Using a neural network for estimating plant
gradients in real-time optimization with
modifier adaptation

José Matias* Johannes Jaschke*

* Department of Chemical Engineering, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway (e-mail:
jose.o.a.matias@nitnu.no, johannes.jaschke@ntnu.no)

Abstract: In the presence of structural plant-model mismatch, standard real-time optimization
(RTO) schemes are prone to compute an operation point that does not coincide with the
plant optimum. Modifier Adaptation (MA) methods are RTO variants that have the ability
to reach plant optimality even in the case of structural plant-model mismatch. However, MA
implementations require plant gradient information, which is challenging to obtain. This work
proposes a method for estimating plant gradients based on neural networks (radial basis function
network - RBFN). Our method is applied for obtaining the gradients of a gas lifted oil well
network, which is then optimized using MA. The results show that, even with measurement
noise, the gradients are estimated within an adequate precision and the MA method is able to
increase production of the well network, reaching the plant optimum without any constraint
violations despite the presence of plant-model mismatch.

Keywords: Neural Network, Gradient Estimation, Modifier Adaptation, Real-time

Optimization, Gas Lifted Oil Wells.

1. INTRODUCTION

Currently, in standard Real-Time Optimization (RTO)
applications, nonlinear rigorous steady-state models are
optimized on a regular basis in order to determine the best
operating conditions for the plant (e.g maximizing profit)
while satisfying process constraints. In order to optimize
the system, standard RTO approaches use measurements
to estimate the parameters, updating the process model
to the current plant state (Darby et al., 2011).

However, even the updated model may not represent the
plant accurately. For example, it can overestimate the
value of a particular constraint. In these cases, the RTO
computes an optimal operation point that does not co-
incide with the plant optimum, or worse, is not feasible.
This phenomenon, which is called plant-model mismatch,
has been extensively studied in the RTO literature (Darby
et al., 2011). Several proposals for RT'O variants deal with
process optimization in the presence of plant-model mis-
match. Among them, Modifier Adaptation (MA) methods
(Marchetti et al., 2016) are especially attractive due to
their simplicity and convergence properties.

In spite of guaranteeing that the optimization problem
has a local minimum at the plant optimum, implementing
MA methods in real situations is a challenging task due to
the necessity of estimating the plant gradients (Marchetti
et al., 2016). Several methods have been proposed for
obtaining the plant gradient information in MA applica-
tions. A selection of dynamic and steady state methods for
estimating plant gradients is shown in Table 1.

Given all the available options, there is no consensus about
the best gradient estimation method. Many authors apply
Finite Difference Approximation (FDA), which is the sim-
plest and most straightforward approach, but the method
becomes inefficient for noise-contaminated processes or for
processes with a large number of inputs. Other methods
approximate the plant cost and constraint functions by
local quadratic models and are more robust to noise (Gao
et al., 2016). However, these methods require probing
points in order to guarantee a well-posed regression set
to estimate the parameters of the surrogate models.

This paper proposes a new method for estimating plant
gradients based on a neural network and applies it to a
gas lifted oil network (Krishnamoorthy et al., 2016; Matias
et al., 2018). Specifically, a radial basis function network
(RBFN) is used to obtain the gradients. The method
relies on an adaptive model representation, in which the
residual between model and plant predictions of the cost
and constraints (plant-model mismatch) is modeled by a
RBFN. The plant gradients are estimated exploring the
structure of the trained network.

The proposed adaptive method for estimating the gra-
dients proceeds in a similar way as the Gradients from
fitted surfaces method (Gao et al., 2016). The main dif-
ference is the nature of the function that is fitted to past
data. Here, a hybrid (gray-box) approach for estimating
the gradients combines physical knowledge (model) with
data-driven parts (network trained in the residuals using
experimental data). Thus, it can take advantage of existing
process knowledge, which is not explored if a purely data-
driven approach is used (polynomials or spline models).

Table 1. Gradient estimation methods

Dynamic perturbation methods

1. Dynamic model identification, e.g. Mansour and Ellis (2003):
Dynamic models are adjusted to the plant data and the steady-
state gradients are obtained using the final-value theorem.

