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Abstract The objective of the study is to improve the robustness and flexibility of spa-
tial kriging predictors with respect to deviations from spatial stationarity assumptions.
A predictor based on a non-stationary Gaussian random field is defined. The model
parameters are inferred in an empirical Bayesian setting, using observations in a local
neighborhood and apriormodel assessed from theglobal set of observations. The local-
ized predictor exhibits a shrinkage effect and is termed a localized/shrinkage kriging
predictor. The predictor is compared to traditional localized kriging predictors in a case
study on observations of annual accumulated precipitation. A cross-validation crite-
rion is used in the comparison. The shrinkage predictor appears as clearly preferable to
the traditional kriging predictors. A simulation study on prediction in non-stationary
Gaussian random fields is conducted. The results from this study confirm that the
shrinkage predictor is preferable to the traditional one. Moreover, the cross-validation
criterion is found to be suitable for selection of the local neighborhood in the predictor.
Lastly, the computational demands of localized predictors are verymodest, hence these
localized/shrinkage predictors are suitable for large scale spatial prediction problems.
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1 Introduction

Spatial prediction is required in many applications, and examples can be found in
natural resource mapping, meteorology and image analysis. Consider a regionalized
variable {r(x); x ∈ D ⊂ �m} where r(x) ∈ �1 is the variable of interest and x is a
reference variable in the domainD. The challenge is to predict the regionalized variable
from a set of observations ro = [r(x1), . . . , r(xn)]; x1, . . . , xn ∈ D. In the current
study, the predictors are defined in a probabilistic setting and associated predictor
uncertainties can also be obtained.

The classical probabilistic approach to spatial prediction is kriging (Journel and
Huijbregts 1978; Chiles and Delfiner 2009). The traditional ordinary kriging pre-
dictor is based on a stationary model for the regionalized variable, with spatially
constant expectation and variance, and a translation invariant spatial correlation func-
tion. The localized predictors, local neighborhood kriging (Chiles and Delfiner 2009)
can be defined to robustify the predictor with respect to deviations from the stationarity
assumptions. The major challenge in using localized predictors is to define the size
of the local neighborhood where a bias/variance trade-off must be made. For some
spatial correlation structures, a screening effect is provided by the observations closest
to the prediction location (Stein 2002), and this effect may robustify the localization.
A weighted localized approach is also defined (Anderes and Stein 2011) and it is
demonstrated to be useful for non-stationary random fields.

Recent developments in computer and sensor technology have provided enormous
spatio-temporal sets of observations (Johns et al. 2003). Computational demands in
spatial prediction have been a critical factor and considerable research is devoted to
numerical algorithms for large sparse correlation matrices. Localized predictors may
provide an alternative solution to reduce these computational demands.

In the current study, spatial predictors which are robust with respect to deviations
from assumptions about spatial stationarity are defined. These predictors are based on
a Gaussian random field with spatially varying expectation and variance. The spatial
correlation function is shift invariant and known. The expectation and variance are
assessed locally by a sliding window approach. In traditional local neighborhood
kriging, this assessment is done by some maximum likelihood procedure. The new
feature of the study is that these local assessments are done by shrinkage estimators
in an empirical Bayes setting (Efron and Morris 1973). The hierarchical, Gaussian
randomfieldmodel (Røislien andOmre 2006) is used locally and the hyper-parameters
are assessed from the global set of observations. Since the predictor is locally defined
it is extremely computationally efficient. The resulting spatial predictor is termed
localized/shrinkage kriging.

In the two first sections, various Gaussian random field models for the regionalized
variable {r(x); x ∈ D} are presented with associated model parameter estimators. In
the following section, five spatial predictors are defined, one global and four localized.
Two of these predictors feature shrinkage. The next section contains an empirical eval-
uation of these predictors. The evaluation criteria used in the comparison are defined,
and the five predictors are compared on a real set of annual accumulated precipita-
tion data and in a synthetic simulation study. In the last section, the conclusions are

123



Math Geosci (2016) 48:595–618 597

forwarded. The paper summarizes the major findings in an extended study (Asfaw
2014).

2 Predictor Models

The spatial predictors are based on probabilistic models for the regionalized variable
{r(x); x ∈ D}. In traditional kriging prediction {r(x); x ∈ D} is associated with a sta-
tionary Gaussian random field (Chiles and Delfiner 2009). This assumption entails
that

E[r(x)] = μ; ∀x ∈ D

Var[r(x)] = σ 2; ∀x ∈ D

Corr[r(x ′
), r(x

′′
)] = ρ(x

′ − x
′′
); ∀x ′

, x
′′ ∈ D (1)

where the expected levelμ ∈ �1, the variance levelσ 2 ∈ �1+ and the spatial correlation
function ρ(x

′ −x
′′
) is positive definite. Note that for thesemodel assumptions, the ran-

domfield is shift invariant, and this property is extensively used tomake inference about
the model parameters [μ, σ 2, ρ(.)] from the set of observations ro. This traditional
kriging model may be extended to have an expectation surface μ(x) = ∑L

l=1 αl gl(x)
where {gl(x); x ∈ D}; l = 1, . . . , L are known basis surfaces while α = (α1, . . . , αL)

are unknown coefficients. This model corresponds to a spatial regression model, and
the shift invariance property is lost, which complicates model parameter inference.
Note that for given correlation function ρ(.), maximum likelihood estimates based on
ro are analytically assessable for the other model parameters, under both these model
assumptions.

