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Abstract

An iterative Bayesian optimisation technique is presented to find spatial design configurations
of data that carry much information. Within this setting, Gaussian process approximations
enable fast calculations of expected improvement for a large number of designs, while the full-
scale evaluations are only done for the most promising designs at each iteration. The Hausdorff
distance is here used to model the similarity between design configurations in the Gaussian
process covariance representation, and this allows the suggested algorithm to learn across
different designs. The applications are related to natural resources, and we use the decision
theoretic notion of value of information as a design criterion. We study properties of the
Bayesian optimisation design algorithm in a synthetic example and real-world examples from
forest conservation decisions and petroleum drilling operations. In the synthetic example we
consider a model where the exact solution is available and we run the algorithm under different
versions of this example and also compare it with existing approaches such as sequential
selection and exchange algorithm. In the forestry and petroleum applications, we discuss
the results obtained by the algorithm and compare it with others. Overall the suggested
methodology allows an efficient selection of design with large value of information.

1 Introduction

This paper is inspired by challenging decision situations in the earth and environmental sciences. In these
situations, data are gathered to support decisions about resource management. Data acquisition and pro-
cessing is often costly, and it is then important to choose the sampling design wisely. There exist several
common design or information criteria, see e.g. Ryan et al. (2016) for a recent review. For decision makers,
value of information (VOI) analysis is useful in this context (Abbas and Howard, 2015; Eidsvik et al., 2015),
as it is directly connected with the information gain associated with the decision situation and it provides
a bound on the expected monetary amount one should be willing to pay for data to aid in resolving this
decision situation.

We focus on designing experiments in spatial domains. Using VOI analysis, we aim to provide the
decision maker with efficient survey designs including the optimal number of measurement locations and
their spatial configuration. We assume that the spatial domain is discretised to a grid so that there is a finite
set of possible observation locations. Moreover, we limit scope to static designs (Diggle and Lophaven, 2006;
Dobbie et al., 2008; Huan and Marzouk, 2013), where the experimental configuration is selected once, at the
onset of data gathering. The alternative is sequential data gathering, where the design can be adapted based
on the observations made in the first (batches of) measurements (Drovandi et al., 2013; Eidsvik et al., 2018;
Binois et al., 2019), but this is not always possible in practical experimental planning, which must comply
with project management and budgetary limitations.

As pointed out by several others, this design problem is not trivial as the number of possible designs grows
combinatorially fast. Royle (2002) proposed a random exchange algorithm to search for the optimal design.
Garćıa-Ródenas et al. (2020) presented an interesting overview of some of the main algorithms for finding
efficient designs. Weaver et al. (2016) and Overstall and Woods (2017) applied Bayesian optimisation to focus
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the search for good designs. We use a Gaussian process (GP) model enabling fast computation of the expected
improvement (EI) in Bayesian optimisation. This is combined with techniques from search algorithms, to
find efficient spatial designs. A novel idea of the current paper, which is an important building block in our
approach, is to use the Hausdorff distance between various designs to correlate outcomes of similar point
configurations, within a realistic statistical model. Even though our focus is on spatial decision situations
and design, we believe that this approach can also be applicable to other big-data challenges (Drovandi et al.,
2017) and active learning approaches (Settles, 2012; Bouneffouf, 2016), where the challenge is more related
to which data to process for learning and improved classifications.

The paper is organized as follows. In Section 2 we describe the spatial design problem in mathematical
detail and define the VOI criterion which we use as a practically relevant information measure. In Section
3 we outline the Bayesian optimisation approach using Hausdorff distances to borrow information among
similar designs. In Section 4 we study the properties of the methodology via simulations. In Section 5 we
show results on two examples to demonstrate possible applications of the methods. The first one regards
forest management and conservation (Kangas et al., 2008; Eyvindson et al., 2017). The decision maker must
choose if stands in a forest area should be conserved or harvested (Eyvindson et al., 2019). Biological data
are valuable to learn the uncertain ecological profits related to species diversity. The second application
regards decision making during drilling operations in the petroleum industry. Here the decision maker must
choose the best alternative to complete a well in a trade off between cost and risks (Mondal and Chatterjee,
2019). Geophysical data from neighboring wells can be valuable to infer the uncertainties in the subsurface
pore pressure (Paglia et al., 2019), which is a key parameter in the quantification of risks. Section 6 has
closing remarks on the methodological contributions presented here, including viable opportunities future
work.

2 Spatial design of experiments

2.1 Spatial survey designs

We consider a situation as illustrated in Figure 1, with a spatial phenomenon allocated to a two-dimensional
domain divided in grid cells or sites. The approach presented in the paper can be extended to other
dimensions with minor changes. The spatial variables of interest are represented at n sites, denoted s1, . . . , sn
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Figure 1: Illustration of a spatial domain split in 40 regional units of varying size. Three different designs
are indicated (Design I, II and III) of different cardinality and spatial allocation.

with si = (northi, easti), i = 1, . . . , n. In our applications, these sites have a particular interest to the decision
maker. For instance, in the forestry example, the governmental institute must choose at each of the n sites
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whether this forest unit should be harvested or left for conservation. Because there is much at stake and
uncertain outcomes, the decision maker is likely to benefit from doing surveys at (a subset of) the sites.

Without lack of generality, the possible survey design locations are assumed to be identical to the n sites
in our description, and a design is defined as any subset of these n sites (other cases can be constructed
similarly, see e.g. Section 5.2). The possible spatial designs then include no points, single points, couples,

triplets, and so on, up to all n points in the design. We denote these by D =
n⋃
i=0

Di, defined by;

D0 = ∅, no sites in design,

D1 = {(s1), (s2), . . . , (sn)} , one site in design,

D2 = {(s1, s2), (s1, s3), . . . , (sn−1, sn)} , two sites in design,

...
...

Dn = {(s1, . . . , sn)} , all sites in design.