2. Extremum-seeking control, e.g. Golden and Ydstie (1989):
Perturbation signals are added to the inputs and the steady-state
gradients are calculated using data-driven methods.

Steady-state perturbation methods

1. Finite-difference approzimation (FDA): The inputs are
perturbed individually around the current operation point
and, by measuring the variation of the outputs, FDA is able
to calculate the gradient.

2. FDA wvariant of Brdys and Tatjewski (1995): It uses past
operation points to calculate the gradients instead of further
perturbing the plant like in FDA.

3. Directional Modifier Adaptation (Singhal et al., 2017):
It estimates plant gradients only in privileged directions in the
input space to decrease the number of plant perturbations.

4. Broyden-like methods, e.g. Rodger and Chachuat (2011):
Gradients are estimated from past operation points by a
recursive updating scheme.

5. Gradients from fitted surfaces, e.g. Gao et al. (2016):
Experimental data is fit to polynomials or spline curves and
the gradients are evaluated analytically by differentiating the
fitted model.

In comparison to FDA and its variants, the proposed
adaptive method uses data from points distributed in the
operating region, which can decrease the influence of noise
(Gao et al., 2016).

The case study shows that despite the presence of noise,
our adaptive scheme is able to predict plant gradient
accurately and the MA method, which uses only the phe-
nomenological model, is able to drive the model-based op-
timization to the actual plant optimum in a few iterations.

The paper is organized as follows. Section 2 briefly explains
the Modifier Adaptation method and Section 3 describes
the problems related to estimating plant gradients in
MA applications. In Section 4, the RBFN is introduced.
Next, the adaptive model representation is presented in
Section 5. Then, the next Sections discuss the case study
using the adaptive approach and show the results. The
paper is concluded in Section 9.

2. MODIFIER ADAPTATION

Modifier Adaptation was proposed by Marchetti et al.
(2009). Instead of estimating the model parameters, MA
methods incorporate plant measurements to the model
via correction terms (modifiers) for the optimization prob-
lem. The modifiers express the difference between actual
measurements and predicted values, and the difference be-
tween model gradients and plant gradients of the cost and
constraint functions. By using the modifiers, MA forces
the optimization problem to have a local minimum at the
plant optimum even in the presence of structural plant-
model mismatch (Marchetti et al., 2016).

Typically, the model-based optimization problem is set to
minimize an economic cost function J, while respecting

the operation constraints C. In turn, MA modifies the
optimization problem using the modifiers as shown below:

uj,, = argmax Joeq == J(u) + Aju
S.t. Chod :==C(u)+ecy +)\gyk(u — ug)

where, u are the process inputs. The subscript k£ indicates
that the values are evaluated at the k" MA iteration. A,
ec,r and Ac are the modifiers. We distinguish between
cost function modifiers and constraint modifiers by using
the subscripts J and C, respectively. Since the modifiers
can be affected by noisy measurements and poor gradient
estimates, they need some filtering to avoid overaggressive
corrections that may destabilize the system:

eck = —Kcco)ecr—1+ Kec(Cpr — Cr)
Ao =T —Kxo)hop—1+ EKxc(VCpir —VC:) (2)
Ak =T = Kxg) sk—1+EKx (VI — Vi)

in which, K. ¢, Kx ¢ and K ; are the filter gain matrices,
which are square matrices with values between [0,1) on
the main diagonal and zeros elsewhere; I is the identity
matrix of appropriate dimension; C} are the constraint
values predicted by the model; VCf and VJ, are the
model derivatives of the constraints and cost with respect
to u at the current operating point. The plant constraint
value (), is usually directly measured, however, obtaining

the plant gradients %’p and ﬁp can be challenging and
is the topic of this paper.

Additionally, it can be shown that the selection of the mod-
ifiers according to Equation (2) leads to convergence to
a plant minimum under standard regularity assumptions
(Marchetti et al., 2009).