In the current study, it is assumed that {r(x); x ∈ D} is associated with a general
Gaussian random field, which entails that

E[r(x)] = μ(x); ∀x ∈ D

Var[r(x)] = σ 2(x); ∀x ∈ D

Corr[r(x ′
), r(x

′′
)] = ρ(x

′
, x

′′
); ∀x ′

, x
′′ ∈ D (2)

with μ(x) ∈ �1, σ 2(x) ∈ �1+ and ρ(x
′
, x

′′
) being positive definite. There is obvi-

ously a lack of translation invariance under these assumptions. One can expect that
inference of the spatial model parameters {μ(x); x ∈ D}, {σ 2(x); x ∈ D} and
{ρ(x

′
, x

′′
); ∀x ′

, x
′′ ∈ D} based on ro is complicated. If the correlation function ρ(., .)

is fixed, one may use localized estimators in a kernel spirit to assess the spatial model
parameters μ(.) and σ 2(.). When selecting the size of the localization, a bias/variance
trade-off must be made large local neighborhoods introduce bias in the estimators
due to smoothing while small neighborhoods introduce instability in the estimators
due to censoring of observations. In the current study, this bias/variance trade-off is
addressed by defining shrinkage estimators in an empirical Bayes setting.

To define the shrinkage estimators, a stationary, hierarchical Gaussian random field
model is introduced for a local neighbourhood D+ around an arbitrary x+ ∈ D, i.e
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for {r(x); x ∈ D+}. In this model the expected level m and the variance level s2 are
considered to be random variables. Moreover, {[r(x)|m, s2]; x ∈ D+} is defined to be
a stationary Gaussian random field, hence

E[r(x)|m, s2] = m; ∀x ∈ D+
Var[r(x)|m, s2] = s2; ∀x ∈ D+

Corr[r(x ′
), r(x

′′
)|m, s2] = ρ(x

′ − x
′′
); ∀x ′

, x
′′ ∈ D+. (3)

It is assumed that ρ(.) is known, and that the model parameters [m|s2] and s2 have
prior models which are Gaussian and Inverse Gamma respectively, with

E[m|s2] = μm

Var[m|s2] = τms
2

E[s2] = [ξs − 1]−1γs

Var[s2] = [(ξs − 1)2(ξs − 2)]−1γ 2
s (4)

where the model parameters are μm ∈ �1, τm ∈ �1+, ξs ∈ 2 + �1+ and γs ∈ �1+. The
prior model on [m, s2] is a conjugate model for the stationary Gaussian random field,
and the marginal random field {r(x); x ∈ D+} will be a t-distributed random field and
analytically tractable (Røislien and Omre 2006).

The estimators for the model parameters μ(x+) and σ 2(x+) at an arbitrary location
x+ ∈ D are localized to observations in D+ and with shrinkage according to the
localized hierarchical Gaussian model. These estimators will of course depend on the
parameters of the prior model [μm, τm, ξs, γs], which are assessed in an empirical
Bayesian spirit from a set of local neighborhood D+ covering D.

Recent research onnon-stationaryGaussian randomfields (Higdon1998), is usually
based on models of the following form

E[r(x)] = μ; ∀x ∈ D

Cov[r(x ′
), r(x

′′
)] = κ(x

′
, x

′′
); ∀x ′

, x
′′ ∈ D

with stationary, shift invariant expectation μ and non-stationary spatial covariance
function κ(., .). The latter must be a positive definite function which complicates the
model parametrization. The major challenge is, however, to make inference of the
model parameters based on one set of observations from one realization of the random
field. The current model defined in Eq. (2), can be cast in the framework above

E[r(x)] = μ; ∀x ∈ D

Cov[r(x ′
), r(x

′′
)] = κ(x

′
, x

′′
)

= σ(x
′
)σ (x

′′
)ρ(x

′
, x

′′
) + (μ(x

′
) − μ)(μ(x

′′
) − μ) ∀x ′

, x
′′ ∈ D

with global centering valueμ and gross covariance function κ(., .). The latter will be a
positive definite function whenever ρ(., .) is a positive definite function, for arbitrary
functions μ(.) ∈ �1 and σ(.) ∈ �1+ on D. Note, in particular that for stationary,
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translation invariant ρ(x
′
, x

′′
) = ρ(x

′ − x
′′
) the corresponding κ(., .)will still be non-

stationary. One may consider the model in Eq. (2), to be a flexible parametrization
of κ(., .) in a non-stationary Gaussian random field. In the current study, localized,
robust estimators forμ(x) and σ(x) at arbitrary x ∈ D are presented, given a stationary
correlation function ρ(.), based on one set of observations from one realization. Con-
sequently, inference of the non-stationary κ(., .) under the parametrization discussed
above can be made.

These developments are also valid for non-stationary ρ(., .), but this extension
introduces new challenges in assessing ρ(., .). These challenges are not addressed in
the current study.

3 Inference of Model Parameters

To use the probabilistic models for {r(x); x ∈ D} in spatial prediction, the model
parameters must be assessed from the set of observations represented by the n-vector
ro = [r(x1), . . . , r(xn)]T = [r1, . . . , rn]T .

