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ABSTRACT
Spatial processmodels for analyzing geostatistical data entail computations that become prohibitive as the
number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor
Gaussianprocess (NNGP)models toprovide fullymodel-based inference for largegeostatistical datasets.We
establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian
densities with sparse precisionmatrices. We embed the NNGP as a sparsity-inducing prior within a rich hier-
archicalmodeling framework and outline how computationally efficientMarkov chainMonte Carlo (MCMC)
algorithms can be executed without storing or decomposing large matrices. The floating point operations
(flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substan-
tial scalability. We illustrate the computational and inferential benefits of the NNGP over competing meth-
ods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset
at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article
are available online.

1. Introduction

With the growing capabilities of Geographical Information Sys-
tems (GIS) and user-friendly software, statisticians today rou-
tinely encounter geographically referenced datasets containing
a large number of irregularly located observations on multiple
variables. This has, in turn, fueled considerable interest in sta-
tistical modeling for location-referenced spatial data; see, for
example, the books by Stein (1999), Moller and Waagepetersen
(2003), Schabenberger and Gotway (2004), and Cressie and
Wikle (2011), and Banerjee, Carlin, and Gelfand (2014) for
a variety of methods and applications. Spatial process models
introduce spatial dependence between observations using an
underlying random field, {w(s) : s ∈ D}, over a region of inter-
est D, which is endowed with a probability law that specifies
the joint distribution for any finite set of random variables. For
example, a zero-centered Gaussian process ensures that w =
(w(s1),w(s2) . . . ,w(sn))′ ∼ N(0,C(θ)), where C(θ) is a fam-
ily of covariancematrices, indexed by an unknown set of param-
eters θ. Such processes offer a rich modeling framework and are
being widely deployed to help researchers comprehend complex
spatial phenomena in the sciences. However, model fitting usu-
ally involves the inverse and determinant of C(θ), which typi-
cally require ∼ n3 floating point operations (flops) and storage
of the order of n2. These become prohibitive when n is large and
C(θ) has no exploitable structure.

Broadly speaking, modeling large spatial datasets proceeds
from either exploiting “low-rank” models or using sparsity.
The former attempts to construct spatial processes on a lower-
dimensional subspace (see, e.g., Higdon 2001; Kammann and

CONTACT Sudipto Banerjee sudipto@ucla.edu Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA -
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA

Wand 2003; Rasmussen and Williams 2005; Stein 2007, 2008;
Banerjee et al. 2008; Crainiceanu et al. 2008; Cressie and Johan-
nesson 2008; Finley, Banerjee, and McRoberts 2009) by regress-
ing the original (parent) process on its realizations over a smaller
set of r << n locations (“knots” or “centers”). The algorith-
mic cost for model fitting typically decreases from O(n3) to
O(nr2 + r3) ≈ O(nr2) flops since n >> r. However, when n
is large, empirical investigations suggest that r must be fairly
large to adequately approximate the parent process and the nr2
flops become exorbitant (see Section 5.1). Furthermore, low-
rankmodels performpoorlywhen neighboring observations are
strongly correlated and the spatial signal dominates the noise
(Stein 2014). Although bias-adjusted low-rank models tend to
perform better (Finley, Banerjee, andMcRoberts 2009; Banerjee
et al. 2010; Sang and Huang 2012), they increase the computa-
tional burden.

Sparsemethods include covariance tapering (see, e.g., Furrer,
Genton, and Nychka 2006; Kaufman, Scheverish, and Nychka
2008; Du, Zhang, and Mandrekar 2009; Shaby and Ruppert
2012), which introduces sparsity in C(θ) using compactly sup-
ported covariance functions. This is effective for parameter esti-
mation and interpolation of the response (“kriging”), but it has
not been fully developed or explored for more general infer-
ence on residual or latent processes. Introducing sparsity in
C(θ)−1 is prevalent in approximating Gaussian process likeli-
hoods using Markov random fields (e.g., Rue and Held 2005),
products of lower-dimensional conditional distributions (Vec-
chia 1988, 1992; Stein, Chi, and Welty 2004), or composite like-
lihoods (e.g., Bevilacqua and Gaetan 2014; Eidsvik et al. 2014).
However, unlike low-rank processes, these do not, necessarily,
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extend to new random variables at arbitrary locations. There
may not be a corresponding process, which restricts inference
to the estimation of spatial covariance parameters. Spatial pre-
diction (“kriging”) at arbitrary locations proceeds by imput-
ing estimates into an interpolator derived from a different pro-
cess model. This may not reflect accurate estimates of predictive
uncertainty and is undesirable.

Our intended inferential contribution is to offer substan-
tial scalability for fully process-based inference on underly-
ing, perhaps completely unobserved, spatial processes. Moving
from finite-dimensional sparse likelihoods to sparsity-inducing
spatial processes can be complicated. We first introduce spar-
sity in finite-dimensional probability models using specified
neighbor sets constructed from directed acyclic graphs. We
use these sets to extend these finite-dimensional models to a
valid spatial process over uncountable sets. We call this pro-
cess a nearest-neighbor Gaussian process (NNGP). Its finite-
dimensional realizations have sparse precision matrices avail-
able in closed form.While sparsity has been effectively exploited
by Vecchia (1988), Stein, Chi, and Welty (2004), Emory (2009),
Gramacy and Apley (2014), Gramacy, Niemi, andWeiss (2014),
and Stroud, Stein, andLysen (2014) for approximating expensive
likelihoods cheaply, a fully process-basedmodeling and inferen-
tial framework has, hitherto, proven elusive. TheNNGP fills this
gap and enriches the inferential capabilities of existing meth-
ods by subsuming estimation of model parameters, prediction
of outcomes, and interpolation of underlying processes into one
highly scalable unifying framework.

To demonstrate its full inferential capabilities, we deploy
the NNGP as a sparsity-inducing prior for spatial processes
in a Bayesian framework. Unlike low-rank processes, the
NNGP always specifies nondegenerate finite dimensional dis-
tributions making it a legitimate proper prior for random
fields and is applicable to any class of distributions that sup-
port a spatial stochastic process. It can, therefore, model
an underlying process that is never actually observed. The
modeling provides structured dependence for random effects,
for example, intercepts or coefficients, at a second stage of
specification where the first stage need not be Gaussian.
We cast a multivariate NNGP within a versatile spatially
varying regression framework (Gelfand et al. 2003; Banerjee
et al. 2008) and conveniently obtain entire posteriors for all
model parameters as well as for the spatial processes at both
observed and unobserved locations. Using a forestry exam-
ple, we show how the NNGP delivers process-based infer-
ence for spatially varying regression models at a scale where
even low-rank processes, let alone full Gaussian processes,
are unimplementable even in high-performance computing
environments.

