint-frequency observations are standardized (Figure 4(b)). We apply a
geostatistical model to the resulting data. Figure 4(c) displays the empirical variogram,
with nugget about τ 2 = 0.2/2 = 0.322, the correlation range about 100 m, and the variance
of the structured effect about σ 2 = (0.5−0.2)/2 = 0.392.

We use the block CL model with different block sizes. The blocks are constructed
by a Voronoi/Delaunay tessellation for the (north, east) coordinates of the data, with cells
extending for all depths. The tessellation is made by random sampling, without replacement,
among all data sites, which on average gives smaller area blocks where sampling locations
are dense. We compare the CL results with the predictive process model (with 500 or
1000 knots) using tapering of the residual covariance process (Sang and Huang 2012). The
predictive process is a linear (kriging) combination of the observed data at the knots drawn
at random, without replacement, from among the data locations. We use a Wendland taper
with tapering length set to 100 m.

Table 2 shows the parameter estimates, the average mean squared prediction error
(MSPE), and coverage probabilities for a hold-out set of 1000 prediction sites. We com-
pare two common covariance functions: the Cauchy(3) which is �(h) = σ 2(1 + φh)−3 +
τ 2I (h = 0), and Matérn(3/2) with �(h) = σ 2(1 + φh) exp(−φh) + τ 2I (h = 0). The
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Table 2. Mining data: parameter estimates, MSPE, and coverage probabilities for prediction distributions. The
different columns correspond to different number of blocks for the CL model and different knot sizes for the
predictive process models with tapered residuals (PP + T)

CL200 CL40 CL10 PP + T500 PP + T1000

σ̂ 0.41 0.42 0.42 0.41 0.41
Cauchy φ̂ 0.013 0.013 0.012 0.010 0.011

τ̂ 0.29 0.29 0.29 0.29 0.29
MSPE 145 144 143 216 189
Pred cov (0.95) 0.95 0.95 0.95 0.95 0.95
Timing (min) 1 2 5 8 30
σ̂ 0.38 0.39 0.39 0.39 0.39
φ̂ 0.071 0.070 0.068 0.061 0.063

Matérn (3/2) τ̂ 0.33 0.33 0.33 0.33 0.33
MSPE 149 148 148 217 188
Pred cov (0.95) 0.95 0.95 0.95 0.95 0.95
Timing (min) 1 2 5 8 30

parameter estimates are very similar for all models, but the range parameter φ is a lit-
tle smaller for the predictive process models, imposing a smoother process. The MSPE is
smaller for the CL models than for the predictive process models. The coverage proba-
bilities are excellent for all models considered. There are only small differences between
the two spatial covariance functions. The CL approach with 200 blocks is about five times
faster than using 10 blocks, with only a slight increase in MSPE.

6.2 TOTAL COLUMN OZONE DATASET

We next analyze TCO data acquired from an orbiting satellite mounted with a passive
sensor registering backscattered light. The dataset we consider here was previously analyzed
by Cressie and Johannesson (2008), and is displayed in Figure 5. The dataset consists

Figure 5. Total column ozone data: number of measurements is n = 173,405.
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of n = 173, 405 measurements. Cressie and Johannesson (2008) used fixed-rank kriging
(FRK) in their analysis. This approach is based on a basis representation of the spatial
Gaussian process. They use 396 local bi-square basis functions at various resolutions
recovered from a discrete global grid (Sahr 2011).

We compare the block CL models using 15, 24, and 30 regular latitude/longitude blocks.
For the one with most blocks (900), we only use the four nearest neighbors in the CL
expression. The 15 and 24 cases have eight neighbors. We use a fixed and constant mean
β1, and a Cauchy (3) type covariance function. The block CL parameter estimates are similar
for the three models: (σ̂ 2, φ̂, τ̂ 2) is (702, 0.011, 4.672) using 15 × 15 blocks, (672, 0.009,
4.672) using 24 × 24 blocks, and (632, 0.007, 4.692) for the nearest neighbor blocking
scheme.

We predict on a 180 × 288 grid, corresponding to the so-called NASA Level 2 data
product. The latitude ranges from −89.5 to 89.5 in 1◦ steps, while longitude ranges from
−179.375 to 179.375 in 1.25◦ steps. In total, this entails 51,840 prediction sites. Predic-
tion maps of TCO for the three different block CL models are very similar. Figure 6(a)
shows the prediction map of TCO using 30 × 30 blocks. The marginal prediction standard
deviations of TCO are displayed in Figure 6(b). We notice that the prediction standard
deviations are much higher near the Arctic because there is no data there. We further note
the increased estimated uncertainty in regions of missing data, and light-colored lines going
south-southwest, where there is less dense satellite coverage. In addition, there are visible
artifacts of the block CL model in the prediction standard deviations. These regions of
increased estimated uncertainty where data is lacking and on the border of spatial blocks

Figure 6. Total column ozone data: top displays are based on the CL model with 30 × 30 longitude and
latitude blocks. Bottom displays are based on fixed-rank kriging. Predictions ((a) and (c)) and prediction standard
deviations ((b) and (d)).
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Table 3. Total column ozone data: mean square prediction error (MSPE) and coverage probabilities (95%) for
a 25,000 hold-out set. The results are for fixed-rank kriging with resolution 4 (FRK, 4) and resolution 3 (FRK,
3), and for CL model with 15 × 15 (CL, reg15), 24 × 24 blocks (CL, reg 24), and a four-neighbor version with
30 × 30 blocks (CL, fast 30)

FRK, 4 FRK, 3 CL, reg 15 CL, reg 24 CL, fast 30

MSPE 44.3 88.1 25.7 26.1 26.0
Pred cov (0.95) 0.81 0.71 0.96 0.96 0.96
Timing (min) 6 2 40 20 4

are desirable—indeed, they indicate that the sandwich variance calculations are correctly
accounting for sparse data and block boundary effects. As is also desirable, these block
boundary effects are not seen on the prediction map.