Throughout the study, the spatial correlation function {ρ(x
′
, x

′′
) = ρ(x

′ −
x

′′
); ∀x ′

, x
′′ ∈ D} is assumed to be known, with associated inter-observation correla-

tion [n×n]-matrix	oo. This correlation model must of course be inferred in one way
or the other, but in the current study the uncertainty related to this is not accounted for.
The other model parameters will be estimated conditional on this correlation function,
and hence capture the remaining spatial structure in the observations.

For a stationary Gaussian random field, given the correlation function, the model
parameters can be assessed by a maximum likelihood estimator

μ̂ = [iTn 	−1
oo in]−1[iTn 	−1

oo ro]
σ̂ 2 = 1

n
[ro − μ̂in]T	−1

oo [ro − μ̂in] (5)

where in is the n-vector [1, . . . , 1]T .
For a general Gaussian random field, given the correlation function, the assess-

ments of the spatial model parameters {μ(x); x ∈ D} and {
σ 2(x); x ∈ D

}
, are more

complicated. To define localized estimators, consider an arbitrary location x+ ∈ D
and parameterize the localization by the k observations in ro localized closest to x+,
and denote this as k-localization. Define a binary-selection [k × n]-matrix Gk+ such
that Gk+ro is a k-vector containing the k observations in the k-localization of x+. Note
that Gk+ can also be extended to account for favorable configurations of observations
around x+. The k-localized maximum likelihood estimators for the model parameters
are

μ̂k+ = μ̂k(x+) = [iTk [Gk+	oo[Gk+]T ]−1Gk+ro][iTk [Gk+	oo[Gk+]T ]−1ik]−1

σ̂ k2+ = σ̂ k2(x+) = 1

k
[Gk+ro − μ̂k+ik]T [Gk+	oo[Gk+]T ]−1(Gk+ro − μ̂k+ik). (6)
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When x+ coincidewith the observation locations [x1, . . . , xn] this produces estimators
for the observation expectation n-vector, and the diagonal standard deviation [n × n]-
matrix

µ̂
k
o = [μ̂k

1, . . . , μ̂
k
n]T


̂k
o =

⎡

⎢
⎣

σ̂ k
1 . . . 0
...

. . .
...

0 . . . σ̂ k
n

⎤

⎥
⎦ . (7)

For a stationary, hierarchical Gaussian random field, with given correlation function,
inference of the model parameters of the prior model [μm, τm, ξs, γs] is required. This
assessment is made in an empirical Bayes setting, by considering the localized esti-
mates in the observation locations, [μ̂k

i , σ̂
k
i ]; i = 1, . . . , n, to be a super-population of

the k-localized estimate in an arbitrary location.Moment estimators are used, based on
the moment expressions defined in Eq. (4). Then natural estimators for the parameters
of the prior model are dependent on k, and given by

μ̂k
m = 1

n
iTn µ̂

k
o

τ̂ km = [σ̂ k2
. ]−1σ̂ k2

m (8)

where

σ̂ k2
. = 1

n
Tr [[
̂k

o]2]

σ̂ k2
m = 1

n
[µ̂k

o − μ̂k
m in]T [µ̂k

o − μ̂k
m in]

and

ξ̂ ks = [σ̂ k2
s ]−1[μ̂k2

s ] + 2

γ̂ k
s = μ̂k

s [[σ̂ k2
s ]−1[μ̂k2

s ] + 1] (9)

where

μ̂k
s = 1

n
iTn s

2

σ̂ k2
s = 1

n
[s2 − μ̂k

s in]T [s2 − μ̂k
s in]

s2 = [(r1 − μ̂k
m)2, . . . , (rn − μ̂k

m)2]T .

Estimators for all model parameters are now defined based on the observations ro.
Hence all probabilistic models for the regionalized variable {r(x); x ∈ D} are fully
specified. The focus is on spatial prediction however, and in the following section
spatial predictors are specified under the various model assumptions. The estimators
for the model parameters can be inserted to obtain operable predictors.
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4 Spatial Predictors

The focus of this study is on spatial prediction in a random field {r(x); x ∈ D} based
on a set of observations represented in a n-vector ro. Consider an arbitrary location
x+ ∈ D with value r(x+) = r+. The challenge is to provide a reliable predictor for
r+ based on ro. By using a squared error loss the predictor is r̂+ = Ê[r+|ro], with
associated estimated predictor variance σ̂ 2+ = V̂ar[r+|ro]. Note that a predictor for
the entire regionalized variable {r(x); x ∈ D} can be obtained by letting x+ run over
the domain D.

Recall that the correlation function {ρ(x
′ − x

′′
); x ′

, x
′′ ∈ D} is assumed known

and that the inter observation correlation [n × n]-matrix is denoted 	oo, while the
observation to x+ correlation n-vector is denotedωo+. Recall also that the localization
operator Gk+ is defined such that Gk+ro is an observation k-vector which contain the k
observations located closest to x+.

4.1 Glob/Stat/Trad Predictor

This predictor is global and based on a stationary Gaussian random field model with
traditional parameter estimates. It corresponds to the frequently used global ordinary
kriging predictor, and it is defined by

[r |ro] ∼ Gauss[μ+|o, σ 2+|o]

with

μ+|o = μ + ωT
o+	−1

oo [ro − μin]
σ 2+|o = σ 2[1 − ωT

o+	−1
oo ωo+]. (10)

Note that the predictor is independent of the variance σ 2 while the prediction variance
is independent of the observed values ro. The latter is only dependent on the location
configuration of ro. These are well-known characteristics of kriging.

