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Summary

A superstructure was proposed for a subsea separation system, containing the possibilities for
multiphase boosting, separate phase pumping and compression, multiphase transport/rising
and separate phase transport/rising. From the superstructure, an optimization model was
formulated. Binary variables were assigned to all potential pieces of equipment. The proposed
constraints included mass balances for the system, and logical constraints related to the
binary variables. Two approaches were evaluated for the objective function, resulting in
two different cases. For the first case, the investment cost was minimized, using fixed costs
for the equipment. For the second case, the net present value was maximized and a set
of the equipment was cost estimated in the objective function, making it nonlinear. The
models were implemented in GAMS, giving the optimal set of binary variables, from which
the optimal configuration was constructed. Minimizing the investment cost gave multiphase
boosting, transportation/rising as the optimal solution. The same solution was obtained by
maximizing the NPV for early production. Maximizing the NPV for late production gave
separate compression and pumping with multiphase transport/rising as the optimal solution.





1 Introduction

When proposing a flowsheet for a chemical process, there are several possible configurations to
evaluate. A fundamental problem of chemical engineering is therefore to find the best possible
process structure for a given process. This involves a series of decisions regarding units,
equipment and interconnections of the flows. These decisions can be classified into two main
categories: Structural decisions and operational decisions. The former deals with decisions
such as interconnections of the flows and equipment as well the selection of the equipment for
the process. Examples of the latter category include reactor temperatures, pressures and flow
compositions. The complexity of these combinatorial problems can become quite high, and
for a PSP (process synthesis problem) it is not uncommon to have 1015 different alternatives
[1]. The need for generic methodologies to identify optimal configurations becomes evident.

There are mainly two different approaches when it comes to identifying the best possible
process structure. The first approach involves solving the problem in sequential form by the
use of decomposition [2]. Certain elements of the flowsheet are held constant while changes
are introduced to study the effects and the possibility of an improved solution. The advantage
of this method is that it can be simple to implement. However, due to its sequential nature,
it may lead to sub-optimal solutions. The second approach involves the formulation of a
superstructure, where all potentially useful units and interconnections are included in a
process diagram. From the superstructure, an optimization model can be formulated, where
the constraints include mathematical models for all the units and interconnections, as well as
logical constraints. The objective function reflects the desired quantity to be maximized or
minimized e.g the net present value or the investment costs, respectively. Due to the fact that
integer(binary) variables often are used to represent the decisions, while continuous variables
are used for the operating variables (flow, temperature, pressure etc.), the optimization model
takes the form of a mixed integer programming (MIP) problem. By solving the mathematical
programming problem, the optimal configuration of the flowsheet is identified, with respect
to the specified objective function.

The objective of this report is to construct a simple superstructure for a subsea separation
system, formulate a model, and solve it to obtain the optimal process design. The problem is
relevant as subsea processing is a growing field which already has been used all over the world.
As many of the oil and gas fields are approaching the final stages of their lifetime, there
has been a need for more efficient oil recovery methods [3]. As a result, subsea processing
was introduced, allowing for transport over greater distances, improved flow assurance and
production. Statoil has developed subsea technology resulting in more than 500 subsea wells
during the last 25 years as a part of their vision to develop and deploy all the necessary
technology elements required for a subsea factory [4].

The next section will present the theoretical concepts that will be applied later on in the
report. More specifically, section 2 gives insight in the concept of superstructure optimization,
mathematical programming, generation and modeling of superstructures as well as some
advantages and challenges related to the concept. The base case of the project will be
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described in section 3, before the superstructure generated for the process is presented in
section 4. Section 5 gives the optimization model formulated from the superstructure. The
results obtained from solving the model is presented in section 6. Some key aspects of the
results and the model is given in section 7, before the results are concluded in section 8.

2 Background & theory

Superstructure optimization provides an approach for obtaining the optimal configuration
of a flowsheet while at the same time optimizing the operational conditions of the process.
The general procedure can be broken down into three general steps as illustrated by figure
1. The first step of the procedure is to generate a superstructure for the process, which
is a diagram consisting of all feasible units and interconnections between the flows of the
system [5]. Based on the superstructure, an optimization model is formulated and solved to
produce the optimal configuration of the process flowsheet. The solution is a subsystem of
the initially formed superstructure, where certain units and flows are chosen based on the
objective function and the constraints specified.

Figure 1: An optimization model is formulated from the superstructure, and
solved to produce the optimal process flowsheet [1].