There are n possible designs of cardinality one,
(
n
2

)
possible designs of cardinality two, etc. This means that

there are 2n possible designs in D . We will further denote a general design by D ∈ D and its cardinality by
|D|. The sites in this design are then sD,1, . . . , sD,|D|. The number of sites shared by designs C and D is
|C ∩D|, while the number of sites in at least one of the designs is |C ∪D|.

In our setting we compare the information gain obtained by different designs, and it makes sense that
similar spatial designs contain almost the same information. In Figure 1 three different designs are indicated
(I, II, III). Design I and II appear very similar in the spatial allocation of survey locations even though
they have different cardinalities (three and four). Most likely, Design I will not have much to offer over
Design II, unless there is much noise in the data or large gain in capturing additional covariate information
which could be important for predictive purposes. Say, in the forestry example, a biologist would spend time
doing one more experiments in Design I, at an extra cost. But unless she learns substantially more about
the model, there is not much additional spatial information in Design I compared with doing just the three
measurements in Design II. The last survey plan, Design III, is spatially very different from the two others
because it allocates the measurements in the central parts of the domain. The value of this design could be
very different from that of Design I and II.

To find the optimal design one must evaluate the information gain and cost for all possible design sets,
but in practice one can only evaluate it for a fraction of all possible designs. We suggest a statistical approach
for this optimisation problem, where we utilize the similarity of spatial designs to estimate the information
gain.

2.2 Value of information

The goal of spatial design is to choose a survey plan for information gathering. This choice must balance
expected information gain with the cost of data acquisition and processing. To evaluate the expected
information gain associated with designs, one must formulate a value or utility function. Valuable designs
tend to increase the expected utility substantially, while poorly selected designs provide hardly any additional
utility over what is available with the current information. In the applications that we consider here, it is
relatively straightforward to relate the question about information gain to an underlying decision situation,
meaning that data are only valuable when their outcome can materialize in different decisions. For instance,
in the forestry example the underlying decision is to conserve forest units or not, and data can help the
decision maker to decide one or the other, depending what the information reveals. Managers are further
often willing to phrase these decision situation in terms of monetary units, and then the VOI which gives the
expected gain in information is directly comparable to the cost of data gathering. If the VOI exceeds this
cost, the experiment is worthwhile and the decision maker should commit to gather the information, if the
budget permits the cost. We next define the VOI formally through a model for the uncertainties involved,
the decision alternatives and the information gathered by a chosen design.

The uncertain variables of interest are denoted by x = (x1, . . . , xn), where xi = x(si), i = 1, . . . , n.
Assuming a continuous sample space for this variable, we denote its density function by p(x), with marginal
density p(xi) for each sites si. The decision alternatives are generally denoted by a ∈ A, where A is the
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set of all possible alternatives. In some situations, the alternatives decouple (Eidsvik et al., 2015), involving
for instance local decisions about harvesting units in our forest conservation example. In general, the prior
value (PV), without any additional information, is defined as the value from doing the optimal decisions.
Assuming a risk-neutral decision maker (Abbas and Howard, 2015), the PV is calculated from expected
values as follows;

PV = max
a∈A
{E(ν(x,a))} , E(ν(x,a)) =

∫
ν(x,a)p(x)dx. (1)

Here, ν(x,a) represents the value function, which could be quite general, but in our application it is the
monetary profits associated with choice a ∈ A when the uncertain outcome is x. In the forestry example,
the decision maker will choose to conserve the units that have high preservation value, while the others are
harvested.

It is difficult to make decisions under uncertainty, and one can choose to purchase information that
facilitate decision making. We here let yD denote the data gathered by design D ∈ D . This data is relevant
to the decision situation in the sense that it is indicative of the underlying uncertainty x. In the applications
below, the model for data is given as a conditional probability density or mass function p(yD|x), and the
marginal model for data is then p(yD) =

∫
p(yD|x)p(x)dx.

When the data are available, the conditional value (CV) is

CV(yD) = max
a∈A
{E(ν(x,a)|yD)} , (2)

and the expected posterior value (PoV) before the data gathering is obtained by taking the expectation of
expression (2) over the possible data outcomes:

PoV(D) = EyD
[CV (yD)] = EyD

[
max
a∈A
{E(ν(x,a)|yD)}

]
. (3)

The VOI is defined as the difference between the expected PoV in (3) and the PV in (1):

VOI(D) = PoV(D)− PV. (4)

The goal is to choose a valuable design D. Keeping in mind that data comes with a cost we should compare
the VOI with the cost C(D) of design D. This means that the objective is to optimise

D∗ = argmaxD∈DI(D), I(D) = VOI(D)− C(D). (5)

and this is what we use in our applications, but other approaches are possible. For instance, a decision
maker might have a fixed budget for the design, and the goal would then be to maximize the VOI among
all designs that have a cost less than the budget.

With large opportunities for data gathering, it is extremely difficult to find the optimal design. First, the
complexity grows extremely fast with the number of sites. Second, in common settings, the calculation of
the information design criterion in (5) for a fixed design typically requires quite a bit of computational effort
as is emphasized by the complexity of the integral expectation expressions required in (3). In practice one
must often turn to heuristic approaches to such design problems (Garćıa-Ródenas et al., 2020). Instead of
computing I(D) exactly, we suggest to use a statistical approximation strategy that evaluates (5) only for a
few promising designs which are extracted by in a much faster Bayesian optimisation approach building on
Gaussian processes and expected improvement.

3 Bayesian optimisation for designs

We develop a Bayesian optimisation approach to guide the search for the maximum of I(D) in (5). We
combine computational search algorithms with the EI acquisition criterion to select which designs to evaluate
in an iterative optimisation workflow. In doing so, we suggest to model the information measure I(D) using
a GP. This is in line with common approaches for Bayesian optimisation (Brochu et al., 2010; Frazier, 2018).
The benefits of using a GP emulator for the information measure is that it enables:
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• efficient model updating based on evaluations (Section 3.1),

• learning across different but similar designs (Section 3.2),

• computing EI in closed form, to focus on evaluating promising designs (Section 3.3),

• framing a useful algorithmic description of the overall procedure (Section 3.4).