3. PLANT-MODEL MISMATCH AND PLANT
GRADIENT ESTIMATION

Mathematical models are approximations of the actual
process. Hence, it is unlikely that there is no difference
between the model prediction and plant measurements,
even for elaborate models that cover a wide range of
phenomena. For example, in Equation (2), Cpx and J, &
may be quite different from C) and Jy for the same
input values u. One way of quantifying the plant-model
mismatch is to use additive error terms:

Cp(1) = C(u) + €. (u,n)

Jy() = J(u) + e (u,m))

in which, the vectors e (u,n) and e/ (u,n) contain the

noise, n, in addition to the modeling errors. Since it is
relatively easy to obtain the pairs (u,el.) and (u,e.)
using historical data, a data-driven approach can be used
for modeling €S, and e/, as a function of the input
(and possibly measured disturbances). More interesting,
depending on the structure of this data-driven model, the
gradients related to the residual can be estimated and,

consequently, the plant gradients easily computed:
VCy(u) = VC(u) + VeC, (u) (4)

The procedure for ﬁp is the same. Essentially, e,, and
Vé,» combine the zeroth and first order modifiers. How-

ever, as they are not computed using a filter, like in Equa-
tion (2), and they are connected to the gradient estimation
and not the economic optimization problem, we choose to
use a different nomenclature to avoid confusion.

4. RADIAL BASIS FUNCTION NETWORK (RBFN)

Despite the fact that radial basis function networks are
commonly used for classification, they can be used for
function approximation (for example, for modeling e<)
(Johansen and Foss, 1992). Moreover, given RBFN’s struc-

ture, it is easy to obtain the gradients Ve$, and Ve, after
training the network. RBFN is also chosen because its
representation is much more intuitive than for other neural
networks. RBFN neurons can take the form of Gaussian-
like function, in which each neuron is represented by a bell
curve centered at given input value, called p. The center
value can be seen as a prototype value for a specific region
of the input set. When a new input u enters the system,
the network classifies its similarity to the all the neurons
of the network. The similarity is measured by the neuron
activation function:

¢)7,(u) e eXp—B(U—}Li)T(U—}Li)

i=1,...,n, (5)
where, n,, is the number of neurons and [is the parameter
that controls the width of the bell curve. In order to
improve the accuracy of the function approximation, the
output of a neurons is is normalized between 0 and 1
by diving ¢;(u) by the sum of all activation functions
(Johansen and Foss, 1992):

(bi(u) e_ﬂ(u_“i)T(U—Mi)
N Z?:nl ¢l(u) - Z?:"l e—Blu—p)T (u—p1) (6)

The network output is the weighted sum of the all normal-
ized neuron activation functions r;(u). The weights w; are
tuned in the training step. These coefficients control the
influence of the neurons in the output. Figure 4 presents
the RBFN in a typical 3-layer neural network scheme, in
which the input vector is the first layer, the hidden layer
contains the RBFN neurons, and the output layer (third
layer) represents the linear combination of the neurons.

r;(u)

RBF
Neurons
Input Vector

7/111 .

>
—
_—
_
-
_

— ~

\ Uy
Hic

i = Prototype for neuron k

Output Output
h
Weights Node

Function
Output

Fig. 1. RBFN as a 3-layer neural network (input vector,
layer of RBF neurons and output layer. Adapted from:
McCormick (2013)

Despite the appealing fact that RBFN can be classified
as a neural network, it can be also seen as simple linear
regressions in relation to the coefficients w;, where the

value of the unknown function e,..(u) is approximated by
a weighted sum of n,, nonlinear functions:

errj = wo + w1 - T1(ug) o+ wn, T, (ug) (7)

where, the u; and e, ; are the input and residual mea-
surement of the j** operation point, respectively. A bias
term, wg, is added to the problem in order to represent the
cases where all the neurons have a zero activation value.
Note that, for our purposes, e, ; can be either e,c.;’j or
eTJn ;- Then, for all the available measurements (n, in this
case) the following matrix can be obtained:

w,
€rr1 Lorp(ur) ro(ur) T, (u1) wtl)
err,2 1 ory(uz) ra(ug) Tn (u2) |
€rrnm Lry(un,,) ro(tn,,) - o, (un,)1 |