2.1 Mathematical programming and previous work

Contributions made by scientists and engineers combined with the development of mathemat-
ical programming and algorithms has made superstructure optimization a powerful tool for
designing flowsheets. Important contributions include solution strategies for mixed integer
linear programming (MILP) and mixed integer non linear programming (MINLP).
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2.1.1 Linear programming (LP)

The modern era of optimization began with the development of the SIMPLEX algorithm
by Dantzig in the late 1940s [6]. Despite the fact that the algorithm works exclusively for
problems with both linear objectives and constraints, it still remains one of the most widely
used of all optimization tools today. A linear problem can be formulated as follows:

min Z = cTx (1a)
s.t Ax ≤ b (1b)
x ≥ 0 (1c)

where x represents the continuous variables restricted to non-negative values. Since the
objective function is linear and equation 1b and 1c make up a convex feasible region, the
programming problem in itself is convex and has a unique minimum. The SIMPLEX algorithm
searches for this optimum value by exploiting the fact that it is located at one of the vertices
of the feasible region. An illustration of a linear programming problem is given in figure 2.

Figure 2: The minimum of a linear problem is located at one the vertices of
the feasible region.

The black lines in figure 2 represent the constrainsts which define the feasible region. The
red lines illustrate how the objective function can be increased until the end of the feasible
region, where the optimum is located at a vertex of the feasible region, point A.

2.1.2 Mixed integer linear programming (MILP)

In many practical problems it makes more sense to assign integer or binary values to some of
the variables. Examples include representations of non-continuous quantities and decisions
(binary variables). When the objective function and the constraints are linear, the problem is
referred to as a mixed integer linear programming (MILP) problem. The general formulation
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of the problem can be considered as an extension of the problem definition given in equation
1, with the addition of a constraint restricting a subset of the variables to integer values:

min Z = aTy + cTx (2a)
s.t By + Ax ≤ b (2b)
y ∈ {0, 1} x ≥ 0 (2c)

Here, y represents the subset of variables that is restricted to integer (binary) variables, and
x represents the continuous variables. This problem type is especially well suited for the
modelling of choices as discrete values, which is essential for superstructure optimization.
Some examples are given below [7].

t∑
j=1

yj = 1 (3a)

t∑
j=1

yj ≤ 1 (3b)

yj − yk ≤ 0 (3c)
xi − Uyj ≤ 0 (3d)

g1(x)− Uy ≤ 0, g2(x)− U(1− y) ≤ 0 (3e)

Equation 3a and 3b represent the selection of only one item, and the selection of at most one
item respectively. Equation 3c and 3d are implication constraints. The former indicates that
if item j is selected, item k must be selected as well, but not vice versa. The latter sets the
continuous variable xi to zero in the case that item j is not selected, where U is the upper
limit for x. Equation 3e is a disjunction. If y is selected then constraint g2 must hold. If y is
not selected g1 must hold.

A simple approach for solving MILP-problems would be to relax the binary constraint given
in equation 2c and apply the SIMPLEX algorithm described earlier. However, this approach
would not be recommended as it could lead to infeasible or non-optimal solutions. Another
approach is the branch and bound algorithm which underlying concept is to divide and conquer
[8]. The original problem is divided into smaller and smaller sub-problems by relaxing and
adding constraints. These sub-problems are solved as linear programs to give the best possible
solution of that particular subset (bound). Subsets are discarded if its bound indicates that
it can not contain the optimal solution. The principle is illustrated in figure 3 [9].

2.1.3 Mixed integer non-linear programming (MINLP)

Mixed integer non-linear problems often arise in optimization of process synthesis problems
and, are generally the hardest to solve. The branch and bound method described above can
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Figure 3: Illustration of a branch-and-bound tree [9]. The main problem is
divided into sub-problems by relaxing and adding constraints.

in principle also be applied to these problems. However, instead of linear programs, each
node will now correspond to solving a NLP, which can be expensive and not very effective.
Other alternatives include Generalized Benders decomposition and Outer-Approximation [7].
The latter method involves solving a series of NLP-problems and master MILP problems.
For a minimization problem, the NLP-subproblems provide upper bounds as well as values
for the continuous variables while the MINLP master problems predicts lower bounds for the
solution. The algorithm terminates when no lower bound can be found below the current
upper bound. The formulation of a MINLP has a significant impact on the optimality of the
obtained solution as well as the algorithmic performance [10]. For process synthesis problems
it is not uncommon that MINLP-formulations can be trapped in local solutions. Therefore,
great care must be taken when formulating the problems. It is generally favourable to place
the nonlinearities in the objective function.

2.1.4 Previous work with superstructure optimization

The earliest work done in the field of superstructure optimization was focused on sub-systems
and specific problems. Several models have been proposed for the selection of distillation
column sequences during the last 50 years as well as reactor networks (Balakrishna and
Biegler (1992)) and heat exhchanger networks (Yee and Grossmann (1990)) [2]. There has also
been done work to incorporate different sub-systems into the formulation of a single process
synthesis problem. Papoulias and Grossman proposed a MILP-formulation incorporating
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plant design, utility design and design of the recovery network [5]. One of the main challenges
related to the creation of such superstructures is the fact that the mathematical programming
problem can become highly complex. Especially if rigorous mathematical models are used for
the units of the flow sheet. To circumvent this problem there has been developed so called
short-cut methods, where rigorous unit-models are replaced by approximate models. An
example is the linear and bi-linear approximations of component splitting fractions proposed
by Aggarwall and Floudas.