Here is a brief outline. Section 2 formulates the NNGP using
multivariate Gaussian processes. Section 3 outlines Bayesian
estimation and prediction within a very flexible hierarchical
modeling setup. Section 4 discusses alternative NNGP models
and algorithms. Section 5 presents simulation studies to high-
light the inferential benefits of the NNGP and also analyzes for-
est biomass from a massive USDA dataset. Finally, Section 6
concludes the article with a brief summary and pointers toward
future work.

2. Nearest-Neighbor Gaussian Process

2.1 Gaussian Density on Sparse Directed Acyclic Graphs

We will consider a q-variate spatial process over �d . Let w(s) ∼
GP(0,C(·, · | θ))denote a zero-centered q-variateGaussian pro-
cess, where w(s) ∈ �q for all s ∈ D ⊆ �d . The process is com-
pletely specified by a valid cross-covariance function C(·, · | θ),
which maps a pair of locations s and t in D × D into a q ×
q real-valued matrix C(s, t) with entries cov{wi(s),w j(t)}.
Here, θ denotes the parameters associated with the cross-
covariance function. Let S = {s1, s2, . . . , sk} be a fixed collec-
tion of distinct locations inD, which we call the reference set. So,
wS ∼ N(0,CS (θ)), where wS = (w(s1)′,w(s2)′, . . . ,w(sk)′)′
and CS (θ) is a positive definite qk × qk block matrix with
C(si, s j) as its blocks. Henceforth, we write CS (θ) as CS , the
dependence on θ being implicit, with similar notation for all spa-
tial covariance matrices.

The reference set S need not coincide with or be a part of the
observed locations, so kneednot equaln, althoughwe later show
that the observed locations are a convenient practical choice for
S .When k is large, parameter estimation becomes computation-
ally cumbersome, perhaps even unfeasible, because it entails the
inverse and determinant ofCS . Here, we benefit from expressing
the joint density of wS as the product of conditional densities,
that is,

p(wS ) = p(w(s1)) p(w(s2) |w(s1))
. . . p(w(sk) |w(sk−1), . . . ,w(s1)) , (1)

and replacing the larger conditioning sets on the right-hand side
of (1) with smaller, carefully chosen, conditioning sets of size
at most m, where m � k (see, e.g., Vecchia 1988; Stein, Chi,
and Welty 2004; Gramacy and Apley 2014; Gramacy, Niemi,
andWeiss 2014). So, for every si ∈ S , a smaller conditioning set
N(si) ⊂ S \ {si} is used to construct

p̃(wS ) =
k∏

i=1

p(w(si) |wN(si )) , (2)

where wN(si) is the vector formed by stacking the realizations of
w(s) over N(si).

LetNS = {N(si); i = 1, 2, . . . , k} be the collection of all con-
ditioning sets over S . We can view the pair {S,NS} as a directed
graph G with S = {s1, s2, . . . , sk} being the set of nodes andNS
the set of directed edges. For every two nodes si and s j, we say
s j is a directed neighbor of si if there is a directed edge from si
to s j. So,N(si) denotes the set of directed neighbors of si and is,
henceforth, referred to as the “neighbor set” for si. A “directed
cycle” in a directed graph is a chain of nodes si1 , si2 , . . . , sib such
that si1 = sib and there is a directed edge between si j and si j+1

for every j = 1, 2, . . . , b− 1. A directed graph with no directed
cycles is known as a “directed acyclic graph.”

If G is a directed acyclic graph, then p̃(wS ), as defined above,
is a propermultivariate joint density (see online Appendix A1 or
Lauritzen (1996) for a similar result). Starting from a joint mul-
tivariate density p(wS ), we derive a new density p̃(wS ) using a
directed acyclic graph G. While this holds for any original den-
sity p(wS ), it is especially useful in our context, where p(wS )
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is a multivariate Gaussian density and G is sufficiently sparse.
To be precise, let CN(si) be the covariance matrix of wN(si) and
let Csi,N(si) be the q × mq cross-covariance matrix between the
random vectors w(si) and wN(si). Standard distribution theory
reveals

p̃(wS ) =
k∏

i=1

N(w(si) |BsiwN(si),Fsi ), (3)

where Bsi = Csi,N(si)C
−1
N(si) and Fsi = C(si, si) −

Csi,N(si )C
−1
N(si)CN(si),si . Appendix A2 (available online) shows

that p̃(wS ) in (3) is a multivariate Gaussian density with
covariance matrix C̃S , which, obviously, is different from CS .
Furthermore, if N(si) has at most m members for each si in S ,
where m � k, then C̃−1

S is sparse with at most km(m + 1)q2/2
nonzero entries. Thus, for a very general class of neighboring
sets, p̃(wS ) defined in (2) is the joint density of a multivariate
Gaussian distribution with a sparse precision matrix.

Turning to the neighbor sets, choosing N(si) to be any sub-
set of {s1, s2, . . . , si−1} ensures an acyclic G and, hence, a valid
probability density in (3). Several special cases exist in like-
lihood approximation contexts. For example, Vecchia (1988)
and Stroud, Stein, and Lysen (2014) specified N(si) to be the
m nearest neighbors of si among s1, s2, . . . , si−1 with respect
to Euclidean distance. Stein, Chi, and Welty (2004) considered
nearest as well as farthest neighbors from {s1, s2, . . . , si−1}. Gra-
macy and Apley (2014) offered greater flexibility in choosing
N(si), but may require several approximations to be efficient.

All of the above choices depend upon an ordering of the
locations. Spatial locations are not ordered naturally, so one
imposes order by, for example, ordering on one of the coor-
dinates. Of course, any other function of the coordinates can
be used to impose order. However, the aforementioned authors
have cogently demonstrated that the choice of the ordering
has no discernible impact on the approximation of (1) by (3).
Our own simulation experiments (see Appendix A5, available
online) concur with these findings; inference based upon p̃(wS )

is extremely robust to the ordering of the locations. This is not
entirely surprising. Clearly, whatever order we choose in (1),
p(wS ) produces the full joint density. Note that we reduce (1)
to (2) based upon neighbor sets constructed with respect to the
specific ordering in (1). A different ordering in (1) will produce
a different set of neighbors for (2). Since p̃(wS ) ultimately relies
upon the information borrowed from the neighbors, its effec-
tiveness is often determined by the number of neighbors we
specify and not the specific ordering.

In the following section, we will extend the density p̃(wS )

to a legitimate spatial process. We remark that our subsequent
development holds true for any choice of N(si) that ensures an
acyclic G. In general, identifying a “best subset” of m locations
for obtaining optimal predictions for si is a nonconvex opti-
mization problem, which is difficult to implement and defeats
our purpose of using smaller conditioning sets to ease computa-
tions. Nevertheless, we have foundVecchia’s choice ofm-nearest
neighbors from {s1, s2, . . . , si−1} to be simple and to perform
extremely well for a wide range of simulation experiments. In
what ensues, this will be our choice for N(si) and the corre-
sponding density p̃(wS )will be referred to as the “nearest neigh-
bor” density of wS .

