Problem 2.4.8

Gompertz’ equation for tumor growth reads

\[\dot{N} = -aN \ln(bN) , \]
(1)

where \(a, b > 0 \) are parameters. The fixed points \(N^* \) are given by

\[f(N) = -aN \ln(bN) \]
\[= 0 . \]
(2)

This yields \(N^* = 0 \) and \(N^* = 1/b \). The stability of the fixed point is given by the sign of \(f'(N) = -a \ln(bN) - a \). This yields

\[f'(0) = \infty , \]
(3)

\[f'(1/b) = -a . \]
(4)

Thus the origin is unstable and \(N^* = 1/b \) is stable.

Comments: The exact solution is

\[N(t) = \frac{1}{b} e^{\ln(N_0 b)e^{-at}} . \]
(5)

The solution satisfies \(N(0) = N_0 \) and

\[\lim_{t \to \infty} = \frac{1}{b} . \]
(6)

Fig. 1 shows the data points for tumor growth in a laboratory experiment at NTNU. The parameters \(a \) and \(b \) have been fitted to the data points. The agreement is very good.
Problem 2.5.1

a) The dynamics is governed by
\[\dot{x} = -x^c. \]

The origin is a fixed point only for \(c > 0 \). The stability is given by
\[f'(x) = -cx^{c-1}. \]

This implies that \(f'(0) = -\infty \) for \(0 < c < 1 \). The flow is always towards the origin since \(f'(x) < 0 \) for \(x > 0 \) and so \(x = 0 \) is stable. For \(c = 1 \), \(f'(0) = -1 \) and for \(c > 1 \), \(f'(0) = 0 \). In the latter case \(f'(x) < 0 \) for \(x > 0 \) and the flow is towards the origin. Thus the origin is stable for all \(c > 0 \).
b) We can solve the differential equation exactly by separation of variables. This yields

\[\int \frac{dx}{xe^c} = - \int dt . \]

(9)

Integration yields

\[\frac{x^{1-c}}{1-c} = -t + K , \quad c \neq 1 , \]

(10)

where \(K \) is an integration constant. Using the initial condition \(x(0) = x_0 \), we can determine \(K \) and find

\[x(t) = \left[(c-1)t + x_0^{1-c} \right]^{\frac{1}{1-c}} . \]

(11)

We must distinguish between two cases:

i) \(c > 1 \):
In this case the exponent \(1/(1-c) < 0 \) and this tells us that it takes infinitely long to reach the origin.

ii) \(0 < c < 1 \):
In this case the exponent \(1/(1-c) > 0 \) and this tells us that it takes us a finite amount of time \(t^* \) to reach the origin. The equation for \(t^* \) is \(x(t^*) = 0 \) or

\[(1-c)t^* = x_0^{1-c} . \]

(12)

This yields

\[t^* = \frac{x_0^{1-c}}{1-c} . \]

(13)

For \(x_0 = 1 \), we find

\[t^* = \frac{1}{1-c} . \]

(14)

Finally, for \(c = 1 \), the solution is

\[x(t) = x_0 e^{-t} , \]

(15)

and so it takes infinitely long time to reach the origin.
Figure 2: The function \(g(x) \) for \(r = 1/4, r = 0, \) and \(r = -1/4. \) The number of fixed points depends on the parameter \(r. \) \(r_c = 0 \) is a bifurcation point.

Problem 3.1.3

The equation is

\[
\dot{x} = r + x - \ln(1 + x). \tag{16}
\]

In Fig. 2, we have plotted the function \(g(x) = r + x \) for three different values of \(r \) as well as the function \(h(x) = \ln(1 + x). \)

We note that \(g(x) \) crosses the \(y \)-axis at \(r \) and so there is one fix point for \(r = 0. \) For \(r > 0, \) there are no fixed points and for \(r < 0 \) there are two fixed points. Hence \(r = 0 \) is a bifurcation point. One of the fixed points \(x_1^* \) lies in the interval \((-1, 0]\) and the other \(x_2^* \) in the interval \([0, \infty). \) Since \(g(x) > h(x) \) for \(x < x_1^* \) and \(g(x) < h(x) \) for \(x < x_1^* \) and \(x_1^* < x < x_2^* , \) \(x_1^* \) is a stable fixed point. Since \(g(x) < h(x) \) for \(x_1^* < x < x_2^* \) and \(g(x) > h(x) \) for \(x > x_2^* , \) \(x_2^* \) is an unstable fixed point.

Finally, expanding the function around \(x = 0, \) we obtain

\[
\dot{x} \approx r + x - \left(x - \frac{1}{2} x^2\right) \\
= r + \frac{1}{2} x^2. \tag{17}
\]

After rescaling of \(x, \) this is the same function as in Example 3.1 in the textbook. Thus a saddle-point bifurcation takes place at \(r = 0. \)
The bifurcation diagram is shown in Fig. 3.

![Bifurcation diagram](image)

Figure 3: Bifurcation diagram.

Problem 3.2.2

In Fig. 4, we plot the function $g(x) = rx$ for three different values of r as well as the function $h(x) = \ln(1 + x)$.

It is clear that $x = 0$ is a fixed point for all values of r. For $r < 1$ there is a second fixed point $x_2^* > 0$ and for $r > 1$ there is a second fixed point $x_1^* < 0$. Since $f'(x) = r - 1$, it follows that the origin is stable for $r < 1$ and unstable for $r > 1$. For $r = 1$, $g(x) > h(x)$ for all nonzero x and so $x = 0$ is half stable. Moreover, for $r < 1$, the fixed point x_2^* is unstable since $g(x) > h(x)$ for $x > x_2^*$ and $g(x) < h(x)$ for $0 < x < x_2^*$. Similar arguments show that x_1^* is a stable fixed point for $r > 1$. Finally, expanding the function $f(x)$ around the origin yields

$$f(x) \approx rx - \left(x - \frac{1}{2}x^2\right)$$

$$= (r - 1)x + \frac{1}{2}x^2.$$ \hspace{1cm} (18)

After rescaling this is of the same form as Eq. (1) in Sec. 3.2 in the textbook and shows that $r = 1$ is a transcritical bifurcation. The bifurcation diagram is shown in Fig. 5.
Figure 4: The function $g(x)$ for $r = 0.7$, $r = 1$, and $r = 1.3$. Transcritical bifurcation for $r_c = 1$.

Figure 5: Bifurcation diagram.