The Glob/Stat/Trad predictor with associated predictor variance is defined as

r̂GST = μ̂+|o
σ̂ 2
GST = σ̂ 2+|o

which are defined by Eq. (10) with the estimates in Eq. (5) inserted.

4.2 Loc/Stat/Trad Predictor

This predictor is k-localized and based on a stationary Gaussian random field model
with traditional parameter estimators. It corresponds to a localized ordinary kriging
predictor which is frequently used in practice, and is defined by
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[r+|Gk+ro] ∼ Gauss[μk+|o, σ k2+|o]

with

μk+|o = μk+ + [Gk+ωo+]T [Gk+	oo[Gk+]T ]−1[Gk+ro − μk+ik]
σ k2+|o = σ k2+ [1 − [Gk+ωo+]T [Gk+	oo[Gk+]T ]−1Gk+ωo+]. (11)

This predictor is locally independent onσ 2 with predictor variance locally independent
of the observed values ro. Since bothμk+ andσ k2+ will vary across the field, the predictor
and predictor variance will vary across the field as well.

The Loc/Stat/Trad predictor with associated predictor variance is defined as

r̂ kLST = μ̂k+|o
σ̂ k2
LST = σ̂ k2+|o

which are defined by Eq. (11) with the estimates in Eq. (6) inserted.

4.3 Loc/Stat/Shr Predictor

This predictor is k-localized and based on a stationary Gaussian random field model
with shrinkage parameter estimators defined in an empirical Bayes setting. The pre-
dictor is termed the stationary localized/shrinkage kriging predictor and constitutes a
new predictor in the study

[r+|mk+, sk2+ ,Gk+ro] ∼ Gauss[μk+|o, σ k2+|o]

with

μk+|o = mk+ + [Gk+ωo+]T [Gk+	oo[Gk+]T ]−1[Gk+ro − mk+ik]
σ k2+|o = sk2+ [1 − [Gk+ωo+]T [Gk+	oo[Gk+]T ]−1Gk+ωo+] (12)

where the posterior expectations for the hyper-parameters are (“Appendix”)

mk+ = E[m|s2,Gk+ro]
= μk

m + τ km i
T
k [τ km ik iTk + [Gk+	oo[Gk+]T ]−1[Gk+ro − μk

m ik]

sk2+ = E[sk2+ |Gk+ro] =
[

ξ ks + k

2
− 1

]−1

×
[

γ k
s + 1

2

[
[Gk+ro−μk

m ik]T [[Gk+	oo[Gk+]T ]+τ km ik i
T
k ]−1[Gk+ro−μk

m ik]
]]

.

(13)

Equation (12) follows from the definition of a stationary hierarchical Gaussian random
field conditioned on the model parameters and on Gk+ro. Equation (13) follows from
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the prior model of [m, s2] being conjugate, hence the posterior models are analytically
accessible, and so are their expectations. Note in particular that mk+ = E[m|Gk+ro]
hence independent of sk2+ . Note also that the predictor is independent of the variance
while the predictor variance is dependent on the actual observed values.

The predictor exhibits shrinkage behaviour through the estimators for shift and
scaling parameters mk+ and sk2+ . The actual observation weights are independent of
mk+ and sk2+ .

The Loc/Stat/Shr predictor with associate predictor variance is defined as

r̂ kLSS = μ̂k+|o
σ̂ k2
LSS = σ̂ k2+|o

which are defined by Eqs. (12) and (13) with the estimators in Eqs. (8) and (9) inserted.

4.4 Loc/Non-stat/Trad Predictor

This predictor is k-localized and based on a general Gaussian random field model with
traditional parameter estimators. This predictor is surprisingly seldom used, and it is
defined as

[r+|Gk+ro] ∼ Gauss[μk+|o, σ k2+|o]

with

μk+|o = μk+ + σ k+[Gk+
k
oωo+]T [Gk+
k

o	oo

k
o[Gk+]T ]−1[Gk+[ro − µk

o]]
σ k2+|o = σ k2+ [1 − [Gk+
k

oωo+]T [Gk+
k
o	oo


k
o[Gk+]T ]−1Gk+
k

oωo+] (14)

where

µk
o = [μk

1, . . . , μ
k
n]T


k
o =

⎡

⎢
⎣

σ k
1 . . . 0
...

. . .
...

0 . . . σ k
n

⎤

⎥
⎦ .

Note that this predictor is dependent on the variance variability across the field while
the predictor variance is independent of the observation values.

