Gaussian process regression

Model: \(Y(s) = X(s)\beta + w(s) + \epsilon(s). \)

1. \(Y(s) \) response variable at 'location' \(s \).
2. \(\beta \) regression effects. \(X(s) \) covariates at \(s \).
3. \(w(s) \) structured (space-time correlated) Gaussian process with 0 mean.
4. \(\epsilon(s) \) unstructured (independent) Gaussian measurement noise.
Gaussian model

Model: \(Y(s) = X(s)\beta + w(s) + \epsilon(s) \).
Data at \(n \) 'locations': \(Y = (Y(s_1), \ldots, Y(s_n))' \).
Main goals are:
- Parameter estimation
- Prediction
Likelihood for parameter estimation:

\[
I(\mathbf{Y}; \beta, \theta) = -\frac{1}{2} \log |\mathbf{C}| - \frac{1}{2} (\mathbf{Y} - \mathbf{X} \beta)' \mathbf{C}^{-1} (\mathbf{Y} - \mathbf{X} \beta)
\]

\[
\mathbf{C}(\theta) = \mathbf{C} = \Sigma + \tau^2 \mathbf{I}_n
\]

\(
\text{Var}(\mathbf{w}) = \Sigma, \ \text{Var}(\epsilon(s_i)) = \tau^2 \text{ for all } i.
\)

\(\theta\) include parameters of the covariance model.
Maximum likelihood

\[\hat{\theta}, \hat{\beta} = \arg\max_{\theta, \beta} \{ l(Y; \beta, \theta) \}. \]
Analytical derivatives

Formulas for matrix derivatives.

\[
\begin{align*}
Q(\theta) &= C^{-1} \\
\hat{\beta} &= [X'QX]^{-1}X'QY, \\
Z &= Y - X\hat{\beta} \\
d\log |C| = d\theta_r &= \text{trace}(Q \frac{dC}{d\theta_r}) \\
dZ'QZ = d\theta_r &= -Z'Q \frac{dC}{d\theta_r} QZ.
\end{align*}
\]
Score and Hessian for θ

\[
\frac{dl}{d\theta_r} = -\frac{1}{2} \text{trace}(Q \frac{dC}{d\theta_r}) + \frac{1}{2} Z' Q \frac{dC}{d\theta_r} Q Z,
\]

\[
E \left(\frac{d^2l}{d\theta_r d\theta_s} \right) = -\frac{1}{2} \text{trace}(Q \frac{dC}{d\theta_s} Q \frac{dC}{d\theta_r}).
\]
Updates for each iteration

\[Q = Q(\theta_p) \]
\[\hat{\beta}_p = [X'QX]^{-1}X'QY, \]
\[\hat{\theta}_{p+1} = \hat{\theta}_p - E \left(\frac{d^2l(Y; \hat{\beta}_p, \hat{\theta}_p)}{d\theta^2} \right)^{-1} \frac{dl(Y; \hat{\beta}_p, \hat{\theta}_p)}{d\theta}, \]

Iterative scheme usually starts from preliminary guess, obtained via summary statistics.
Illustration maximization

Exponential covariance with nugget effect. $\theta = (\theta_1, \theta_2, \theta_3)'$: log precision, logistic range, log nugget precision.
Asymptotic properties

\[\hat{\theta} \approx N(\theta, G^{-1}). \]

Information matrix:

\[G = G(\hat{\theta}) = -E \left(\frac{d^2 l}{d\theta^2} \right). \]
Prediction from joint Gaussian formulation

Prediction

\[\hat{Y}_0 = E(Y_0|Y) = X_0\hat{\beta} + C_{0,.}C^{-1}(Y - X\hat{\beta}). \]

\(C_{0,.} \) is size 1 \(\times \) \(n \) vector of cross-covariances between prediction site \(s_0 \) and data sites.