MNm,

Y=R- W

(8)

The coefficients can be easily estimated by a simple
ordinary least square estimator, for example:

W = (R"R)"'RY (9)
5. RBFN FOR ESTIMATING PLANT GRADIENTS

After training the network, Veé,,. can be easily obtained
for new values of the input u by taking advantage of
the network structure. Here, we present the derivation for
only one dimension. However, it can be easily extended
to the multidimensional case. For obtaining the gradient,
Equation (6) is differentiate with respect to u:

2
Ori(u) 0 e Alu=p)
ou Ou\Y) e Blumm)?
_ —2B(u — py)ePlumn)?
- Zl”:nl e—Blu—pm)?
e P (o —2B(u — pu)e P
(e Plummo)?

S (g -)

Ty e Alumn)? (X e=Blu=m)?)

= — 20r;(u) <(u — i) — i(u - uz)n(@)

=1

(10)
Substituting the results for every r;, we obtain:
e, (u) or1(u) Ora(u) Orn,, (u)
= N —__mr 7 11
ou Y15 e ou LR ou (11)
The last equation can be written in matrix form:
aeg:") = —28|W, - diag(Mp(u)) - M(u) — (Mp(w) - M(w)T) - (W, K (u)T)
(12)
where:
M(u) = [(u—), (u = pa), -, (= g,
Mp(u) = [r1(u), r2(u), -+ 7o, (u)]

Wy

[w17w25 T awnn}

In order to improve the quality of information used to
train the network, two extra steps are included in the
RTO method. First, on every iteration (i.e. whenever new

steady-state information is available), the neurons are re-
positioned in the input space and the networks are re-
trained. To determine the new values of u, the k-Means
clustering strategy is chosen due to its simplicity and
effectiveness (Schwenker et al., 2001). The idea is based
on partitioning the ny data points from the training data
into n,, groups. The data points are assigned to the nearest
cluster, which is determined based on the squared distance
between the data point and the cluster center. Then, a
new cluster center is computed as the average of all points
inside the cluster. This process is repeated until the centers
of all clusters remain equal for at least two iterations,
suggesting that the algorithm has converged.

The second extra step is a probing policy, which is de-
veloped to obtain extra plant information in order to
ensure that the regressor matrix (R in Equation (8))
contains well-distributed and sufficiently distant points
from the current iterate. The idea is based on Steps 4
and 5 of the methodology proposed by Gao et al. (2016).
Two parameters Au and nypqs: control the probing policy.
The former determines the neighboring region around the
current operating point, while the latter determines the
number of past data points that are used for analyzing the
regression region. The policy shrinks the regression region
in order to improve the accuracy of the gradient estimates
near the vicinity of the optimum. For the sake of brevity,
the probing policy is not explained here. Please refer to
the original paper for a detailed explanation.

A diagram containing a detailed description of steps of
the Modifier Adaptation method using neural networks
for estimating plant gradients is shown in Figure 2.

6. CASE STUDY: GAS LIFTED OIL WELL
NETWORK

Gas lift is an artificial lift method applied in offshore oil
and gas production. In cases that the reservoir pressure
is low, gas is injected at the well bottom in order to
economically lift the fluids from the reservoir to the surface
(Krishnamoorthy et al., 2016). The gas injection reduces
the fluid mixture density, which decreases the pressure at
the bottom of the well, resulting in an larger inflow from
the reservoir. A simplified flowsheet of the process can be
seen in Figure 3.

The nonlinear steady-state model of the process used in
this case study consists of mass balances for oil and gas and
relations for calculating density, flow and pressure. The
model considers constant temperatures, frictional pressure
drop, ideal gas behavior, and simple linear relations to
calculate the reservoir outlet flows. For more details to the
gas lift well model, refer to Krishnamoorthy et al. (2016).

The system model is divided in three control volumes:
Wells, each well model is composed by two section, before
and after gas injection. In this case study, the network
contains two wells; Annulus, a void between the product
pipeline and the external tubing in which the lift gas is
injected; and Riser, which encompasses a manifold that
connects the wells to the main pipeline that transports
the oil/gas mixture to the the surface.