2.2 Extension to a Gaussian Process

Let u be any location in D outside S . Consistent with the def-
inition of N(si), let N(u) be the set of m-nearest neighbors of
u in S . Hence, for any finite set U = {u1,u2, . . . ,ur} such that
S ∩ U is empty, we define the nearest neighbor density of wU
conditional on wS as

p̃(wU |wS ) =
r∏

i=1

p(w(ui) |wN(ui )) . (4)

This conditional density is akin to (2) except that all the neigh-
bor sets are subsets of S . This ensures a proper conditional
density. Indeed (2) and (4) are sufficient to describe the joint
density of any finite set over the domain D. More precisely, if
V = {v1, v2, . . . , vn} is any finite subset inD, then, using (4) we
obtain the density of wV as

p̃(wV ) =
∫

p̃(wU |wS ) p̃(wS )
∏

{si∈S\V}
d(w(si))

where U = V \ S . (5)

If U is empty, then (4) implies that p̃(wU |wS ) = 1 in (5). If S \
V is empty, then the integration in (5) is not needed.

These probability densities, defined on finite topologies, con-
form to Kolmogorov’s consistency criteria and, hence, corre-
spond to a valid spatial process overD (see Appendix A3, avail-
able online). So, given any original (parent) spatial process and
anyfixed reference setS , we can construct a newprocess over the
domain D using a collection of neighbor sets in S . We refer to
this process as the “nearest neighbor process” derived from the
original parent process. If the parent process isGP(0,C(·, · | θ)),
then

p̃(wU |wS ) =
r∏

i=1

N(w(ui) |BuiwN(ui ), Fui ) = N(BUwS ,FU ) (6)

for any finite set U = {u1,u2, . . . ,ur} inD outside S , where Bui
and Fui are defined analogous to (3) based on the neighbor sets
N(ui), FU = diag(Fu1 ,Fu2 , . . . ,Fur ), andBU is a sparse nq × kq
matrix with each row having at most mq nonzero entries (see
Appendix A4, available online).

For any finite set V in D, p̃(wV ) is the density of the realiza-
tions of a Gaussian process over V with cross-covariance func-
tion

C̃(v1, v2; θ)

=

⎧⎪⎪⎨
⎪⎪⎩

C̃si,s j , if v1 = si and v2 = s j are both in S ,
Bv1C̃N(v1 ),s j if v1 /∈ S and v2 = s j ∈ S ,
Bv1C̃N(v1 ),N(v2)B′

v2 + δ(v1=v2 )Fv1 , if v1 and v2
are not in S

(7)

where v1 and v2 are any two locations in D, C̃A,B denotes sub-
matrices of C̃S indexed by the locations in the sets A and B, and
δ(v1=v2 ) is the Kronecker delta. Appendix A4 (available online)
also shows that C̃(v1, v2 | θ) is continuous for all pairs (v1, v2)
outside a set of Lebesgue measure zero.

This completes the construction of a well-defined nearest
neighbor Gaussian process, NNGP(0, C̃(·, · | θ)), derived from a
parent Gaussian process, GP(0,C(·, · | θ)). In theNNGP, the size
of S , that is, k, can be as large, or even larger than the size of the
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dataset. The reduction in computational complexity is achieved
through sparsity of the NNGP precision matrices. Unlike low-
rank processes, the NNGP is not a degenerate process. It is a
proper, sparsity-inducing Gaussian process, immediately avail-
able as a prior in hierarchical modeling, and, as we show in the
next section, delivers massive computational benefits.

3. Bayesian Estimation and Implementation

3.1 A Hierarchical Model

Consider a vector of l dependent variables, say y(t), at location
t ∈ D ⊆ �d in a spatially varying regression model,

y(t) = X(t)′β + Z(t)′w(t) + ε(t) , (8)

where X(t)′ is the l × p matrix of fixed spatially referenced
predictors, w(t) is a q × 1 spatial process forming the coeffi-

cients of the l × q fixed designmatrixZ(t)′, and ε(t) iid∼ N(0,D)

is an l × 1 white-noise process capturing measurement error
or micro-scale variability with dispersion matrix D, which we
assume is diagonal with entries τ 2

j , j = 1, 2, . . . , l. The matrix
X(t)′ is block diagonal with p = ∑l

i=1 pi, where the 1 × pi vec-
tor xi(t)′, including perhaps an intercept, is the ith block for
each i = 1, 2, . . . , l. The model in (8) subsumes several specific
spatial models. For instance, letting q = l and Z(t)′ = Il×l leads
to a multivariate spatial regression model, where w(t) acts as
a spatially varying intercept. On the other hand, we could envi-
sion all coefficients to be spatially varying and set q = p with
Z(t)′ = X(t)′.

For scalability, instead of a customary Gaussian process
prior for w(t ) in (8), we assume w(t) ∼ NNGP(0, C̃(·, · | θ))

derived from the parent GP(0,C(·, · | θ)). Any valid isotropic
cross-covariance function (see, e.g., Gelfand and Banerjee 2010)
can be used to construct C(·, · | θ). To elucidate, let T =
{t1, t2, . . . , tn} be the set of locations where the outcomes and
predictors have been observed. This set may, but need not, inter-
sect with the reference set S = {s1, s2, . . . , sk} for the NNGP.
Without loss of generality, we split up T into S∗ and U , where
S∗ = S ∩ T = {si1, si2 , . . . , sir }with si j = t j for j = 1, 2, . . . , r
and U = T \ S = {tr+1, tr+2, . . . , tn}. Since S ∪ T = S ∪ U ,
we can completely specify the realizations of the NNGP in terms
of the realizations of the parent process over S and U , hierarchi-
cally, aswU |wS ∼ N(BUwS ,FU ) andwS ∼ N(0, C̃S ). For a full
Bayesian specification, we further specify prior distributions on
β, θ, and the τ 2

j ’s. For example, with customary prior specifica-
tions, we obtain the joint distribution

p(θ) ×
l∏

j=1

IG(τ 2
j | aτ j , bτ j ) × N(β | μβ,Vβ ) × N(wU |BUwS , FU )

× N(wS | 0, C̃S ) ×
n∏

i=1

N(y(ti) |X(ti)′β + Z(ti)′w(ti),D), (9)

where p(θ) is the prior on θ and IG(τ 2
j | aτ j , bτ j ) denotes the

inverse Gamma density.