3.1 Gaussian process emulator

A GP representation for the information gain I relies on mean and variance-covariance specifications for all
possible designs. In the current setting with Bayesian optimisation, the GP model parameters are updated
sequentially when more evaluations become available.

The representation then requires an initial specification of the mean µ and the variance σ2. Before
any data are observed, they are usually assumed constant for all designs. The GP model further needs
a correlation function K(C,D) between two different designs C and D to be specified (see Section 3.2).
An starting batch of evaluations is used to find the initial maximum likelihood estimates for the model
parameters involved in the mean and variance-covariance.

Whenm designsD(1), . . . , D(m) have been evaluated, the knowledge is denoted F =
{

(I(j), D(j)); j = 1, . . . ,m
}

.
By standard multivariate Gaussian theory, the conditional distribution for the information measure at design
D is then Gaussian with mean and variance

µ(D;F) = µ+ ktD,FK
−1
F (I(F)− µ1),

σ2(D;F) = σ2
(
1− ktD,FK

−1
F kD,F

)
. (6)

Here, I(F) = (I(1), . . . , I(m)) is the lengthm vector of information gain evaluations,KF them×m correlation
matrix between evaluations of designs, kD,F the length m vector of correlations between the evaluations and
the information gain for design D, and 1 is a length m vector of 1 entries.

3.2 Distance between designs

The correlation function that gauges the similarity between designs, as defined via kD,F and KF in (6).
This specification of a correlation function is a common task in spatial statistics and Bayesian optimisation
over a regular input space. In our setting with spatial designs, it is not obvious how to assign this correlation
function, and a main contribution of this paper is to formulate a distance measure between designs which is
useful in the context of Bayesian optimisation. Our proposed distance measure for this task is the Hausdorff
distance which is presented next, but we also outline other distance measures below to discuss this topic in a
more general context. Throughout this description, we consider two general designs D = (sD,1, . . . , sD,|D|)
and C = (sC,1, . . . , sC,|C|). For two sites si and sj , we let ‖si − sj‖ be the Euclidean distance between the
two points.

The Hausdorff distance is commonly used to measure the distance between curves, images or point sets
(Huttenlocher et al., 1992). In our context it represents the maximum of the minimal distances from points
in one set to points in the other set, and it hence measures similarity of designs:

h = dist1(D,C) = max {hH(D,C), hH(C,D)} , (7)

hH(D,C) = max
i=1:|D|

{
min
j=1:|C|

‖sD,i − sC,j‖
}
. (8)

Figure 2 illustrates several designs of size 1, . . . 4. For each subplot the maximum distance from points in
one point set (D, marked as circle) to the other (C, marked as cross) is calculated and shown. The Hausdorff
distance in (7) is printed in the displays, and hH(D,C) and hH(C,D) are indicated. We note that in some
cases the maximum distances from one set to the other are identical (upper right display and bottom middle
display), but for most of these design configurations this symmetry is not present. For instance, in the upper
left display, the circle is relatively close to the lowermost point in the cross set, but the highest point in the
cross points is quite far from the circle. Similarly, in the center display, both points in the circles set are
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Figure 2: Hausdorff distance between various designs, h is the Hausdorff distance between the two sets,
marked as circle for D and cross for C. The solid lines represent the maximum of the minimal distances
between C and D, while the dashed line represents the maximum of the minimal distances between D and
C.

close to a point in the cross set, but one point in the cross set is far from the closest point in the circle set.
Based on Hausdorff distances for point sets like that displayed in Figure 2, this seems to be a useful way to
measure the difference between designs. In the bottom-middle display the point sets are rather similar, and
the distance is small (h = 0.113). In all the right displays, the designs are very different, and the distances
are large.

We next present some alternative distances. Min et al. (2007) and Fujita (2013) propose some distances
that could potentially be used for our purpose. We explore these and compare their pros and cons.

The second distance we study is defined by the minimum of the distances between designs of the two
sets:

dist2(D,C) = min {‖sD,i − sC,j‖ , sD,i ∈ D, sC,j ∈ C} . (9)

It is not a proper metric since the triangular inequality does not hold. The main problem though is that
designs with elements in common are not separated because the distance in this case will be zero. We will
hence discard then this distance – it is not suitable for our purpose.

We similarly define another distance considering the maximum of the distances between designs instead

dist3(D,C) = max {‖sD,i − sC,j‖ , sD,i ∈ D, sC,j ∈ C} . (10)

That is not a proper distance either. Here the problem is that it does not satisfy the axiom dist(D,C) =
0 ⇐⇒ D = C. It is hence not convenient for us to use it as a measure of similarity because the distance
between two equal sets is greater than 0.

An alternative distance could be the Jaccard distance (Levandowsky and Winter, 1971)

dist4(D,C) =
|D ∪ C| − |D ∩ C|

|D ∪ C|
. (11)

It defines a proper metric, and a sensible way to consider dissimilarity between designs. The problem for our
type of applications is that it does not take into account the spatial distance of the sites in the sets, but just
count the number of elements in the sets. This distance will hence not be considered in the current study.
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Fujita (2013) describes another metric based on the average distances between the two designs.

dist5(D,C) =
1

|D ∪ C||D|
∑

sD,i∈D

∑
sC,j∈C\D

‖sD,i − sC,j‖+
1

|D ∪ C||C|
∑

sD,i∈D\C

∑
sC,j∈C

‖sD,i − sC,j‖ . (12)

This metric seems to work sensibly for our purpose. It is a bit more difficult to interpret, but projecting the
distances in a lower dimensional space might help. We will study the possibility of using dist5 in Section 4.