The Loc/Non-stat/Trad predictor with associated predictor variance are defined as

r̂ kLNT = μ̂k+|o
σ̂ k2
LNT = σ̂ k2+|o

which are defined by Eq. (14) with the estimates in Eqs. (6) and (7) inserted.
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4.5 Loc/Non-stat/Shr Predictor

This predictor is k-localized and based on a non-stationary Gaussian random field
model with shrinkage parameter estimators defined in an empirical Bayesian setting.
This predictor is termed the non-stationary localized/shrinkage kriging predictor and
constitutes another new predictor in this study

[r+|mk+,mk
o, s

k2+ , Sko ,G
k+ro] ∼ Gauss[μk+|o, σ k2+|o]

with

μk+|o = mk+ + sk+[Gk+Skoωo+]T [Gk+Sko	ooS
k
o [Gk+]T ]−1[Gk+[ro − mk

o]]
σ k2+|o = sk2+ [1 − [Gk+Skoωo+]T [Gk+Sko	ooS

k
o [Gk+]T ]−1Gk+Skoωo+] (15)

where mk+ and sk2+ are defined as in Eq. (13) while

mk
o = [mk

1, . . . ,m
k
n]T

Sko =
⎡

⎢
⎣

sk1 . . . 0
...

. . .
...

0 . . . skn

⎤

⎥
⎦

are defined from the x+-centered m+ and sk2+ shifted to the observation locations
[x1, . . . , xn].

The predictor exhibits shrinkage through the estimators ofmk+, sk2+ andmk
i , s

k2
i ; i =

1, . . . , n. Hence both shift and scaling, as well as observation weights are influenced
by the shrinkage effect. This is a full shrinkage predictor.

The Loc/Non-stat/Shr predictor with associated predictor variance are defined as

r̂ kLNS = μ̂k+|o
σ̂ k2
LNS = σ̂ k2+|o

which are defined by Eq. (15) with the estimates in Eqs. (8) and (9) inserted.

4.6 Cross-Validation Calibrated (CVC) Predictors

Five predictors are defined, one global and four localized. One challenge with local-
ized predictors is lack of global anchoring. The variance estimates are localized and
coupled with the expectation estimates which may cause incorrect scaling of the pre-
diction variances. To account for this cross-validation calibrated (CVC) predictors are
introduced to provide a global calibration.

Consider an arbitrary predictor in an arbitrary location x+ ∈ D, r̂+ = Ê[r+|ro].
The predictor may be global or localized, and it is based on the observations ro =
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[r1, . . . , rn]T in locations [x1, . . . , xn]. The associated prediction variance is σ̂ 2+ =
V̂ar[r+|ro].

Define the cross-validation predictors with associated predictor variances in the
observation locations [x1, . . . , xn]

r̂i = Ê[ri |ro(−i)]; i = 1, . . . , n

σ̂ 2
i = V̂ar[ri |ro(−i)]; i = 1, . . . , n

where ro(−i) represents observations ro with observations ri removed.
The normalized cross-validation errors are defined as

ei = [σ̂i ]−1[ri − r̂i ]; i = 1, . . . , n.

Under a fully specified model, these errors will be centered at zero and scaled to unity.
Consider the estimators

μ̂e = 1

n

n∑

i=1

ei

σ̂ 2
e = 1

n

n∑

i=1

[ei − μ̂e]2

so the mean normalized error (MNE) μ̂e, and mean square normalized error (MSNE)
σ̂ 2
e , should be close to zero and unity respectively.
TheCVCpredictor andCVCprediction variance are defined in an arbitrary location

x+ ∈ D by

r̃+ = r̂+ + σ̂+μ̂e

σ̃ 2+ = σ̂ 2
e σ̂ 2+. (16)

Note that the corresponding normalized cross-validation errors will have μ̂e and
σ̂ 2
e which are identical to zero and unity, respectively. These CVC predictors with

associated CVC prediction variances will be used in the following study.

5 Empirical Evaluation

It is difficult to compare the various predictors analytically, hence an empirical evalu-
ation is conducted. First suitable evaluation criteria are defined, thereafter two studies
are described and the results are summarized.

5.1 Evaluation Criteria

Several spatial CVC predictors with associated CVC prediction variances are defined.
Recall that all predictors have normalized cross-validation errors centered at zero and
scaled to unity.
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The precision of the CVC predictors r̃+ measured by mean square cross-validation
error

PMSE = 1

n

n∑

i=1

[ri − r̃i ]2 (17)

may vary, however. In the CVC predictor the scale of the normalized cross-validation
error is identical to unity but large deviations may be reduced by large prediction
variances in this measure. The PMSE value is used as measure for precision in the
CVC predictor r̃+ and small values of PMSE are preferable, of course.

The precision of the CVC prediction variances σ̃ 2+ is indicated by the dependence
between cross-validation squared errors [ri − r̃i ]2 and corresponding prediction vari-
ances σ̃ 2

i . Since these are variance estimates the mean square measure is defined as

VMSE = 1

n

n∑

i=1

[
[ri − r̃i ]2

σ̃ 2
i

− 1

]2

. (18)

Recall that normalized cross-validation squared error in this expression is centered
exactly at unity. The VMSE value is used as measure for precision in the CVC pre-
diction variance σ̃ 2+ and small values of VMSE are preferable.

By comparing values of PMSE and VMSE for different CVC predictors one can
evaluate the relative quality of the predictors. Normally, the criterion PMSE is con-
sidered more important than the criterion VMSE.

5.2 Empirical Studies

Two cases are presented. The first is based on a set of observations of yearly accumu-
lated precipitation and the second on a simulation study of a general Gaussian random
field.

5.2.1 US Precipitation Study

The data set consists of observations of accumulated precipitation from 1997 in 1001
locations in an area of the US (Fig. 1). The observations are a subset of a much larger
data set (Johns et al. 2003).