3.2 Estimation and Prediction

To describe a Gibbs sampler for estimating (9), we define
y = (y(t1)′, y(t2)′, . . . , y(tn)′)′, and w and ε similarly.
Also, we introduce X = [X(t1) : X(t2) : . . . : X(tn)]′, Z =
diag(Z(t1)′, . . . ,Z(tn)′), andDn = Cov(ε) = diag(D, . . . ,D).
The full conditional distribution for β is N(V∗

βμ∗
β,V∗

β
), where

V∗
β = (V−1

β + X′D−1
n X)−1, μ∗

β = (V−1
β μβ + X′D−1

n (y − Zw)).
Inverse Gamma priors for the τ 2

j ’s leads to conjugate
full conditional distribution IG(aτ j + n

2 , bτ j + 1
2 (y∗ j −

X∗ jβ − Z∗ jw)′(y∗ j − X∗ jβ − Z∗ jw), where y∗ j refers to the
n × 1 vector containing the jth coordinates of the y(ti)’s,
and X∗ j and Z∗ j are the corresponding fixed and spa-
tial effect covariate matrices, respectively. For updating θ,
we use a random walk Metropolis step with target density
p(θ) × N(wS |0, C̃S ) × N(wU |BUwS ,FU ), where

N(wS | 0, C̃S ) = ∏k
i=1 N(w(si) |BsiwN(si),Fsi ) and

N(wU |BUwS ,FU ) = ∏n
i=r+1 N(w(ti) |BtiwN(ti),Fti ).

(10)

Each of the component densities under the product sign on
the right-hand side of (10) can be evaluated without any n-
dimensional matrix operations.

Since the components of wU |wS are independent, we
can update w(ti) from its full conditional N(Vtiμti ,Vti ) for
i = r + 1, r + 2, . . . , n where Vti = (Z(ti)D−1Z(ti)′ + F−1

ti )−1

and μti = Z(ti)D−1(y(ti) − X(ti)′β) + F−1
ti BtiwN(ti). Finally,

we update the components ofwS individually. For any two loca-
tions s and t inD, if s ∈ N(t) and is the lth component of N(t),
that is, say s = N(t)(l), then define Bt,s as the l × l subma-
trix formed by columns (l − 1)q + 1, (l − 1)q + 2, . . . , lq
of Bt. Let U (si) = {t ∈ S ∪ T | si ∈ N(t)} and for every
t ∈ U (si) define, at,si = w(t) − ∑

s∈N(t),s =si Bt,sw(s).
Then, for i = 1, 2, . . . , k, we have the full condi-
tional wsi | · ∼ N(Vsiμsi,Vsi ), where Vsi = (In(si ∈
S∗)Z(si)D−1Z(si)′ + F−1

si + ∑
t∈U (si ) B

′
t,siF

−1
t Bt,si )

−1, μsi = In
(si ∈ S∗)Z(si)D−1(y(si) − X(si)′β) + F−1

si BsiwN(si) + ∑
t∈U (si )

B′
t,siF

−1
t at,si , and In(·) denotes the indicator function. Hence,

the w’s can also be updated without requiring storage or
factorization of any n × nmatrices.

Turning to predictions, let t be a new location where we
intend to predict y(t) given X(t) and Z(t). The Gibbs sam-
pler for estimation also generates the posterior sampleswS∪T | y.
So, if t ∈ S ∪ T , then we simply get samples of y(t) | y from
N(X(t)′β + Z(t)′w(t),D). If t is outside S ∪ T , then we gen-
erate samples of w(t) from its full conditional N(BtwS ,Ft) and
subsequently generate posterior samples of y(t) | y similar to the
earlier case.

3.3 Computational Complexity

Implementing the NNGP model in Section 3.2 reveals that one
entire pass of the Gibbs sampler can be completed without any
large matrix operations. The only difference between (9) and a
full geostatistical hierarchical model is that the spatial process
is modeled as an NNGP prior as opposed to a standard GP.
For comparisons, we offer rough estimates of the flop counts
to generate θ and w per iteration of the sampler. We express
the computational complexity only in terms of the sample size
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n, size of the reference set k, and the size of the neighbor sets
m as other dimensions are assumed to be small. For all loca-
tions, t ∈ S ∪ T ,Bt, and Ft can be calculated usingO(m3) flops.
So, from (10) it is easy to see that p(θ | ·) can be calculated
using O((n + k)m3) flops. All subsequent calculations to gen-
erate a set of posterior samples for w and θ require around
O((n + k)m2) flops.

So, the total flop counts is of the order (n + k)m3 and is,
therefore, linear in the total number of locations in S ∪ T . This
ensures scalability of the NNGP to large datasets. Compare this
with a full GP model with a dense correlation matrix, which
requires O(n3) flops for updating w in each iteration. Simu-
lation results in Section 5.1 and online Appendix A6 indicate
that NNGP models with usually very small values of m (≈10)
provide inference almost indistinguishable to full geostatistical
models. Therefore, for large n, this linear flop count is drastically
less and linearity with respect to k ensures a feasible implemen-
tation even for k ≈ n.

This offers substantial scalability over low-rank models
where the computational cost is quadratic in the number of
“knots,” limiting the size of the set of knots. Also, the full
geostatistical model requires storage of the n × n distance
matrix, which can potentially exhaust storage resources for large
datasets. An NNGP model only requires the distance matrix
between neighbors for every location, thereby storing n + k
small matrices, each of orderm × m.

3.4 Model Comparison and Choice ofS andm

As elaborated in Section 2, given any parent Gaussian process
and any fixed reference set of locations S , we can construct
a valid NNGP. The resulting finite dimensional likelihoods of
the NNGP depend upon the choice of the reference set S and
the size of each N(si), that is, m. Choosing the reference set is
similar to selecting the knots for a predictive process. Unlike
the number of “knots” in low-rank models, the size of S does
not thwart computational scalability. Since the flop count in an
NNGPmodel only increases linearly with the size ofS , the num-
ber of locations in S can be large, with more flexible choices for
S .

Points over a grid across the entire domain seem to be a plau-
sible choice for S . For example, we can construct a large S using
a dense grid to improve performancewithout adversely affecting
computational costs. Another, perhaps even simpler, option for
large datasets is to simply fix S = T , the set of observed loca-
tions. This choice reduces computational costs even further by
avoiding additional sampling of wU in the Gibbs sampler. Our
empirical investigations (see Section 5.1) reveal that choosing
S = T delivers inference almost indistinguishable from choos-
ing S to be a grid over the domain for large datasets.