The optimal operation of the 2 wells network is achieved by
maximizing the profit using the system decision variables,

The method needs at least n,,
data points in order to initiate.

Historical data can be used. In
the case that plant data is not

available, MA with other gradient
estimation method (e.g, FDA) can

be used to generate n,, points.

T
v
Given the current input, ug,
measure Cp(uy) and Jp(uyg).
Compute model values

C(uy) and J(ug).

Then, calculate the residuals
eC () and e, (uy)

Place the n,, neurons in
the input space using a
k-Means clustering algorithm

Calculate the regressor
matrix R, the residual
matrix Y and estimate the
coefficient matrix W of
the RBFN using Equation

Implement ﬁ2+1 in the
plant. Update Upqst-
Define next iterate:

up < fl; +1

!

If |[up,; — wl| < Au
and there is at least
one point u; € Upqst
(where Upqs¢ is the set of,
at most, nyqs data points)
such that |ju; — ug|| > 2Au.
Set iy, = (u; + ug)/2.
Otherwise, G, = uj,

i

(9). One network must be
trained for the cost function
residuals, and another one
for each one of the optimiza-

Using the trained networks,
evaluate the gradients as
described in Section 5. The
estimated plant gradients
are used for optimizing the
plant calculating uy, ; via
Modifier Adaptation. MA
computes the optimum using

. . a phenomenological model.
tion problem constraints. P i

Fig. 2. MA iteration using a radial basis function network
for estimating plant gradients

[E——
WorTot

WgTot < WM

Riser

Manifold

—

T

~—— Product pipeline

—

«—— Wells —»
Annulus

L L

-—— Bottom hole ——

Pl Pl
Wrot wro2

Fig. 3. Network containing two gas lifted wells. Adapted
from: Krishnamoorthy et al. (2016).

which are the mass flow rate of gas lift in each well u =
[wgr,1, wg12]T. At first, increasing the gas lift flowrate to its
maximum capacity might appear as the obvious optimal
solution, but larger gas injection flowrates also increase
frictional pressure drop, decreasing the well production.
Therefore, there is a trade-off to find the optimal gas
injection. In addition, process constraints, like well total
gas production capacity, need to be taken into account.
Hence, the process is well suited for RTO applications.

The system optimization problem can be written as:

max
u=[wg,1,Wwg1,2]

2
e a2 2
J = wip, — 0.5 g W

i=1

WgTot WgM
Wy 1 | < |Wgimr

Wgl,2 Wgl M

T
(13)
S. t. C .=

Here, woror is the total oil production and wgro: the
total gas production of the well network; wgy and wgins
are the maximum gas processing capacity of the system
and maximum gas lift flowrate for the well, respectively.
The total oil and gas production of the well are calcu-
lated using the input-output mapping, [worot, Weret]”
Ymodel (Wqi,1,Wqr,2), Which represents the solution of the
nonlinear steady-state model.

In order to consider plant-model mismatch, a model for the
plant and a model for the optimization layer are developed.
The difference between them lies in the reservoir model
wro = PI(p,. — ppr), which uses the productivity index
(PI) to relate the oil flowrate leaving the reservoir, w.,,
with the difference between well bottom hole and reservoir
pressures, (p, - ppn)- The plant-model mismatch is then
achieved using different values for PI (Plpan: = 7 and
Ploder = 5). As a consequence, the model and the plant
optimum are different and, moreover, they lie at a different
set of constraints.

7. CASE STUDY AND RBFN SET-UP

In this case study, only the steady-state behavior of the
plant is analyzed. Random noise was added to the mea-
surements, the noise values are drawn from an uniform
distribution in the interval of £1% of the current measure-
ment value. The noise is assumed to be neither correlated
in time nor between measurements. The values of the
model parameter values are not shown here for the sake
of brevity. They can be found in Krishnamoorthy et al.
(2016). Table 2 shows the tuning parameters of MA and
RBFN.