By inspecting the observations in Fig. 1, one sees relatively dense, uniform coverage
of observations with a slight south-eastern trend in the values. The translation invariant
correlation function ρ(.) is inferred from correlation values computed at regular shifts
assuming translation invariant expectations and variances. These correlations (Fig. 2)
constitutes some sort of spatial average values. The following model is fitted

ρ(τ) = exp

{

−
[ τ

3.5

]1.4
}

; τ ≥ 0
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Fig. 1 The 1997 accumulated precipitation observations in the US with sub-area to be studied (top). The
1,001 observations used in the study (bottom)
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Fig. 2 Spatial correlation function used with estimated correlation values

with τ = |x ′ − x
′′ |. This spatial correlation model is used throughout the study and

the estimates of the model parameters μ(.) and σ 2(.) are obtained conditional on
this correlation model. The estimators and the localized predictors require that k, the
number of observations in the neighborhood, is specified. After a small preliminary
study, the value k = 10 is chosen.

The comparison is made between the five alternative CVC predictors defined in
Sect. 4 using the evaluation criteria defined in Sect. 5. The results from the evaluation
are displayed in Figs. 3, 4, 5, 6, 7, 8, 9 and Table 1.
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Fig. 3 Glob/Stat/Trad CVC predictor-ordinary kriging a Predictions, b Prediction standard deviations
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Fig. 4 Glob/Stat/Trad cross-validation errors a Normalized cross-validation errors, b Normalized cross-
validation error histogram
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Fig. 5 Loc/Stat/Trad k = 10 CVC predictor a Predictions, b Prediction standard deviations

-98 -97 -96 -95 -94 -93 -92 -91 -90 -89
34

36

38

40

42

Longitude

La
tit

ud
e

(a) 

-8

-6

-4

-2

0

2

4

6

8

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

(b)

Fig. 6 Loc/Stat/Trad k = 10 cross-validation errors a Normalized cross-validation errors, b Normalized
cross-validation error histogram
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Fig. 7 Loc/Stat/Shr k = 10 CVC predictor a Predictions, b Prediction standard deviations
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Fig. 8 Loc/Stat/Shr k = 10 cross-validation errors a Normalized cross-validation errors, b Normalized
cross-validation error histogram
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Fig. 9 US precipitation study. Priors model for expectation and variance

Table 1 US precipitation study

Model Localized/stationary Localized/non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D k = 1000 k = 10 k = 10 k = 10 k = 10

MNE 1.0148e−17 −5.3792e−18 5.9892e−17 1.5084e−16 −1.1579e−16

MSNE 1.5399 2.9740 3.3928 9.2487 5.1702

PMSE 6.8758e+03 6.8745e+03 6.8654e+03 2.2181e+04 9.3555e+03

VMSE 9.8749 5.9746 5.2027 4.0787 4.3475

Evaluation criteria: MNE mean normalized error, MSNE mean square normalized error, PMSE prediction
mean squared error, VMSE variance mean squared error

The results from the Glob/Stat/Trad CVC predictor are displayed in Figs. 3, 4 and
Table 1. Figure 3 displays the actual cross-validation predictions and cross-validation
prediction standard deviations in the observations locations. The predictions can be
compared to the actual observations in Fig. 1, and no dramatic deviations are seen since
the observation coverage is dense. Figure 4 displays the normalized cross-validation
errors both spatially and as a histogram. Note that the histogram is centered at zero
and scaled to unity since the CVC predictor is used. The locations of large errors seem
to fall in the south-eastern corner where the trend effect is largest. The values of the
evaluation criteria are listed in Table 1, first column (k = 1000). The two first lines
MNE and MSNE contain the values of μ̂e and σ̂ 2

e respectively, hence the empirical
moments of the normalized cross-validation errors of the non-calibrated predictor. The
predictor appears as well centered but with downward biased prediction variances. The
two next lines contain the values of the evaluation criteria PMSE and VMSE, for the
CVC predictor. The former criteria is related to prediction precision while the latter
is related to precision in the prediction variance. These criteria provide the basis for
comparison of the various CVC predictors.

The results from the Loc/Stat/Trad k = 10 CVC predictor are displayed in Figs. 5, 6
and Table 1. The formats are identical to the ones discussed in the previous paragraph.
The cross-validation predictions and prediction standard deviations in Fig. 5 are very
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similar to the results for the global predictor in Fig. 3. The normalized cross-validation
errors in Fig. 6 deviate noticeable from the results for the global predictor in Fig. 4,
since the large errors tend to be more uniformly located in the area and the histogram
has somewhat lighter tails. From Table 1 one sees that the non-calibrated predictor is
well centered but with downward biased prediction variances. The evaluation criteria
PMSE and VMSE of the Loc/Stat/Trad k = 10 CVC predictor have values that are
favorable compared to the global CVC predictor. It is mildly favorable for prediction
and clearly favorable for prediction variance.