2.2 Formulation and modelling

There are several ways of formulating a superstructure. Early approaches focused on combining
different configurations that could perform the objective of the process into structures of
greater complexity. Simple flowsheets were formulated in advance based on experience and
engineering judgement and added together [1]. The idea is presented in figure 4.

Figure 4: Combination of two simple flowsheet alternatives to create a super-
structure [1].

Another option is to develop superstructures for the individual subsystems of the process
e.g the reaction network and the heat recovery network, before combining the subsystems to
create a superstructure for the overall process [7]. This method however, is limited by the
generation of the individual superstructures, which again limits the total number of options.

2.2.1 Superstructure representations

The representation of a superstructure can play an important part in the implementation
of the optimization. The examples given in figure 1 and 4 are so called state equipment
network (SEN) representations, which were initially proposed by Smith in 1996 [2]. The main
concept behind these representation is to initially select a set of equipment able to fulfill the
objective of the process, and later on assign tasks for the equipment that is selected by the
optimization. This way of generating superstructures gives the advantage of a more compact
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formulation of the optimization problem, due to the fact that the size of the combinatorial
problem is reduced.

The main alternative to SEN-representations are state task network (STN) representations.
Here, a task can be considered as a processing step transforming one particular state into
another state. Examples include pressure changes, heat transfer, phase changes etc. The
states are the chemical and physical properties of the process streams. Contrary to the
SEN-representation, the concept behind STN is to initially identify a set of tasks necessary
to fulfill the objective of the process and later assign appropriate equipment to the set of
tasks. This method however, can lead to a complex superstructure if many states and tasks
are needed to fully represent a unit.

2.3 Advantages and challenges

The obvious advantage of superstructure optimization is the ability to evaluate a large
number of complex structures and interconnections in order to make good design decisions.
By formulating the problem in an effective way, the method can give simultaneous optimization
of both operating conditions and process structure. However, the truly optimal solution can
not be found if it is not contained by the superstructure. This calls for rich superstructures
of high complexity, which can be computationally demanding. Additionally, the accuracy of
the results is highly dependent on the mathematical models of the units. Applying complex
rigorous models will give better accuracy but at the same time lead to large scale non-convex
MINLP-models, for which global optimality cannot be guaranteed. Therefore the greatest
challenge regarding superstructure optimization is how to generate a structure that is rich and
gives a wide search space, while at the same time not being too computationally demanding.

3 Problem Definition

The concepts described in section 2 can be applied to identify the optimal configuration of a
subsea separation system with boosting. In order to do this, the process must first be broken
down into its essential sub-processes and analyzed. This will be done in section 3.1. From
the process analysis, the relevant discrete decisions, interconnections and potential pathways
can be identified. This makes it possible to generate a superstructure for the process. From
the superstructure, a mathematical optimazation model will be formulated and solved by the
algebraic modeling system GAMS. The procedure is illustrated in figure 5
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Figure 5: Procedure for identifying the optimal configuration of the subsea
separation system

3.1 Process description

The case that will be studied is based on the problem presented in the report Subsea separation
[11] as part of the process design project at NTNU. The case considers the design of a subsea
separation system for a low energy oil field (low temperature and pressure). The main steps
of the process is separation, treatment of the oil and the gas, boosting, transport to FPSO
and handling of the produced water and sand. The general process flow is presented in figure
6.

Figure 6: Main steps of the subsea separation process [11]

The well stream consists primarily of gas, oil, water and sand, and the first step of the process
is to separate these main components in a 4-phase gravity separator. Since the water is
separated off subsea, it is not transported to the surface, which solves the problem of limited
water handling topsides as well as being energy efficient. The water and the sand are handled
separately after the separation before being injected in a reservoir for disposal.

Due to the low energy of the reservoir, it is necessary to increase the pressure in order to
ensure efficient transport of the oil and the gas topsides. This can be done separately for the
two phases by the use of a pump for the liquid and a compressor for the gas. The alternative
is to use multiphase boosting by the installment of a multiphase pump.

The final step is the transportation of the oil and the gas to the FPSO. The produced fluids
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must be transported 150 km before they are rised half a kilometer up to the FPSO. Based
on the previous decions regarding boosting, the fluids can be transported separately or in a
single pipe. Naturally, the fluids will not be transported separately in the case of multiphase
boosting.

3.2 Possible scenarios and flowsheets

It becomes evident that there exists more than one feasible configuration for the process.
The main decision lies in the transport of the fluids and how to handle the pressure increase.