We next compare the CL with FRK. Here, we follow Cressie and Johannesson (2008)
in using multi resolution bi-square basis functions centered at the three lowest resolution
discrete global grids. Resolution 4 is used to construct the binning for the moment-based
parameter estimation approach (Cressie and Johannesson 2008). Figure 6 shows the FRK
predictions (c) and prediction standard deviations (d) with the nugget effect properly
accounted for. Notably, the predictions obtained by FRK are much smoother than the block
CL results. Moreover, the estimated prediction standard deviations are smaller for FRK
and vary less around the globe. The patches of missing data are not visible in Figure 6(d).
Similar to the block-edge effects in the CL model, the locations of the basis functions are
easily seen as artifacts in the estimated FRK standard error map.

To compare prediction and coverage accuracy, we use a hold-out set of 25,000 randomly
selected data locations around the globe. We estimate the model parameters based on the
remaining data and predict at the hold-out locations. Table 3 shows the comparison of
the block CL and FRK. All block CL models obtain coverages close to the nominal rate
and have similar prediction error. FRK with resolution 3 or 4 (using more basis functions)
shows much larger prediction errors and it undercovers conspicuously. These results show
that for this dataset, the low-dimensional representation in FRK is oversmoothing. The
approximate computing times tell us that FRK with resolution 3 is the fastest, but CL with
many blocks is comparable.

Bolin and Lindgren (2011) also analyzed the TOMS data and produced predictions
that visually resemble ours. Their statistical model is quite different in that it constructs a
dependence model through a stochastic differential equation formulation, whereas the CL
approach works directly with the covariance function. The stochastic differential equation
approach directly generates a very sparse precision matrix. However, factors of this sparse
matrix, required for estimation and prediction, may not be sparse, particularly for three-
dimensional applications. As a result, storing this large matrix factor becomes prohibitive
for large-enough datasets. This restriction may be mitigated to some degree by leveraging
ideas from numerical linear algebra (Aune, Simpson, and Eidsvik 2014).

7. CLOSING REMARKS

In this article, we use a block CL model for parameter estimation and prediction in large
Gaussian spatial models. The properties of the CL are well understood in the context of
parameter estimation. Here we also present a method for spatial prediction using the block
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CL. We show through a simulation study that the block CL performs well for reasonably
sized blocks, especially for spatial prediction. Using the divide and conquer strategy inherent
in the CL, the required computation time is reduced considerably relative to likelihood-
based calculations. We also test the block CL on one large dataset from the mining industry
(n = 11,107) and one massive dataset from satellite measurements (n = 173,405). For
these datasets, we compare the block CL with predictive process models and with fixed-
rank kriging. The full-rank block CL method provides better results in terms of MSEs and
coverage probabilities in the examples we considered.

The block CL approach requires the selection of blocks. We provide guidelines for this
step in the article, and try several alternatives in the examples. In practice, we recommend
testing results with a couple of choices of block sizes (hundreds to thousands sites per
block) and blocking designs. The optimal blocking strategy would depend on the spatial
correlation and the design of data points, and prediction results do not seem very sensitive
to the detailed blocking approach.

We implemented parallel versions of the block CL model. For moderate to large block
sizes, this parallel implementation gives speed-ups for two to three orders of magnitude,
on top of the speed-up achieved by the CL construction. A topic for future work is to tailor
the distribution of block data to the GPU for maximum reduction of the computing time,
in a software package. CPU and GPU examples of code as well as datasets are available as
supplemental material at the journal’s web site.

In this article, we considered only spatial Gaussian processes. In future work, we aim
to look at spatio-temporal processes as well. For example, the satellite data in Section
6.2 is from just 1 day of retrievals. It is more useful to analyze these types of data over
several days. Bai, Song, and Raghunathan (2012) studied composite models for parameter
estimation in spatio-temporal models and Bevilacqua et al. (2012) proposed weighted CL
models for pairwise interactions of space–time variables.

It would also be interesting to study the current approach in hierarchical models. It is
relatively straightforward to predict a latent variable, say w(s) in a block k, by adding this in
the data vector (Y t

k,w
t
k) for block k, and then computing the score, Hessian, and prediction

sandwich for missing data wk . Spatial generalized linear models have been studied in the CL
literature (Varin, Reid, and Firth 2011), and we believe approximate block CL approaches
may be suitable here. More complex hierarchical modeling structures are challenging in
this setting.

Data dimensions will likely become even larger in the future. We foresee a larger future
interest in O(n) approximations for spatial and spatio-temporal applications, as well as in
the use of parallel computing environments.

SUPPLEMENTARY MATERIALS

Appendix: Score function and Hessian.
Datasets, CPU, and GPU examples of code.
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