Stein, Chi, and Welty (2004) and Eidsvik et al. (2014)
proposed using a sandwich variance estimator for evaluating
the inferential abilities of neighbor-based pseudo-likelihoods.
Shaby (2012) developed a post-sampling sandwich variance
adjustment for posterior credible intervals of the parameters for
quasi-Bayesian approaches using pseudo-likelihoods. However,
the asymptotic results used to obtain the sandwich variance
estimators are based on assumptions that are hard to verify in
spatial settings with irregularly placed data points. Moreover,

we view the NNGP as an independent model for fitting the
data and not as an approximation to the original GP. Hence, we
refrain from such sandwich variance adjustments. Instead, we
can simply use any standard model comparison metrics such as
deviance information criterion (DIC; Spiegelhalter et al. 2002),
GPD score (Gelfand and Ghosh 1998), or root mean squared
prediction error/root mean square error of coefficient of vari-
ation (RMSPE/RMSECV; Yeniay and Goktas 2002) to compare
the performance of NNGP and any other candidate model. The
same model comparison metrics are also used for selecting m.
However, as we illustrate later in Section 5.1, usually a small
value ofm between 10 and 15 produces performance at par with
the full geostatistical model. While larger m may be beneficial
for massive datasets, perhaps under a different design scheme,
it will be much smaller than the number of knots in low-rank
models for comparable inference (see Section 5.1).

4. Alternate NNGPModels and Algorithms

4.1 Block Update ofwS Using Sparse Cholesky

The Gibbs’ sampling algorithm detailed in Section 3.2 is
extremely efficient for large datasets with linear flop counts
per iteration. However, it can sometimes experience slow con-
vergence issues due to sequential updating of the elements in
wS . An alternative to sequential updating is to perform block
updates of wS . We choose S = T so that si = ti for all i =
1, 2, . . . , n and we denote wS = wT by w. Then,

w|· ∼ N(VSZ′D−1
n (y − Xβ),VS ) ,

where VS = (Z′D−1
n Z + C̃−1

S )−1 . (11)

Recall that C̃−1
S is sparse. SinceZ andDn are block diagonal,V−1

S
retains the sparsity of C̃−1

S . So, a sparse Cholesky factorization of
V−1

S will efficiently produce the Cholesky factors ofVS . This will
facilitate block updating of w in the Gibbs sampler.

4.2 NNGPModels for the Response

Another possible approach involves NNGP models for the
response y(s). If w(s) is a Gaussian process, then so is y(s) =
Z(s)′w(s) + ε (without loss of generality we assume β = 0).
One can directly use the NNGP specification for y(s) instead
of w(s). That is, we derive y(s) ∼ NNGP(0, �̃(·, ·)) from the
parent Gaussian process GP(0,�(·, · | θ)). The Gibbs sampler
analogous to Section 3 now enjoys the additional advantage of
avoiding full conditionals for w. This results in a Bayesian ana-
logue for Vecchia (1988) and Stein, Chi, and Welty (2004) but
precludes inference on the spatial residual surface w(s). Mod-
eling w(s) provides additional insight into residual spatial con-
tours and is often important in identifying lurking covariates or
eliciting unexplained spatial patterns. Vecchia (1992) used the
nearest neighbor approximation on a spatial model for obser-
vations (y) with independent measurement error (nuggets)
in addition to the usual spatial component (w). However, it
may not be possible to recover w using this approach. For
example, a univariate stationary process y(s) with a nugget
effect can be decomposed as y(s) = w(s) + ε(s) (letting β =
0) for some w(s) ∼ GP(0,C(·, · | θ)) and white-noise process
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ε(s). If y = w + ε, where w ∼ N(0,C), ε ∼ N(0, τ 2In), then
cov(y) = C + τ 2I = �, all eigenvalues of� are greater than τ 2,
and cov(w | y) = τ 2In − τ 4�−1. For y(s) ∼ NNGP(0, �̃(·, ·)),
however, the eigenvalues of �̃ may be less than τ 2, so τ 2In −
τ 4�̃

−1
need not be positive definite for every τ 2 > 0 and

p(w | y) is no longer well defined.
A different model is obtained by using an NNGP prior

for w, as in (9), and then integrating out w. The result-
ing likelihood is N(y |Xβ,�y), where �y = ZC̃SZ′ + Dn
and the Bayesian specification is completed using priors on
β, τ 2

j ’s, and θ as in (9). This model drastically reduces the
number of variables in the Gibbs sampler, while preserv-
ing the nugget effect in the parent model. We can generate
the full conditionals for the parameters in the marginalized
model as follows: β| y,φ ∼ N((V−1

β + X′�−1
y X)−1(V−1

β μβ +
X′�−1

y y) , (V−1
β + X′�−1

y X)−1). It is difficult to factor out
τ 2
j ’s from �−1

y , so conjugacy is lost with respect to any stan-
dard prior. Metropolis block updates for θ are feasible for any
tractable prior p(θ). This involves computingX′�−1

y X,X′�−1
y y,

and (y − Xβ)′�−1
y (y − Xβ). Since�−1

y = D−1
n − D−1

n Z(C̃−1
S +

Z′D−1
n Z)−1Z′D−1

n = D−1
n − D−1

n ZVSZ′D−1
n , where VS is

given by (11), a sparse Cholesky factorization of V−1
S

will be beneficial. We draw posterior samples for w from
p(w | y) = ∫

p(w | θ,β, {τ 2
j }, y)p(θ,β, {τ 2

j } | y) using compo-
sition sampling—we draw w(g) from p(w | θ(g),β(g), {τ 2

j
(g)}, y)

one-for-one for each sampled parameter.
Using block updates forwS in (9) and fitting themarginalized

version of (9) both require an efficient sparse Cholesky solver
for V−1

S . Note that computational expenses for most sparse
Cholesky algorithms depend on the precise nature of the sparse
structure (mostly on the bandwidth) of C̃−1

S (see, e.g., Davis
2006). The number of flops required for Gibbs sampling and
prediction in this marginalized model depends upon the sparse
structure of C̃−1

S and may, sometimes, heavily exceed the lin-
ear usage achieved by the unmarginalizedmodel with individual
updates for wi. Therefore, a prudent choice of the precise fitting
algorithms should be based on the sparsity structure of C̃−1

S for
the given dataset.

4.3 Spatiotemporal and GLMVersions

In spatiotemporal settings where we seek spatial interpolation
at discrete time points (e.g., weekly, monthly, or yearly data), we
write the response (possibly vector-valued) as yt (s) and the ran-
dom effects aswt (s). Desired inference includes spatial interpo-
lation for each time point. Spatial dynamic models incorporat-
ing the NNGP are easily formulated as below:

yt (s) = Xt (s)′βt + ut (s) + εt (s), εt (s)
iid∼ N(0,D)

βt = βt−1 + ηt , ηt
iid∼ N(0, �η ), β0 ∼ N(m0, �0)

ut (s) = ut−1(s) + wt (s), wt (s)
ind∼ NNGP(0, C̃(·, · | θt )) . (12)

Thus, one retains exactly the same structure of process-based
spatial dynamic models, for example, as in Gelfand, Banerjee,
and Gamerman (2005), and simply replaces the independent
Gaussian process priors for wt (s) with independent NNGPs to
achieve computational tractability.