Table 2. Tuning parameters

Constraint bias modifier Kcc 07
Constraint gradient modifier Kyxc 05
Cost function gradient modifier Ky ; 0.5
Input filter Ky 0.4
Width of neurons B 0.4
Number of neurons Ny 6

Neighboring region parameter Ay 0.3

Number of setpoins in Upqst Npast 15

The first three parameters are the filters used in the zero-
and first-order modifiers terms (Equation (2)), which are
added to the cost and constraint function of the MA opti-
mization (Equation (1)). Additionally, after obtaining the
solution of the economic optimization problem, an input
filter ug 11 = ugp+ K, (uj ; —uy) is also used for mitigating
the effect of noise and errors in the gradient predictions.
Small values of the K, represent a more conservative
updating strategy, for example: if the measurements are
unreliable, it is better to avoid large changes in the inputs
Uy in order to not deteriorate plant performance.

As only one constraint (the total gas production of the well
network constraint) is modified in the economic optimiza-
tion problem, two RBFN are trained, one for the constraint
and one for the optimization problem cost function. The
neurons of both RBFN have the 8 value shown in Table 2.
B is the coefficient of Equation (5) that controls the width
of the neuron. This value may be selected differently for
each neuron. However, a single value was used for all the
neurons in this case study, i.e. all neurons have the same

width.

The number of neurons is an important parameter for the
network. As the number of neurons increases, the accuracy
of the networks increases on the training data, but there
is also a risk of overfitting. Also, there is a trade-off in
efficiency, more RBF neurons means more computational
time. For our case study, a network with 6 neurons was
found to achieve a good accuracy. Finally, Au and npgs:
are parameters connect to the probing policy shown in
Figure 2. They are tuned based on Matias et al. (2018),
where the authors implement the methodology proposed
by Gao et al. (2016) in a gas lifted oil well network.

8. RESULTS AND DISCUSSION

In order to train the neural network, an initial set of data
points needs to be generated. Instead of using data from
previous operation runs, the first 6 operation points are
calculated as in Gao and Engell (2005), i.e. first using
finite-difference approximation (FDA) and afterwards Iter-
ative Gradient-Modification Optimization (IGMO). Then
the neural network is trained on this data set. Note that in
the number of initial points is chosen based on the number
of neurons.

Figure 4 displays the iterations using the MA scheme
with gradient estimation via RBFN and the extra plant
probing points. The figure shows the contour lines of the
plant profit surface and the setpoints moves from the
initial point, u(0) = [1,1] [kg/s], to the plant optimum.
The optimization points are connected by the blue line.
The extra probing points are also shown. The results
confirm that the calculated optimum converged to the
plant optimum in few iterations and no constraints are
violated.

The final step is the analysis of the quality of gradient
estimation of both profit and constraints, which can be
seen in Figure 5. The figures show the gradient values
for both inputs w; and ws. The results show that the
methodology is able to estimate the gradients accurately.
They are in good agreement with the plant gradients in
both cases. The deviation is relatively small if compared
to the absolute value of the gradient.

9. CONCLUSION

In this work, radial-basis function network (RBFN) has
been used to model the deviation between model and
plant. Taking advantage of the network structure, the
study provided a framework to estimate the plant gra-
dients. Using RBFN to model plant-model mismatch was
already proposed by (Johansen and Foss, 1992). However,
the main contribution of the paper lies in the applica-
tion of neural network to obtain the plant gradients in

Profit contour lines [$]
T T T

S
© %
5,

Gas lift flow 2 [kg/s]

% (N
yo R [N
3 | ~
~
s | - J
~
T 4900—<
~
7(900 | \\ -
I
I
I

.

I I
0.5 1 15 2 25 3 35 4 4.5 5
Gas lift flow 1 Tka/s]

Fig. 4. Set-point moves from the optimization run and
profit contour lines for the plant. Circles represent
optimization steps, while asterisks represent probing
steps. Dashed blue line is the maximum gas produc-
tion constraint and dashed black lines are the maxi-
mum gas lift flow rate for each well.