The results from the Loc/Stat/Shr k = 10 CVC predictor are displayed in Figs.
7, 8, 9 and Table 1, in similar formats as above. The predictor relies on a set of
hyper-parameters that defines the prior model for localized expectation and variance.
These prior models are assessed in an empirical Bayesian spirit from the complete
set of observations. For the current predictor with k = 10 we obtain the prior model
displayed in Fig. 9. The cross-validation predictions and cross-validation standard
deviations in Fig. 7 appear as very similar to the results for the other CVC predictors
in Figs. 3 and 5. The normalized cross-validation errors in Fig. 8 appear as similar
to the ones for the traditional localized predictor in Fig. 6. Note, however, that the
histograms are different in the sense that the histogram of the shrinkage predictor
has lighter tails than the traditional one. This is very much in the shrinkage spirit,
since extreme predictions, often caused by unstable model parameter estimates, are
dampened towards the center of the model. From Table 1, one observe that the non-
calibrated predictor is well centered but with downward biased prediction variances.
The evaluation criteria PMSE and VMSE for the Loc/Stat/Shr k = 10 CVC predictor
are both favorable compared to both the traditional global and localized predictors.
Minor improvement in prediction precision is obtained, while the precision in the
prediction variance is clearly improved.

The results from the Loc/Non-stat/Trad k = 10 CVC predictor and the Loc/Non-
stat/Shr k = 10 CVC predictor is summarized in Table 1. By comparing the values of
the evaluation criteria PMSE and VMSE to the other predictors, we conclude that the
precision in prediction is clearly poorer. Note, however, the improvement in precision
for the prediction variance. These results may indicate that there is a trade-off in the
precision of the prediction and prediction variance.

To summarize, it can be concluded that the localized predictors are clearly prefer-
able to the global one, both in prediction precision and particularly in the precision of
prediction variance. The localized models are robust with respect to deviations from
assumptions of global stationary, and this robustness improves the localized predic-
tors. Localized stationary predictors are preferable to the localized non-stationary ones,
since the precisions in prediction are clearly better. The precision in the prediction vari-
ance can, however, be improved by non-stationary predictors. In the non-stationary
models one must estimate the expectation and variance at each observation location,
which introduces additional uncertainty in the model. This uncertainty dominates the
advantage of using a more general model. Among localized, stationary predictors, the
shrinkage predictor is clearly favorable to the traditional one. The prediction preci-
sion is slightly better, while the precision in prediction variance is clearly favorable.
For localized models, one needs to make bias/variance trade-offs when selecting the
localization. Using a regularizer representing the global variability in the parameter
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Fig. 10 General Gaussian random field. Expectation and variance field (a), predictions and prediction
variances for one realization (b–e)

estimators provide more stable estimates. It is not surprising that the effect is largest
for prediction variance, since traditional variance estimators are notoriously unstable.

In the current study, localization with k = 10 is used. In the extended study (Asfaw
and Omre 2014), the sensitivity to choice of k value is evaluated. If k is considerably
reduced, to for example k = 4, the localized predictor are poorer than the global one.
This deterioration is probably caused by overfitting to the observations. Results for
k in the range 8–16 are consistent with the results in the current study with local-
ized shrinkage predictors clearly preferable. By increasing k the localized and global
predictors will eventually coincide.

5.2.2 Simulation Study

A simulation study is conducted on a general Gaussian random field model {r(x); x ∈
D ⊂ �1} with D = [1,200] discretized to a grid LD = {1, . . . , 200}. The expectation
and variance fields used in the study are non-stationary with similar shape (Fig. 10a).
The known correlation function is ρ(τ) = exp{−0.2τ 1.5} with τ = |x ′′ − x

′ |. One
realization is generated from this random field model and the realizations at locations
Lo = {1, 10, . . . , 190, 200} are used as observations, hence n = 21.
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Fig. 11 General Gaussian random field. Prior model for expectation and variance for one realization

With known model parameters, the correct predictions and prediction variances
in locations LD are analytically assessable (Fig. 10b). The predictor reproduces the
observations and the prediction variances reflect the non-stationarity. The variousCVC
predictors Glob/Stat/Trad, Loc/Stat/Trad and Loc/Stat/Shr are based on localization
k = ±4 whenever relevant. The corresponding results are displayed in Fig. 10c–e.
Note that the global predictor has regression towards the observation average and
prediction variance accounting only for the observation configuration. The localized
predictors are fairly similar, capturing the local variability in the observations. The
shrinkage results appear as somewhat damped relative to the traditional ones. This
dampening is caused by the prior models for local expectation and variance which
are assessed in an empirical Bayesian spirit. The prior model for this realization is
displayed in Fig. 11. Predictions based on the non-stationarymodels are also evaluated
but these results are not displayed in Fig. 10.

To summarize, the global predictor,which corresponds to classical ordinary kriging,
appears as highly unreliable since the underlying model is clearly non-stationary. This
predictor will not be further evaluated. The results from the localized predictors are
difficult to distinguish by visual inspection.

The evaluation criteria discussed in Sect. 5 can be revised to characterize the devi-
ations between the CVC predictions and prediction variances and the correct ones
displayed in Fig. 10a. One thousand realizations are generated and the evaluation
criteria to obtain APMSC and AVMSC are averaged for prediction and prediction
variance respectively, see Table 2. This procedure is repeated for varying localizations
k. From Table 2, one observes that for localized, stationary predictors the shrinkage-
versions are preferable to the traditional ones for both criteria and for all k, except
for one extreme case with large k. For the localized, non-stationary predictors the
shrinkage-versions are uniformly preferable to the traditional ones.