Finally we look at some modified Hausdorff distances. A variant is defined as the average of minimum
distances

dist6(D,C) = max {hmH(D,C), hmH(C,D)} , (13)

hmH(D,C) =
1

N

|D|∑
i=1

{
min
j=1:|C|

||sD,i − sC,j ||
}
.

Dubuisson and Jain (1994) show that the modified Hausdorff distance (expression (13)) is a valid tool for
object matching. The problem with this measure is that it not a metric since the triangular inequality does
not hold. Moreover dist6 smooths the effect of outlier sites, whereas we believe that even a single outlier
site could add valuable information to the design, giving knowledge of a larger area, and that should then
have an important impact on the distance. Another possible variant of the Hausdorff distance is obtained
taking the average of minimum squares, which again does not define a metric. We discard this distance for
the same reasons that apply to dist6.

In summary, we use the regular Hausdorff distance h in (7) to model design dissimilarities. This means

that the correlation in the GP formulation (6) contains entries given by K(D,C) = exp
(
−h(D,C)2

2θ2H

)
, which

means a squared exponential correlation function with the Hausdorff distance h(D,C) as input. For the
expressions in (6) we must form this between all designs in the current evaluations F and for every design
D ∈ D we want to predict. In a situation with spatial covariates z(si) = zi, i = 1, . . . , n, we modify the
expression to include the distance between covariates such that the correlation is

K(D,C) = exp

(
−h(D,C)2

2θ2H
− h(ZD,ZC)2

2θ2Z

)
. (14)

Here, ZD = (zD,1, . . . ,zD,|D|) contain the covariates in design D, and similarly for design C.

3.3 Expected improvement

The number of possible designs is huge, and in most situations the evaluation of I(D) requires substantial
computational resources involving an integral over the potential data outcomes which is typically solved by
sophisticated analytical or numerical approximation methods or Monte Carlo sampling. In most practical
applications it is hence not feasible to evaluate I(D) for all designs D. We use EI as an acquisition function
(Frazier, 2018) to guide the evaluation of designs.

The acquisition function uses the updated distribution for I(D), given F . Assuming m0 starting evalu-
ations, after t iterations with m evaluations of I each time, the EI is defined by

EI (D;F) = E
(
I(D)− I+|F

)
, I+ = max

{
ID(1)

, . . . , ID(m0+mt)

}
. (15)

In the case of a GP model for I(D), there is a closed form solution for EI, see e.g. Brochu et al. (2010). We
have

EI (D;F) =
(
µ(D;F)− I+

)
Φ(z) + σ(D;F)φ(z), z =

µ(D;F)− I+

σ(D;F)
, (16)

where Φ and φ are respectively the cdf and pdf of a standard Gaussian distribution; µ(D;F) and σ2(D;F)
are the conditional mean and variance defined in (6).

By having the GP emulator, and accepting that EI is a useful acquisition function, the problem of
maximizing I is now transformed to the problem of maximizing EI. The EI is relatively fast to compute for
several designs, and the ones with large EI are selected for further evaluation.
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3.4 Algorithm

The iterative algorithm is summarised in Algorithm 1 where we describe the methodology in pseudocode. Via
the iterative procedure, the current maximum in information gain will not decrease and eventually reach the
global maximum and return the optimal design. In practice, the algorithm terminates when the maximum
value for information gain has not increased over a trailing buffer of iterations (∆I+ ) or if a maximum
number of iterations (Tmax) is reached.

The iterative scheme is initiated with a starting batch of m0 evaluations, while each subsequent batch
is of size m. For the initial batch, the designs are randomly selected from all possible designs D . At each
iteration, we augment the F set with a new evaluation, and then update the Hausdorff distances and the GP
model, the current best design D+ and the associated information gain I+. To formalize this procedure we
introduce Ft to denote all design evaluations done at iteration t, while Dt,(1), . . . , Dt,(m) and It,(1), . . . , It,(m)

denote the design and information gain evaluations at iteration t.
At each iteration, the EI is computed for M designs while only the m (m << M) designs with largest EI,

given the current evaluations, are selected for the batch I(D) evaluation. The proposed new set of designs
is obtained using a technique not dissimilar from a classical genetic algorithm (Goldberg, 1989), where the
proposal set are mixed to create new combinations, while allowing random components to enter a design. In
this step a large part of the proposed designs come from the set of all possible designs, while the remaining
parts comes from a set obtained by mixing the best sites of previous steps. When we process a new design
we check if the information gain has already been evaluated for that design, and if so we replace it with
a new one. In this way we do not re-compute designs that have already been evaluated. In selecting new
designs we adopt a weighted random selection of the design size to cover all cardinalities.

Algorithm 1: Search for designs by Bayesian optimisation.

Result: Design D+ with the largest information gain I+.
Iteration t = 0;
∆I+ = 1 ;
Evaluate I for m0 randomly selected designs Dt,(1), . . . , Dt,(m0) to get It,(1), . . . , It,(m0);

I+ = max
{
It,(1), . . . , It,(m0)

}
;

Ft =
{

(It,(j), Dt,(j)); j = 1, . . . ,m0

}
;

while t ≤ Tmax or ∆I+ = 0 do
t = t+ 1;
Mix existing design sites and random sites to suggest M designs ;
Compute the Hausdorff distances for the suggested and available designs ; . expression (7)
Fit a GP model for I given all evaluations ; . expression (6)
Compute EI over I+ for each of the M design ; . expression (16)
Find the m designs with largest EI to obtain Dt,(1), . . . , Dt,(m) ;
Evaluate I(Dt,(1)), . . . , I(Dt,(m)) ; . expression (5)

I+ = max
{
I+, It,(1), . . . , It,(m)

}
, D+ = {D; I(D) = I+} ;

Ft = Ft−1 ∪ {(It,(1), Dt,(1))} ∪ . . . ∪ {(It,(m), Dt,(m))};
Compute an average increase over the last buffer of iterations ∆I+;

end

4 Simulation study

We study the properties of the design algorithm in a situation with n = 30 spatial units of interest (Figure
1). The possible data gathering locations are s1, . . . , sn. At each of these locations there is an explanatory
variable zi = z(si) that classifies the units to one of four categories, largely inspired by the forestry application
(Section 5.1) where ecologists know the age of the forest rather accurately.