Prediction variance

\[\text{Var}(Y_0|Y) = C_0 - C_{0,.}C^{-1}C'_{0,.}. \]
Synthetic data

Consider unit square. Create grid of \(25^2 = 625\) locations. Use 49 data randomly assigned, or along center line (two designs).

Covariance \(C(h) = \tau^2 I(h = 0) + \sigma^2 (1 + \phi h) \exp(-\phi h),\ h = |s_i - s_j|\). \(\theta\) include transformations of: \(\sigma, \tau\) and \(\phi\).
Predictions

Random: Prediction

<table>
<thead>
<tr>
<th>Northing</th>
<th>Easting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random: Prediction error

<table>
<thead>
<tr>
<th>Northing</th>
<th>Easting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Center: Prediction

<table>
<thead>
<tr>
<th>Northing</th>
<th>Easting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Center: Prediction error

<table>
<thead>
<tr>
<th>Northing</th>
<th>Easting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Likelihood optimization

True parameters $\beta = (-2, 3, 1), \theta = (0.25, 9, 0.0025)$.
Random design:
$\beta = [-2(0.486), 3.43(0.552), 0.812(0.538)]$
$\theta = [0.298(0.118), 7.89(1.98), 0.00563(0.00679)]$
Center design:
$\hat{\beta} = [-2.06(0.576), 3.4(0.733), 0.353(0.733)]$
$\hat{\theta} = [0.255(0.141), 7.19(1.97), 0.00283(0.00128)]$
Computational challenge for large n

1. Build and store $\Sigma(\theta) = \Sigma = C + \tau^2 I_n$
2. Compute $\log |\Sigma|$
3. Compute Σ^{-1} or $(Y - X\beta)' \Sigma^{-1} (Y - X\beta)$

In general, the computational cost is $O(n^3)$.
Possible solutions for large Gaussian models

- Approximate likelihood, Composite likelihoods.
- Basis representation.
- Markov representation.
- Predictive process models, sparse GPs.
- Tapered likelihood.
- Numerical linear algebra.
Composite likelihood

- Use pairs of joints, not full joint.

\[l_{cl}(Y; \beta, \theta) = \sum_i \sum_{j>i} \log f(Y(s_i), Y(s_j); \beta, \theta) \]

- Fast calculations & Quantify loss in efficiency & Allows parallel computing.

\[M \] blocks.

\[l_{CL}(Y; \beta, \theta) = \sum_{k=1}^{M-1} \sum_{l>k} \log f(Y_k, Y_l; \beta, \theta) \]

\[= \sum_{k=1}^{M-1} \sum_{l>k} \left\{ -\frac{1}{2} \log |\Sigma_{kl}| - \frac{1}{2} Z_k' Q_{kl} Z_l \right\} , \]

\[Z_{kl} = (Y_k, Y_l)' - (X_k, X_l)' \beta \]

\[\Sigma_{kl} = \Sigma_{kl}(\theta) \] block-pair covariance. Size \((n_k + n_l) \times (n_k + n_l)\)

\[Q_{kl} = \Sigma_{kl}^{-1} \]

\[n = \sum_{k=1}^{M} n_k \]
Asymptotic properties: Godambe sandwich

\[\hat{\theta} \approx N(\theta, G^{-1}) \]

\[G = G(\hat{\theta}) = H(\hat{\theta}) J^{-1}(\hat{\theta}) H(\hat{\theta}), \]

\[H(\hat{\theta}) = -E \left(\frac{d^2 l_{CL}}{d\theta^2} \right), \quad J(\hat{\theta}) = \text{Var} \left(\frac{dl_{CL}}{d\theta} \right). \]
Markov property

In the time domain, the Markov property holds if for any \(t > s > u \),

\[
p(y(t)|y(s), y(u)) = p(y(t)|y(s)).
\]

The exponential correlation function gives a Markov process. (Proof by trivariate distribution, and conditioning.)
Precision matrix Q : inverse covariance matrix

\[\Sigma^{-1} = Q = \begin{bmatrix} Q_A & Q_{A,B} \\ Q_{B,A} & Q_B \end{bmatrix}. \]