The above is illustrative of how attractive and extremely con-
venient the NNGP is for model building. One simply writes
down the parent model and subsequently replaces the full GP
with anNNGP. Being a well-defined process, the NNGP ensures
a valid spatial dynamic model. Similarly NNGP versions of
dynamic spatiotemporal Kalman-filtering (as, e.g., inWikle and
Cressie 1999) can be constructed.

Handling non-Gaussian (e.g., binary or count) data is also
straightforward using spatial generalized linear models (GLMs;
Diggle, Tawn, and Moyeed 1998; Lin et al. 2000; Kammann
and Wand 2003; Banerjee, Carlin, and Gelfand 2014). Here,
the NNGP provides structured dependence for random effects
at the second stage. First, we replace E[y(t)] in (8) with
g(E(y(t))), where g(·) is a suitable link function such that
η(t) = g(E(y(t))) = X(t)′β + Z(t)′w(t). In the second stage,
we model the w(t) as an NNGP. The benefits of the algorithms
in Sections 3.2 and 3.3 still hold, but some of the alternative algo-
rithms in Section 4 may not apply. For example, we do obtain
tractable marginalized likelihoods by integrating out the spatial
effects.

5. Illustrations

We conduct simulation experiments and analyze a large forestry
dataset. Additional simulation experiments are detailed in
Appendices A5 through A9 (available online). Posterior infer-
ence for subsequent analysis were based upon three chains of
25,000 iterations (with a burn-in of 5000 iterations). All the sam-
plers were programmed in C++ and leveraged Intel Math Ker-
nel Library’s (MKL) threaded BLAS and LAPACK routines for
matrix computations on a Linux workstation with 384 GB of
RAM and two Intel Nehalem quad-Xeon processors.

5.1 Simulation Experiment

We generated observations using 2500 locations within a unit
square domain from the model (8) with q = l = 1 (univari-
ate outcome), p = 2, Z(t)′ = 1 (scalar), the spatial covariance
matrix C(θ) = σ 2R(φ), where R(φ) is a n × n correlation
matrix, and D = τ 2 (scalar). The model included an intercept
and a covariate x1 drawn from N(0, 1). The (i, j)th element of
R(φ) was calculated using the Matérn function

ρ(ti, t j;φ) = 1
2ν−1	(ν)

(||ti − t j||φ)νKν (||ti − t j||φ);
φ > 0, ν > 0, (13)

where ||ti − t j|| is the Euclidean distance between locations ti
and t j , φ = (φ, ν) with φ controlling the decay in spatial corre-
lation and ν controlling the process smoothness, 	 is the usual
Gamma function, while Kν is a modified Bessel function of the
second kind with order ν (Stein 1999). Evaluating the Gamma
function for each matrix element within each iteration requires
substantial computing time and can obscure differences in sam-
pler run times; hence, we fixed ν at 0.5, which reduces (13) to
the exponential correlation function. The first column in Table 1
gives the true values used to generate the responses. Figure 2(a)
illustrates the w(t) surface interpolated over the domain.
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Table . Univariate synthetic data analysis parameter estimates and computing time in minutes for NNGP and full GP models. Parameter posterior summary  (., .)
percentiles.

NNGP (S = T ) NNGP (S = T )

True m = 10, k = 2000 m = 20, k = 2000 m = 10 m = 20

β0  . (., .) . (., .) . (., .) . (., .)
β1  . (., .) . (., .) . (., .) . (., .)
σ 2  . (., .) . (., .) . (., .) . (., .)
τ 2 . . (., .) . (., .) . (., .) . (., .)
φ  . (., .) . (., .) . (., .) . (., .)
pD — . . . .
DIC — . . . .
G — . . . .
P — . . . .
D — . . . .
RMSPE — . . . .
% CI cover % — . . . .
% CI width — . . . .
Time — . . . .

Predictive process Full
True  knots Gaussian process

β0  . (., .) . (., .)
β1  . (., .) . (., .)
σ 2  . (., .) . (., .)
τ 2 . . (., .) . (., .)
φ  5.61 (3.48, 8.09) . (., .)
pD — . .
DIC — . .
G — . .
P — . .
D — . .
RMSPE — . .
% CI cover % — . .
% CI width — . .
Time — . .

We then estimated the following models from the full data:
(i) the full Gaussian process (full GP); (ii) the NNGP with m =
{1, 2, . . . , 25} for S = T and S = T ; and (iii) a Gaussian pre-
dictive process (GPP)model (Banerjee et al. 2008) with 64 knots
placed on a grid over the domain. For the NNGP with S = T ,
we considered 2000 randomly placed reference locations within
the domain. The 64 knot GPPwas chosen because its computing
time was comparable to that of NNGP models. We used an effi-
cient marginalized sampling algorithm for the Full GP and GPP
models as implemented in the spBayes package in R (Finley,
Banerjee, and Gelfand, in press). All the models were trained
using 2000 of the 2500 observed locations, while the remain-
ing 500 observations were withheld to assess predictive perfor-
mance.

For all models, the intercept and slope regression parameters,
β0 and β1, were given flat prior distributions. The variance com-
ponents σ 2 and τ 2 were assigned inverse Gamma IG(2, 1) and
IG(2, 0.1) priors, respectively, and the spatial decay φ received
a uniform priorU (3, 30), which corresponds to a spatial range
between approximately 0.1 and 1 units.

Parameter estimates and performance metrics for the NNGP
(with m = 10 and m = 20), GPP, and the full GP models are
provided in Table 1. All model specifications produce similar
posterior median and 95% credible intervals estimates, with the
exception of φ in the 64 knot GPP model. Larger values of DIC
and D suggest that the GPP model does not fit the data as well
as the NNGP and full GP models. The NNGP S = T models
provideDIC, GPD scores that are comparable to those of the full

GP model. These fit metrics suggest the NNGP S = T models
provide better fit to the data than that achieved by the full GP
model, which is probably due to overfitting caused by a very
large reference set S . The last row in Table 1 shows computing
times in minutes for one chain of 25,000 iterations reflecting on
the enormous computational gains of NNGP models over full
GP model.

Turning to out-of-sample predictions, the Full model’s
RMSPE andmean width between the upper and lower 95% pos-
terior predictive credible interval is 1.2 and 2.12, respectively. As
seen in Figure 1, comparable RMSPE and mean interval width
for theNNGPS = T model is achievedwithinm ≈ 10. There is
negligible difference between the predictive performances of the
NNGP S = T and S = T models. Both the NNGP and full GP
model have better predictive performance than the predictive
process models when the number of knots is small, for example,
64. All models showed appropriate 95% credible interval cover-
age rates.