The profits xi = x(si), xi ∈ R, i = 1, . . . , n, of the spatial units are the quantity of interest. The decision
maker can choose, at each unit, not to take any action or to exploit that unit. We are hence in a situation
where there is high decision flexibility and decoupled value, meaning that the decision maker is free to choose
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the best alternative in a given location without accounting for the other parts. The set of alternatives is thus
defined by A = {ai; i = 1, . . . , n}, where ai = {not exploit, exploit} = {0, 1}. The two-action value function
is then

ν(xi, ai) =

{
0 ai = 0,

xi ai = 1.
(17)

Data yD can be gathered at any subset of |D| ≤ n units. These data will carry information at the design
locations, and at other units through the spatial dependence and via learning the regression effect of the
covariates. The optimal design size and configuration are chosen by the decision maker to maximize the VOI
compared with the costs of data gathering.

For this simulation study we model the profits as Gaussian variables. The profits x = (x1, . . . , xn) are
represented by a hierarchical model with mean E(xi|β) = β0 + β1zi + β2z

2
i , and the regression coefficients

have a tri-variate Gaussian distribution β ∼ N(µβ ,Σβ). Defining length n vectors z = (z1, . . . , zn) and
z2 = (z21 , . . . , z

2
n), the profits x are multivariate Gaussian with mean and covariance

µx = µβ0
+ µβ1

z + µβ1
z2, (18)

Σx = Σ +
[
1 z z2

]
Σβ

 1
z
z2

 , (19)

where matrix Σ holds the structural spatial variability with entries defined by a stationary variance term
and a Matern correlation function: Σi,j = σ2

x (1 + η ‖si − sj‖) exp (−η ‖si − sj‖), where η is the spatial
correlation decay parameter. Inspired by a forestry dataset, the parameters values are set to be µβ = (1.3 ·
104,−1.1 ·104, 2.9 ·103)′, diag(Σβ) = (6.4 ·108, 5.4 ·108, 0.2 ·108), corr(β0, β1) = −0.95, corr(β1, β2) = −0.98,
and corr(β0, β2) = 0.89, σ2

x = 1.2 · 108 and η = 0.3. With the free selection of the various units, the PV in
(1) hence involves a separate maximization for each unit, i.e. PV =

∑n
i=1 max {0, µxi

}.
We assume that data can be gathered and they are directly indicative of the profits, but measured with

Gaussian additive noise. The conditional model for the data, given the profits is then defined by

yD = GDx+ ε, ε ∼ N(0,TD), (20)

where the size |D| × n matrix GD picks the design locations by having one 1 entry in each row at the index
of the sampled unit and otherwise 0 entries. Moreover, N(0,TD) denotes a random Gaussian vector with
zero-mean and covariance matrix TD = τ2DI |D|.

When the value function is in the form of (17) and the profits are Gaussian and measured with Gaussian
additive noise, it is possible to compute the PoV in a closed form for each design (Bhattacharjya et al., 2013).
The closed form calculation builds on the distribution of the conditional mean µx|y with respect to the random

data y, which is Gaussian with E(µx|y) = µx and Var(µx|yD ) = ΣxG
t
D(GDΣxG

t
D + TD)−1GDΣx = R.

The PoV in (3) is then

PoV(D) =

n∑
i=1

EyD
[max{0,E(ν(xi, ai)|yD)}] =

n∑
i=1

(
µxi

Φ

(
µxi

ri

)
+ riφ

(
µxi

ri

))
, (21)

where µxi is element i in the mean vector and ri =
√
Ri,i is available from the ith diagonal entry of R.

In the simulation study the costs increase with the size of the design, so that for designs with |D| > 5, the
VOI never exceeds the cost. This means we can focus on all sites combinations up to size 5, and there are
then around 1.7 · 105 possible designs. It is feasible to compute the exact VOI for all designs, and compare
the optimal designs with the results obtained by Algorithm 1. For this purpose, we represent I(D) by a GP
where the covariance depends on the spatial distance between designs as well as their distance in covariate
space, see (14). The Bayesian optimisation approach is run for 15 iterations and for a number of replicate
re-starts. The results increase over iterations, and most replicates reach high information gain values. Each
batch iteration consists of m0 = m = 50 evaluations, so for each replicate there are 50 · 16 = 800 evaluations
of I(D).

We compare the results obtained by Algorithm 1 with that of other methods: (i) sequential selection
algorithm, (ii) modified exchange algorithm (Mitchell, 1974; Royle, 2002), and (iii) using dist5 (expression
(12)) instead of the Hausdorff distance.
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Method (i) sequentially chooses the best site in a forward selection: it first evaluates each of the single
units and selects the one that maximizes information gain I. Next, it looks at all the couples that contain
the selected unit, and finds which of these couples that has the largest value of information gain. It proceeds
in this way until I does no longer increase. The computational cost of the sequential algorithm is relatively

small as the total number of VOI evaluations is
∑|D|+1
i=1 (|D| + 1 − i) = 140. For our reference model, the

sequential selection algorithm ends up with design (1, 9, 23). This is quite far from the global maximum and
also significantly below most of the replicate results achieved using the Bayesian optimisation approach.

Method (ii) iteratively exchanges, adds or removes random units to an existing design. When a random
unit is added to the design, we have cardinality |D| → |D|+ 1, while the cardinality |D| → |D| − 1 when a
random unit is removed from the design. For a random exchange the cardinality remains the same. For each
suggested design the information gain I(D) is evaluated, and one keeps track of the best design so far. The
solution paths of the exchange algorithm will change every time because of the random selection of moves.
The exchange algorithm is often able to find the best design in less the 104 iterations, and could probably
get there faster with some kind of weighted resampling. Still, it seems to require more evaluations than the
Bayesian optimisation approach, and we believe it is difficult to tune this method for larger-size problems
where the number of required evaluations will also increase dramatically.