Q holds the conditional variance structure.
Interpretation of precision

\[Q_A^{-1} = \text{Var}(Y_A|Y_B), \]

\[\mathbb{E}(Y_A|Y_B) = \mu_A - Q_A^{-1}Q_{A,B}(Y_B - \mu_B), \]

(Proof by \(Q\Sigma = I \).
Or by writing out quadratic form and \(p(Y_A|Y_B) \propto p(Y_A, Y_B). \))
Algebraically equivalent forms

\[E(Y_A|Y_B) = \mu_A + \Sigma_{A,B} \Sigma_B^{-1} (Y_B - \mu_B), \]
\[\text{Var}(Y_A|Y_B) = \Sigma_A - \Sigma_{A,B} \Sigma_B^{-1} \Sigma_{B,A}. \]

\[E(Y_A|Y_B) = \mu_A - Q_A^{-1} Q_{A,B} (Y_B - \mu_B), \]
\[\text{Var}(Y_A|Y_B) = Q_A^{-1}. \]
Sparse precision matrix Q

For graphs the precision matrix is sparse.

$Q_{ij} = 0$ if nodes i and j are not neighbors. Conditionally independent.

$Q_{i,i+2} = 0$ for exponential covariance function on a regular grid in time.
All other variables than y_i are denoted y_{-i}. Neighborhood of node i is denoted \mathcal{N}_i.

$$p(y_i | y_{-i}) = p(y_i | y_j; j \in \mathcal{N}_i)$$

The neighborhood structure is given by the non-zero entries in Q.

Conditional independence via Q
Sparse precision matrix \(Q \)

\[
p(Y_7 | Y_1, Y_2, Y_3, Y_4, Y_5, Y_6) = p(Y_7 | Y_5)
\]

\[
p(Y_i | Y_1, \ldots, Y_{i-1}) = p(Y_i | Y_{i-1})
\]

This sparseness means that several techniques from numerical analysis can be used. Solve \(Qb = a \) quickly for \(b \).
Cholesky factorization of Q

Common method for sampling and evaluation:

$$Q = \begin{bmatrix} Q_{1,1} & \cdots & Q_{1,n} \\ \vdots & \ddots & \vdots \\ Q_{n,1} & \cdots & Q_{n,n} \end{bmatrix} = L_Q L_Q' ,$$

Lower triangular matrix

$$L_Q = \begin{bmatrix} L_{Q,1,1} & 0 & \cdots & 0 \\ L_{Q,2,1} & L_{Q,2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{Q,n,1} & L_{Q,n,2} & \cdots & L_{Q,n,n} \end{bmatrix} ,$$

The Cholesky factor is often sparse, but not as sparse as Q, because it holds the partial (ordered) conditional structure, according to an ordering. This gives 'fill in'. The ordering matters in how the fill-in takes place.
Sparse L_Q

L_Q is related to a recursion:

$$p(y) = p(y_n)p(y_{n-1}|y_n) \cdots p(y_1|y_2, \ldots, y_n)$$

Which can be removed in the conditioning? If $L_{Q,i,j} = 0$, it can be removed.

Sparsity is maintained for exponential covariance function in time dimension (Markov).
Sampling and evaluation using L_Q

$$Q = \begin{bmatrix} Q_{1,1} & \cdots & Q_{1,n} \\ \cdots & \cdots & \cdots \\ Q_{n,1} & \cdots & Q_{n,n} \end{bmatrix} = L_Q L'_Q,$$

$$L_Q Y = Z.$$

(Previously, for covariance we had $Y = LZ$.)

$$\log |Q| = 2 \log |L_Q| = 2 \sum_i L_{Q,ii}$$
GMRF for spatial applications.

A Markovian model can be constructed for a spatial Gaussian processes (Lindgren et al., 2011). The spatial process is viewed as a stochastic partial differential equation (SPDE), and the solution is embedded in a triangularized graph over a spatial domain. More later (23 Jan).