Figure 2(b)–2(f) illustrates the posterior median estimates
of the spatial random effects from the Full GP, NNGP (S = T )
with m = 10 and m = 20, NNGP (S = T ) with m = 10, and
GPP models. These surfaces can be compared to the true
surface depicted in Figure 2(a). This comparison shows: (i)
the NNGP models closely approximates the true surface and
that estimated by the full GP model, and (ii) the reduced-rank
predictive process model based on 64 knots greatly smooths
over small-scale patterns. This last observation highlights one
of the major criticisms of reduced-rank models (Stein 2014)



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 807

Figure . Choice ofm in NNGPmodels: out-of-sample rootmean squared prediction error (RMSPE) andmeanwidth between the upper and lower % posterior predictive
credible intervals for a range ofm for the univariate synthetic data analysis.

and illustrates why these models often provide compromised
predictive performance when the true surface has fine spatial
resolution details. Overall, we see the clear computational
advantage of the NNGP over the full GP model, and both
inferential and computational advantage over the GPP model.

5.2 Forest Biomass Data Analysis

Information about the spatial distribution of forest biomass
is needed to support global, regional, and local scale deci-
sions, including assessment of current carbon stock and flux,

bio-feedstock for emerging bio-economies, and impact of
deforestation. In the United States, the Forest Inventory and
Analysis (FIA) program of the USDA Forest Service collects
the data needed to support these assessments. The program
has established field plot centers in permanent locations using
a sampling design that produces an equal probability sample
(Bechtold and Patterson 2005). Field crews recorded stem mea-
surements for all trees with diameter at breast height (DBH;
1.37 m above the forest floor) of 12.7 cm or greater. Given these
data, established allometric equationswere used to estimate each
plot’s forest biomass. For the subsequent analysis, plot biomass

Figure . Univariate synthetic data analysis: interpolated surfaces of the true spatial random effects and posterior median estimates for different models.
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Figure . Forest biomass data analysis: (a) locations of observed biomass, (b) interpolated biomass response variable, (c) NDVI regression covariate, (d) variogram of non-
spatial model residuals, and (e) surface of the SVI model random spatial effects posterior medians. Following our FIA data-sharing agreement, plot locations depicted in (a)
have been “fuzzed” to hide the true coordinates.

was scaled to metric tons per ha then square root transformed.
The transformation ensures that back transformation of subse-
quent predicted values have support greater than zero and helps
to meet basic regression models assumptions.

Figure 3(a) illustrates the georeferenced forest inventory data
consisting of 114, 371 forested FIA plots measured between
1999 and 2006 across the conterminous United States. The two
blocks ofmissing observations in theWestern and Southwestern
United States correspond to Wyoming and New Mexico, which
have not yet released FIA data. Figure 3(b) shows a deterministic
interpolation of forest biomass observed on the FIA plots. Dark
blue indicates high forest biomass, which is primarily seen in the
PacificNorthwest,WesternCoastal ranges, EasternAppalachian

Mountains, and in portions of New England. In contrast, dark
red indicates regions where climate or land use limit vegetation
growth.

A July 2006NormalizedDifferenceVegetation Index (NDVI)
image from theMODerate-resolution Imaging Spectroradiome-
ter (MODIS; http://glcf.umd.edu/data/ndvi) sensor was used as
a single predictor. NDVI is calculated from the visible and near-
infrared light reflected by vegetation, and can be viewed as a
measure of greenness. In this image, Figure 3(c), dark green cor-
responds to dense vegetation whereas brown identifies regions
of sparse or no vegetation, for example, in the Southwest. NDVI
is commonly used as a covariate in forest biomass regression
models; see, for example, Zhang and Kondraguanta (2006).

http://glcf.umd.edu/data/ndvi
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Table . Forest biomass data analysis parameter estimates and computing time in hours for candidate models. Parameter posterior summary  (., .) percentiles.

NNGP NNGP
Nonspatial Space-varying intercept Space-varying coefficients

β0 . (., .) . (., .) . (., .)
βNDV I . (., .) . (., .) . (., .)
σ 2 — . (., .) —
AA′

1,1 — — . (., .)
AA′

2,1 — — −. (−.,−.)
AA′

2,2 — — . (., .)
τ 2 . (., .) . (., .) . (., .)
φ1 — . (., .) . (., .)
φ2 — — . (., .)
ν1 — . (., .) . (., .)
ν2 — — . (., .)
pD . . .
DIC  . .
G . . .
P . . .
D . . .
Time — . .

Results from these and similar studies show a positive linear
relationship between forest biomass and NDVI. The strength of
this relationship, however, varies by forest tree species composi-
tion, age, canopy structure, and level of reflectance. We expect a
space-varying relationship between biomass and NDVI, given
tree species composition and disturbance regimes generally
exhibit strong spatial dependence across forested landscapes.

The memory in our workstation was insufficient for storage
of distancematrices required to fit a Full GP orGPPmodel. Sub-
sequently, we explore the relationship between forest biomass
and NDVI using a nonspatial model, an NNGP space-varying
intercept (SVI) model (i.e., q = l = 1 and Z(t) = 1) in (8), and
an NNGP spatially varying coefficients (SVC) regression model
with l = 1, q = p = 2, and Z(t) = X(t) in (8). The reference
sets for the NNGP models were again the observed locations
and m was chosen to be 5 or 10. The parent process w(t) is
a bivariate Gaussian process with an isotropic cross-covariance
specification C(ti, t j | θ) = A�(φ)A′, where A is 2 × 2 lower-
triangular with positive diagonal elements, � is 2 × 2 diagonal
with ρ(ti, t j;φb) (defined in (13)) as the bth diagonal entry, b =
1, 2, and φb = (φb, νb)

′ (see, e.g., Gelfand and Banerjee 2010).
For all models, the intercept and slope regression parameters

were given flat prior distributions. The variance components
τ 2 and σ 2 were assigned inverse Gamma IG(2, 1) priors, the
SVC model cross-covariance matrix AA′ followed an inverse-
Wishart IW(3, 0.1), and the Matérn spatial decay and smooth-
ness parameters received uniformprior supportsU (0.01, 3) and
U (0.1, 2), respectively. These prior distributions on φ and ν

correspond to support between approximately 0.5 and 537 km.
Candidate models are assessed using the metrics described in
Section 3.4, and inference drawn from mapped estimates of the
regression coefficients and out-of-sample prediction.

Parameter estimates and performance metrics for NNGP
with m = 5 are shown in Table 2. The corresponding numbers
form = 10 were similar. Relative to the spatial models, the non-
spatial model has higher values of DIC and D, which suggests
NDVI alone does not adequately capture the spatial structure
of forest biomass. This observation is corroborated using a var-
iogram fit to the nonspatial model’s residuals; Figure 3(d). The
variogram shows a nugget of ∼0.42, partial sill of ∼0.05, and

range of ∼150 km. This residual spatial dependence is apparent
when we map the SVI model spatial random effects as shown in
Figure 3(e). Thismap, and the estimate of a nonnegligible spatial
variance σ 2 in Table 2, suggests the addition of a spatial random
effect was warranted and helps satisfy the model assumption of
uncorrelated residuals.