Method (iii) using dist5 has performance very similar to that of using the Hausdorff distance, but does
not reach the optimum as often. The computational cost is about the same.

We compare the approaches using multidimensional scaling (Borg et al., 2018). In our context this helps
us visualize the Hausdorff distances between designs in a 2 dimensional space that maintains the distances.
Figure 3 shows the best 3000 designs (in grey) projected in this 2 dimensional space. The pink star represents
the best design while the green diamond is the design obtained with the sequential selection method. In this
display we indicate typical paths that Algorithm 1 (red) and the exchange algorithm (blue) take to get their
final best results. It is interesting to observe the randomness of the path taken by the exchange algorithm
to reach the maximum. We do not show all the sites explored to get to the maximum, only the locations of
local maximum. Algorithm 1 reaches the maximum following a much more efficient path.

-6 -4 -2 0 2 4 6 8 10

x

-6

-4

-2

0

2

4

6

8

y

Best design

Sequential selection

Algorithm 1

Exchange algorithm

Figure 3: Representation of the spatial Hausdorff distance for the best 3000 designs (grey) in a 2 dimensional
Euclidean space using multidimensional scaling technique. The pink star represents the best design and the
green diamond the best design from the sequential selection. The red dots and lines represents the path of
Algorithm 1 while the blue crosses and lines represents the results from the exchange algorithm.

For further comparison with the exchange algorithm we study the performances over 100 replicate restarts,
and observe the maximum score after 250 (Figure 4(a)), 500 (Figure 4(b)), and 800 (Figure 4(c)) VOI
evaluations. In Figure 4 we have in red the results of Algorithm 1 and in dashed blue the ones from the
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exchange algorithm. We observe that the Bayesian optimisation method gets larger values of I after relatively
few iterations because the exchange algorithm struggles with its random structure.
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Algorithm 1

Exchange algorithm

(a) 250 evaluations of I (in e).

4.65 4.7 4.75 4.8 4.85 4.9 4.95 5

VOI(D)-C(D) 104

(b) 500 evaluations of I (in e).

4.65 4.7 4.75 4.8 4.85 4.9 4.95 5

VOI(D)-C(D) 104

(c) 800 evaluations of I (in e).

Figure 4: Comparison of the performances of Algorithm 1 (red) and exchange algorithm (dashed blue) over
100 restarts. The Bayesian optimisation approach is able to get large values of I after few iterations, when
the number of evaluations grows the exchange algorithm starts to perform well.

We perform sensitivity analysis to gain insight in the effect of having different input parameters. We
focus on high or low values of the profit variance parameters σ2 and Σβ , and on the algorithmic tuning
parameter θi having separate or common spatial and covariate distance when computing the Hausdorff
distance. We study algorithm performance metrics for each combinations of these input factors. Metrics
include the highest value for I in the replicate runs, how many times we get a score among the best 100 I
values over the replicate starts, and the performance of the sequential selection.

Table 1 shows the results of this sensitivity analysis, where the top line gives the results for the reference
case. The difficult cases seem to be the ones with high prior variability, where the algorithm ends up with

σ2 Σβ θ Algorithm 1 % best 100 Sequential selection

Low Low Separate e23 008 (1) 100% e22 692 (4)

High Low Separate e81 665 (1) 100% e80 315 (20)

Low High Separate e54 137 (4) 100% e54 137 (1)

High High Separate e99 639 (33) 20% e99 020 (172)

Low Low Together e23 008 (1) 100% e22 692 (4)

High Low Together e81 163 (5) 100% e80 315 (20)

Low High Together e54 125 (12) 100% e54 137 (1)

High High Together e99 253 (82) 10% e99 020 (172)

Table 1: Sensitivity analysis of the main parameters on the performance of the algorithm in the simulation
study. The column “Algorithm 1” represents the highest I among the 10 replicates, the column “% best
100” represents how many times we get a score among the best 100 information gain values over the replicate
starts; and the column “Sequential selection” highest I of the sequential selection algorithm.

moderate rankings and does not find the optimal solution in 15 iterations. The sequential algorithm also
struggles more in these high-variability situations. When there are different levels of prior uncertainty in the
spatial correlation and the regression trends, it becomes important to use a model with separate parameters
in the kernel for the Hausdorff distance.

5 Examples

One application of the method is from forestry, where the decision is to choose which parts of a forest to
harvest and which parts to spare for conservation. The other one is from petroleum, where the decision is
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to choose whether to secure a well or just keep drilling.

5.1 Forestry

In this application the decision maker must choose to conserve forest stands or not. The decision maker is
here a governmental institute that has a budget for conservation. The forest stands are owned by private
owners who may harvest the timber unless the forest is conserved. In order to conserve a forest stand, the
institute must pay a compensation (bi) to the forest owner. When a forest stand is conserved, the ecological
benefit (ri) is proportional to a biodiversity indicator.

The study is inspired by data analysed by Eyvindson et al. (2019). The data consist of 70 forest stands
(units) of various size from the Satakunta region in southwest Finland (Figure 5(a)). Each stand is classified
according to the age class (1: <= 80, 2: 81−95, 3: 96−110, 4: > 110 years). Figure 5(b) shows the region with
the forest stands, which are modified for various reasons, and colors identifying the different age groups. The

(a) The region of interest is located
in the southwest of Finland. The red
identify the geographic location of the
Satakunta region (karttapohja Care,
2010).
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(b) Forest stands of different size and age numbered from 1 to 70. Each
color identify a different age group, orange: <= 80, yellow: 81−95, violet:
96− 110, green: > 110 years. The hatched regions correspond to the best
design.