Objective Function Gradient Constraint gradient (w,)
— T T —

9 ulp\an\

gu2

plant

112

11[

.
=}
@

9w, [kg/s/s]
e
8

104F N\

-180

T S T S
2 34567 8 910111213141516
Numher of execiitions

P T S S S R S S S
2 34567 8 910111213141516
Nimber of execitions

Fig. 5. Difference between the estimated gradient (based
on RBFN) and the actual plant gradients.

a Modifier Adaptation (MA) scheme. The method was
applied in the optimization of a gas lifted oil well network.
The simulation results show that, despite the presence of
plant-model mismatch and a considerable amount of noise
measurement, the MA approach is able to reach the plant
optimum. The cost and constraints gradients of the plant
were successfully obtained using the RBFN. In addition,
no constraints are violated even before convergence to the
plant optimum, which is important for practical applica-
tions.

ACKNOWLEDGEMENTS

The authors would like to thank M.Sc. Dinesh Krish-
namoorthy for providing the process models used in this
work. The authors acknowledge Financial Support from
the Norwegian research council /Intpart, SUBPRO

REFERENCES

Brdy$, M. and Tatjewski, P. (1995). An algorithm for
steady-state optimizing dual control of uncertain plants.
In New Trends in Design of Control Systems 1994, 215—
220. Elsevier.

Darby, M.L., Nikolaou, M., Jones, J., and Nicholson, D.
(2011). Rto: An overview and assessment of current
practice. Journal of Process Control, 21(6), 874-884.

Gao, W. and Engell, S. (2005). Iterative set-point opti-
mization of batch chromatography. Computers & Chem-
ical Engineering, 29(6), 1401-1409.

Gao, W., Wenzel, S., and Engell, S. (2016). A reliable
modifier-adaptation strategy for real-time optimization.
Computers € Chemical Engineering, 91, 318-328.

Golden, M.P. and Ydstie, B.E. (1989). Adaptive extremum
control using approximate process models. AIChE
journal, 35(7), 1157-1169.

Johansen, T. and Foss, B. (1992). Nonlinear local model
representation for adaptive systems. In Intelligent Con-
trol and Instrumentation, 1992. SICICI’92. Proceed-
ings., Singapore International Conference on, volume 2,
677-682. IEEE.

Krishnamoorthy, D., Foss, B., and Skogestad, S. (2016).
Real-time optimization under uncertainty applied to a
gas lifted well network. Processes, 4(4), 52.

Mansour, M. and Ellis, J. (2003). Comparison of methods
for estimating real process derivatives in on-line opti-
mization. Applied Mathematical Modelling, 27(4), 275~
291.

Marchetti, A., Frangois, G., Faulwasser, T., and Bonvin,
D. (2016). Modifier adaptation for real-time optimiza-
tionmethods and applications. Processes, 4(4), 55.

Marchetti, A., Chachuat, B., and Bonvin, D. (2009).
Modifier-adaptation methodology for real-time opti-
mization. Industrial & engineering chemistry research,
48(13), 6022-6033.

Matias, J.O., Le Roux, G.A., and Jaschke, J. (2018).
Modifier adaptation for real-time optimization of a gas
lifted well network. IFAC-PapersOnLine, 51(8), 31-36.

McCormick, C. (2013). Radial ba-
sis function network (rbfn) tutorial.
http://mccormickml.com/2013/08/15/radial-
basis-function-network-rbfn-tutorial/. Accessed:
2018-04-27.

Rodger, E.A. and Chachuat, B. (2011). Design method-
ology of modifier adaptation for on-line optimization of
uncertain processes. IFAC Proceedings Volumes, 44(1),
4113-4118.

Schwenker, F., Kestler, H.A., and Palm, G. (2001). Three
learning phases for radial-basis-function networks. Neu-
ral networks, 14(4-5), 439-458.

Singhal, M., Marchetti, A.G., Faulwasser, T., and Bonvin,
D. (2017). Improved directional derivatives for modifier-
adaptation schemes. IFAC-PapersOnLine, 50(1), 5718—
5723.