The values of the SVC model’s goodness-of-fit metrics sug-
gest that allowing the NDVI regression coefficient to vary spa-
tially improves model fit over that achieved by the SVI model.
Figure 4(a) and 4(b) shows maps of posterior estimates for the
spatially varying intercept and NDVI, respectively. The clear
regional patterns seen in Figure 4(b) suggest the relationship
between NDVI and biomass does vary spatially—with stronger
positive regression coefficients in the Pacific Northwest and
northern California areas. Forests in the Pacific Northwest and
northern California are dominated by conifers and support the
greatest range in biomass per unit area within the entire con-
terminous United States. The other strong regional pattern seen
in Figure 4(b) is across western New England, where near zero
regression coefficients suggest that NDVI is not as effective at
discerning differences in forest biomass. This result is not sur-
prising. For deciduous forests, NDVI can explain variability in
low to moderate vegetation density. However, in high biomass
deciduous forests, like those found across westernNewEngland,
NDVI saturates and is no longer sensitive to changes in vegeta-
tion structure (Wang et al. 2005). Hence, we see a higher inter-
cept in this region but lower slope coefficient on NDVI.

Figure 4(c) and 4(d) maps each location’s posterior predic-
tive median and the range between the upper and lower 95%
credible interval, respectively, from the SVC model. Figure 4(c)
shows strong correspondence with the deterministic interpola-
tion of biomass in Figure 3(b). The prediction uncertainty in
Figure 4(d) provides a realistic depiction of the model’s ability
to quantify forest biomass across the United States.

We also used predictionmean squared error (PMSE) to assess
predictive performance. We fit the candidate models using
100,000 observations and withheld 14,371 for validation. PMSE
for the nonspatial, SVI, and SVC models was 0.52, 0.41, and
0.42, respectively. Lower PMSE for the spatial models, versus
the nonspatialmodel, corroborates the results from themodel fit
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Figure . Forest biomass data analysis using SVCmodel: () posterior medians of the intercept, (b) NDVI regression coefficients, (c) median of biomass posterior predictive
distribution, and (d) range between the upper and lower % percentiles of the posterior predictive distribution.

metrics and further supports the need for spatial random effects
in the analysis.

6. Summary and Conclusions

We regard the NNGP as a highly scalable model, rather than
a likelihood approximation, for large geostatistical datasets. It
significantly outperforms competing low-rank processes such
as the GPP, in terms of inferential performance and scalabil-
ity. A reference set S and the resulting neighbor sets (of size
m) define the NNGP. Largerm’s would increase costs, but there
is no apparent benefit to increasing m for larger datasets (see
Appendix A6, available online).While some sensitivity tom and
the choice of points in S is expected, our results indicate that
inference is very robust with respect to S and very modest val-
ues of m (< 20) typically suffice. Larger reference sets may be
needed for larger datasets, but its size does not thwart computa-
tions. In fact, the observed locations are a convenient choice for
the reference set.

A potential concern with this choice is that if the observed
locations have large gaps, then the resulting NNGP may be a
poor approximation of the full Gaussian process. This arises
from the fact that observations at locations outside the refer-
ence set are correlated via their respective neighbor sets and
large gaps may imply two very near points have very differ-
ent neighbor sets leading to low correlation. Our simulations in
Appendix A7 (available online) indeed reveal that in such a situ-
ation, the NNGP covariance field is very flat at points in the gap.

However, even with this choice of S the NNGPmodel performs
at par with the full GP model as the latter also fails to provide
strong information about observations located in large gaps. Of
course, one can always choose a grid over the entire domain as
S to construct an NNGPwith covariance function similar to the
full GP (see Figure A.5, available online). Another choice for S
could be based upon configurations for treedGaussian processes
(Gramacy and Lee 2008).

Our simulation experiments revealed that estimation and
kriging based on NNGP models closely emulate those from the
trueMatérn GPmodels, even for slow decaying covariances (see
AppendixA8, available online). TheMatérn covariance function
is monotonically decreasing with distance and satisfies theoret-
ical screening conditions, that is, the ability to predict accurately
based on a few neighbors (Stein 2002). This, perhaps, explains
the excellent performance ofNNGPmodels withMatérn covari-
ances. We also investigated the performance of NNGP models
using a wave covariance function, which does not satisfy the
screening conditions, in a setting where a significant propor-
tion of nearest neighbors had negative correlation with the cor-
responding locations. TheNNGP estimateswere still close to the
true model parameters and the kriged surface closely resembled
the true surface (see Appendix A9, available online).

Most wave covariance functions (like the damped cosine
or the cardinal sine function) produce covariance matrices
with several small eigenvalues. The full GP model cannot be
implemented for such models because the matrix inversion is
numerically unstable. The NNGP model involves much smaller
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matrix inversions and can be implemented in some cases (e.g.,
for the damped cosine model). However, for the cardinal sine
covariance, the NNGP also faces numerical issues as even the
small m × m covariance matrices are numerically unstable.
Bias-adjusted low-rank GPs (Finley, Banerjee, and McRoberts
2009) possess a certain advantage in this aspect as the covari-
ance matrix is guaranteed to have eigen values bounded away
from zero, although stable computations will usually require full
Cholesky decompositions.

Apart from being easily extensible to multivariate and spa-
tiotemporal settings with discretized time, the NNGP can
fuel interest in process-based modeling over graphs. Examples
include networks, where data arising from nodes are posited
to be similar to neighboring nodes. It also offers new model-
ing avenues and alternatives to the highly pervasive Markov
random field models for analyzing regionally aggregated spatial
data. Also, there is scope for innovation when space and time
are jointly modeled as processes using spatiotemporal covari-
ance functions. One will need to construct neighbor sets both
in space and time and effective strategies, in terms of scalabil-
ity and inference, will need to be explored. Comparisons with
alternate approaches (see, e.g., Katzfuss and Cressie 2012) will
also need to be made. Finally, a more comprehensive study
on the alternate algorithms and parameterizations for faster
Markov chainMonte Carlo convergence, including direct meth-
ods for executing sparse Cholesky factorizations (see Section 4),
is being undertaken. More immediately, we plan to migrate our
lower-level C++ code to the existing spBayes package (Finley,
Banerjee, and Gelfand, in press) in the R statistical environ-
ment (http://cran.r-project.org/web/packages/spBayes) to facili-
tate wider user accessibility to NNGP models.

SupplementaryMaterial

Supplementary material including detailed derivations of the properties of
NNGP and several other simulation studies alluded to in this article are
available in a separate file hosted on the journal website.
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