Figure 5: Study area for forest conservation.

possible alternatives for the decision maker are A = {ai; i = 1, . . . , n}, where ai = {not conserve, conserve} =
{0, 1} at stand i (Eyvindson et al., 2019). We let xi be the log-intensity of the number of wood inhabiting
fungi at stand i = 1, . . . , n. This number is a commonly used biodiversity indicator. The log-intensities are
here modeled with a multivariate Gaussian distribution. The age of the forest stand is treated as a covariate
z in the simulation study, so that the mean and the covariance matrix of x can be written as in the (18)
and (19). The value function is then

ν(xi, ai) =

{
0 ai = 0,

rexi − bi ai = 1.
(22)

Designs are constructed to gather information that can assist the decision maker. There are age-dependent
inventory costs C(agei), so it is important to plan wisely and obtain effective designs at a low overall cost.
The measurements of species richness in fungi are defined with a Poisson likelihood function

yi|xi ∼ Poisson (exi) , (23)
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assuming conditional independence between the stands and constant area for each inventory.
The VOI is here defined by

VOI(D) =

n∑
i=1

EyD
[max{0,E(rexi − bi|yD)}]−

n∑
i=1

max{0,E(rexi − bi)}, (24)

and the information gain I(D) is obtained as the difference VOI(D)−C(D) where C(D) denotes the inventory
costs. Evangelou and Eidsvik (2017) introduced a method to approximate the VOI in equation (24) based
on iterative matrix approximations, linearisation, Gaussian approximations and the Laplace approximation.
We use this approximation in this paper. But there is a total of 1.18 · 1021 possible designs, and it is not
feasible to calculate the VOI approximation for all of them to find the optimal design. Instead we use and
compare various approximation methods to find efficient designs.

We initiate the Bayesian optimisation by evaluating m0 = 50 random designs of various sizes. At each
batch m = 50 new evaluations are selected using the EI acquisition function. The results from the Bayesian
optimisation are shown in Figure 6. Even though we do not know the optimal solution in this case, the

0 5 10 15

Batch iteration

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
O

I(
D

)-
C

(D
)

105

Figure 6: Performance of the Bayesian optimisation algorithm for the application in forest conservation. We
do not know the maximum but we notice that the algorithm seems to converge over the 10 replicate restarts.

replicate restarts results shown in Figure 6 seems to indicate that the algorithm finds efficient designs within
a few batch iterations. The information gain appears to converge similarly to what we noticed in the
simulation example.

In Table 2 we list in descending order the 5 largest values of I obtained running the algorithm, together
with the associated design. It is interesting to see how the designs selected have many stands in common,
even though the designs are changing in size. This makes it possible to spot the stands that carry more
information. The highest value of I corresponds to a rather large design set of |D| = 26. This design is
illustrated using the hatched areas in Figure 5(b), where we observe that the stands of the design tend to
spread and cover both the geographical region and also the various age levels.

Similar to what was done in the simulation study, we also run both the exchange algorithm and the sequen-
tial selection method. The exchange algorithm gets a largest replicate information gain of only I =e491 760
after 800 evaluations, and is not doing so well in this case. The sequential selection algorithm gives I = e552
930 with 2485 evaluations. The associated design isD = (1, 2, 3, 4, 5, 8, 15, 16, 19, 24, 26, 32, 40, 41, 44, 47, 49, 57, 59, 60, 66, 69).
In this example the sequential selection algorithm hence performs better than the iterative Bayesian opti-
misation, at a cost of extra VOI evaluations to find the sequential solution. With this in mind, we added
the sequential solution to the evaluations of the Bayesian optimisation method, and continued to run that
algorithm. We then achieved slightly larger information gain for designs very similar to the one detected
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Design D I(D)

2, 5, 8, 9, 17, 18, 19, 23, 26, 27, 28, 29, 33, 35, 40, 41, 42, 44, 47, 55, 56, 57, 59, 66, 69, 70 e530 740

3, 8, 9, 13, 15, 18, 20, 22, 25, 26, 27, 31, 32, 39, 40, 42, 46, 48, 50, 51, 54, 59, 62, 63, 65 e516 040

1, 2, 3, 8, 15, 18, 19, 22, 23, 25, 26, 27, 29, 31, 35, 39, 40, 41, 51, 55, 56, 59, 67, 70 e509 660

2, 3, 5, 8, 13, 14, 15, 17, 24, 25, 41, 44, 45, 46, 51, 53, 54, 55, 56, 65 e504 470

2, 6, 7, 8, 10, 16, 17, 19, 26, 27, 28, 29, 32, 34, 35, 40, 42, 45, 46, 48, 51, 52, 53, 54, 56, 58, 60, 62, 66, 68, 69 e503 080

Table 2: The best 5 designs obtained over 10 re-run of the algorithm, listed in descending order.

with the sequential search, but no significant improvement. We hence suspect that the sequential method
gives a near optimal solution for this example.

5.2 Petroleum drilling risks

This example concerns decision making during offshore drilling operations in the oil and gas industry (Lothe
et al., 2019a). We study a drilling situation in the Alvheim oil field located in the central part of the North
Sea, on the Norwegian continental shelf (Figure 7(a)). The field is divided in 68 compartments (Figure 7(b))
separated by faults. The circles in Figure 7(b) represent wells, and Figure 7(c) highlights these to indicate
the decision location (black star) and the potential data gathering location (red dots) in a 3 dimensional
plot. In the following we describe this decision situation and the opportunities for data gathering to make
improved decisions.

Alvheim

North 
Sea

Oslo

(a) Geographical location of Alvheim.
The rectangle indicates the position of
the field.

(b) Map view of the oil
field, circles indicate the
locations of wells for data
gathering. Different col-
ors are used to identify
different geological com-
partments (Lothe et al.,
2019b).

(c) 3d view of the location of the measurements
in red and the decision site in black star.

Figure 7: The study area is an offshore oil and gas field in the central part of the North Sea.