One typical feature is observed for localized/stationary predictors for the criterion
APMSC, characterizing precision in prediction, for varying localizations k. The tra-
ditional predictor makes bias/variance trade-offs, resulting in poor performance for
large k due to bias and also poor performance for small k due to instability in the para-
meter estimates. Localization at k = ±4 provides a favorable traditional predictor.
The shrinkage predictor stabilizes the variance estimates by shrinkage and performs
well for smaller localizations with k = ±2. The Loc/Stat/Shr k = ±4 CVC predictor
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appears to be the preferable one, since the APMSC criterion is seen as more important
than the AVMSC one.

The evaluation criteria discussed above require the correct predictors to be available,
which is not the case in real studies. Therefore, the cross-validation criteria discussed
in Sect. 5, which are always available are also computed. One thousand realizations
are averaged over to obtain APMSE and AVMSE, and the resulting values are listed
in Table 2. For these criteria, the shrinkage versions are uniformly preferable to the
traditional ones for all cases. The Loc/Stat/Shr k = ±2 CVC predictor appears to be
superior based on these criteria as well.

To summarize, the cross-validation criteria appear as representative for the exact
criteria based on the correct predictions. The former criteria can be computed in real
studies with only one set of observations available. The Loc/Stat/Shr CVC predictors
are identified as preferable to the other predictors, although the best localization k
appears to be somewhat underestimated by cross-validation.

In the current simulation study, only one expectation and one variance function are
used. In the extended study (Asfaw 2014),many other cases are considered. The results
are consistent with the ones presented here, and it is demonstrated that the traditional
predictors are particularly sensitive to deviations from stationarity in expectation,
which also influences the variance estimates. Lastly, the synthetic simulation case
is Gaussian so no outliers and no heavy-tailed distributions are involved. In spite of
this, the shrinkage predictors are found to be preferable to the traditional ones. In
the presence of outliers and heavy-tailed models, one can expect that the shrinkage
predictors perform even more favorably.

6 Conclusions

Two versions of localized, shrinkage CVC predictors are defined, one based on local
stationarity and one with local non-stationarity. The shrinkage is defined in an empir-
ical Bayes setting while the cross-validation calibration (CVC) ensures correct global
scaling of the predictor variance. The introduction of spatial shrinkage predictors
constitutes the new feature of this study, and are termed localized/shrinkage kriging
predictors.

The localized/shrinkage kriging predictors are compared to traditional kriging pre-
dictors, both global and localized, in a study on real precipitation data and in a synthetic
simulation study. Two cross-validation-based criteria are used in the comparison. The
localized/shrinkage kriging predictors are found to be clearly favorable to traditional
kriging predictors on the real data set of yearly accumulated precipitation. The syn-
thetic study is based on a Gaussian random field with spatially varying expectation
and variance which makes local predictors suitable. The localized/shrinkage kriging
predictors emerge as clearly favorable to traditional localized kriging predictors also
in this simulation study. The shrinkage predictors based on local stationarity seems to
be the superior models.

Our recommendation is to use localized, shrinkage kriging predictors, based on a
local stationarity model, for spatial prediction whenever deviation from stationarity
in the observations is suspected. Even for a stationary Gaussian model localized,
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shrinkage kriging predictors can be preferable to global ordinary kriging, if the focus
is on computational demands.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Hierarchical, Gaussian Model

Consider a stationary hierarchical, Gaussian random field {r(x); x ∈ D ⊂ �m} and a
set of observations ro = [r(x1), . . . , r(xn)], x1, . . . , xn ∈ D.

The pdf’s are

[ro|m, s2] ∼ f [ro|m, s2]
= Gaussn[min, s2	oo]
= [2π ] −n

2 |s2	oo|− 1
2 exp

{−1

2
[ro − min]T [s2	oo]−1 [ro − min]

}

[m|s2] ∼ f [m|s2] = Gauss1[μm, τms
2]

= [2π ] −1
2 [τms2]− 1

2 exp

{−1

2
[τms2]−1 [m − μm]

2
}

[s2] ∼ f [s2] = InvGam1[ξs, γs]
= [
(ξs)]−1γ ξs

s [s2]−[ξs+1] exp{−γs[s2]−1}.

Note that

E[s2] = [ξ − 1]−1γs; ξs > 1, γs > 0

Var[s2] =
[
(ξ − 1)2(ξ − 2)

]−1
γ 2
s ; ξs > 2, γs > 0.

From the pdfs above

[m|s2, ro] ∼ f [m|s2, ro] = f [ro|m, s2] f [m|s2]
∫

f [ro|m, s2] f [m|s2]dm
= Gauss1(μm|o, σ 2

m|o)

μm|o = μm + τm iTn [τm in iTn + 	oo]−1[ro − μm in]
σ 2
m|o = τms

2 − τms
2iTn [τms2in iTn + s2	oo]−1[τms2in]

[s2|ro] ∼ f [s2|ro] =
∫

f [ro|m, s2] f [m|s2] f [s2]dm
∫ ∫

f [ro|m, s2] f [m|s2] f [s2]dmds2

= InvGam1(ξs|o, γs|o)
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ξs|o = ξs + n

2

γs|o = γs + 1

2
[[ro − μm in]T [τm in iTn + 	oo]−1[ro − μm in]].
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