Drilling operations at the Alvheim field are characterised by the risk of overpressure, which occurs when
the pore pressure in the rock exceeds the hydrostatic pressure. To prevent big hazards, the drilling mud
pressure must be calibrated. We study a specific layer, located at about 3700 m depth, as marked in
black in Figure 7(c). This layer is composed of mainly shale rocks and believed to be at drilling risk.
The decision maker, which is the petroleum company in this case, must decide if it is safe enough to just
keep drilling, or if they should set casing to strengthen the well because of a high risk of blowout. The
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alternatives are A = {0, 1} = {keep drilling, set casing}. To set casing is an expensive operation and it will
reduce the borehole diameter, so the decision maker is interested in trying to postpone this operation, if not
necessary because of very high risk. The value function of the decision is ν(x, a = 0) = −c0(LB(x)− x) and
ν(x, a = 1) = −c1(LB(x)− x), where x is the unknown pore pressure variable and LB is the lower bound of
the mud weight drilling window. Here, c0 is the cost when one keeps drilling, while c1 is the additional cost
of casing. We note that the costs stretch the value functions so that it becomes more valuable to set casing
instead of continued drilling for some values of pore pressure. Critically, the mud weight is used during
the drilling of a well to exert a pressure on the borehole wall and avoid well collapse, and it is difficult to
make decisions when the pore pressure is not known. Please keep in mind that there are a number of other
parameters that would also affect LB, but pore pressure is an important parameter that is always taken into
consideration during drilling operation (Moos et al., 2004).

Figure 7(c) (red) shows the possible measurement location. The design will entail any combination of
these locations, and the measurements gathered at the design locations will be informative of the pore
pressure where they are made and at other locations via the statistical model formulation. There are 5
wells where accurate measurements of pore pressure can be gathered in 4 different layers. The cost of data
acquisition is assumed to be the same for each well. However it will be cheaper to obtain more information
from the same well, since the tools for gathering the measurements have been already been placed into the
well.

Based on seismic data from the region along with geological simulations of pressure build-up and release
(Borge, 2000; Lothe, 2004; Paglia et al., 2019) we fit an initial multivariate Gaussian model for the pore pres-
sure at the well location and at neighboring wells. The pore pressure measurements yD in neighboring wells
will then be indicative of the pore pressure in the target well via correlations. These modeling assumptions
simplify the computation of the conditional expectation of pore pressure in the well of interest, given data
obtained in the other wells. But the main challenge in the current setting is the expectation of the nonlinear
value function and its integration over all possible data. The expectations required for the PV (expression
(1)) and the PoV (expression (3)) are here calculated with numerical approximations of the integrals. This
entails computing the value function ν over discretised levels of pore pressure. The LB is then obtained with
a spline interpolation. This approximations then become

PV = max
a∈A
{E (ν(x, a))} ≈ max

a∈A

∑
j

ν(xj , a)p(xj)∆xj

 , (25)

PoV = EyD

[
max
a∈A
{E(ν(x, a)|yD)}

]
≈
∑
yd

max
a∈A

∑
j

ν(xj , a)p(xj |yD)∆xj

 p(yD)∆yD
, (26)

where ∆xj and ∆yD
denote the distances between two consecutive discretised levels of x and yD respectively.

Figure 8 shows the performance of Algorithm 1 for this application. As in the first example we do not
know the design with the largest information gain value, but we observe a convergence of the method towards
larger information gain as more batches are evaluated.

Design (D) I(D)

5, 6, 8, 14 e9 115 100

6, 7, 8, 15 e9 115 100

5, 7, 8,11 e9 115 100

3, 5, 6, 7, 8, 19, 20 e9 114 900

3, 5, 6, 7, 8, 9, 10, 12 e9 114 600

Table 3: The largest 5 designs obtained over 10 restarts of the algorithm, listed in descending order.

Table 3 shows the five largest values of I in descending order, together with the associated design. Once
one starts gathering data at a specific well, acquiring more data at other depth is relatively cheap. This
implies that the cost effective designs suggest to explore more then one depth for a single well.
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Figure 8: Performance of the Bayesian optimisation algorithm for an application in drilling of a well. Without
knowing the point of maximum we can notice over the 10 restarts of the algorithm to converge to a large
value of VOI-C.

In this case the sequential selection method gave I =e9 114 900 with 210 iterations, which is rather good
but not as high as the best one achieved with the Bayesian optimisation method. The exchange algorithm
obtained I =e9 114 600 with 800 iterations.

6 Closing remarks

The main purpose of this study is to develop an algorithm that can assist a decision maker in choosing
a spatial design configuration for collecting information. The methodology has its applications in earth
sciences, where data are often distributed over a spatial domain. We illustrated the approach by presenting
one example from the forestry and one from petroleum.

We have adopted the Hausdorff distance to model dissimilarities between designs, and demonstrated its
use in examples. We believe that, depending on the field where the methodology is applied, other metrics can
work as well. The Jaccard distance described in (11) and the metrics introduced by Fujita (2013), see (12),
can be valid alternatives to the Hausdorff distance. Say, the Jaccard distance could work in situations where
we are not too interested in spatial distance between designs, but in a more machine learning oriented context
where one must select the appropriate number of sets for training, and because data may come from different
sources it is important to guide the active learning wisely (Settles, 2012). The developed methodology could
be also applied in subset selection problems such as the selection of individuals in epidemiological follow-up
studies (Reinikainen et al., 2016) or in genotyping (Karvanen et al., 2009).

It is possible to extend the study considering more challenging probability distributions for data, where
the computation of VOI becomes more difficult. The combination of the VOI analysis with Bayesian opti-
misation techniques gives us an efficient way to find satisfactory data gathering scheme. With the Bayesian
optimisation we move the problem of evaluating VOI to that of computing EI, which requires less computa-
tional effort. The total number of evaluation of VOI is considerably reduced. In situations where computing
the information gain is computationally demanding or the number of alternatives to explore is too large, the
developed methodology reduces the time of computation.
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