Figure 7: Separate boosting and compression and separate transport of the
fluids to the FPSO.

Figure 7 shows a possible configuration for the process with separate boosting and compression
for the two phases. The gas is cooled (E-100), to condense out the remaining liquid before
the dry gas is compressed and sent to the FPSO. Since the phases are transported separately
to FPSO, installment of two transport pipes and risers are necessary.

Another alternative is to use a multiphase pump for the boosting of both phases. This makes
it possible to use a single transport line and riser to the FPSO. However, the phases must be
separated topsides, so a gravity separator must be installed on the FPSO. This configuration
is illustrated in figure 8.

A third option is to use separate boosting and compression like in figure 7, but mix the phases
before transportation in order to use a single transport pipe and riser. This configuration
also requires a topsides gravity separator. The configuration is illustrated in figure 9.
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Figure 8: Multiphase boosting and transport with gravity separator topsides.

Figure 9: separate boosting and compression, transport in single pipe and riser
with gravity separator topsides.
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4 Superstructure

Based on the process description and possible configurations presented in section 3, a
superstructure can be formulated for the process. As described in section 2.2, this can be done
by combining simple flowsheets to include all the potential useful units and interconnections
between them. Figure 10 is a superstructure based on the configurations given in figure
7, 8 and 9. The superstructure accounts for the possibilities of multiphase boosting and
separate compression/pumping, as well as the transportation alternatives discussed in section
3. Possible splitters are represented by yellow nodes in the diagram, while the green nodes
represent possible mixing points for the flows.

Figure 10: Proposed superstructure for the process.

The superstructure is mainly focused on the gas and oil flow from the 4-phase gravity
separator. The water handling and sand handling are of lesser relevance for the optimization
since no alternative options are proposed for these sub-processes. This leaves the gas and the
oil flow as the initial starting point of the model. The gas flow is denoted as G in the diagram.
After leaving the gravity separator, a splitter presents the option of either combining the
two phases or sending the gas to the cooler (E-100) to condense out the remaining liquid. If
the former alternative is chosen, multiphase boosting (MP-100) should be implemented, and
the phases should be transported by the multiphase transport line and riser to the FPSO.
The diagram indicates that the FPSO requires a topside separator in the case of multiphase
transport. If the latter alternative is chosen, the the cooled fluid from the condenser is sent
to a separator (V-100) to remove the condensed liquid from the dry gas. The condensed
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liquid is then joined with the oil flow and sent to the pump (P-100), while the gas is sent to
the compressor (K-100). The boosted fluids can then either be transported separately to the
FPSO, or in the multiphase transport line.

5 Optimization model

An optimization model can be formulated based on the superstructure presented in figure
10. The optimization model must account for every potential configuration present in the
superstructure as well as the corresponding equipment. To achieve this, binary variables are
assigned to each individual piece of equipment as to represent discrete decisions. The binary
variables for the units that will be present in the optimal solution take the value 1, while the
binary variables corresponding to the unused units will take the value 0. Table 1 shows the
relationship between the binary variables for the optimization model and the corresponding
equipment.

Table 1: Binary variables for the potential equipment in figure 10.

Binary variable Unit
y1 Cooler
y2 Separator
y3 Compressor
y4 Oil pump
y5 Multiphase pump
y6 Gas transport line
y7 Gas riser
y8 Multiphase transport line
y9 Multiphase riser
y10 Topsides separator
y11 Oil transport line
y12 Oil riser

While the existence of the units are represented by binary variables, the mathematical models
for the units are given by continuous variables. As a result, the problem contains both binary
and continuous variables which makes the optimization problem take the form of a mixed
integer problem (MIP) as described in sections 2.1.2 and 2.1.3. Equation 4 shows the general
formulation for the optimization model.
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minf(x, y) (4a)
s.t Ax = b (4b)
x− Uy ≤ 0 (4c)

Ω(y) = 0 (4d)
y ∈ {0, 1} x ≥ 0 (4e)

Here, x is a vector containing the flows of the system in total mass, and y is the binary
variables for the equipment. Equation 4a is the objective function used to evaluate the
economic performance of the potential configurations. The objective function is dependent
on both the mass flows and the binary variables. Equation 4b-4e are the constraints for the
problem. Each of the equations will be described in detail in the following sections.

5.1 Constraints

The constraints of the problem must be satisfied in order to get a feasible solution. The
model constraints can be divided into 4 different sets: Mass balances, constraints for the flows
of the unused units, logical conditions and variable restrictions. The variable restrictions are
given by equation 4e and simply specifies that the mass flows must be nonzero, and that the
y-variables must take binary variables.

5.1.1 Mass balances

Equation 4b specifies that the mass balances must be satisfied for any part of the system. This
includes the units as well as the connections developed in the superstructure. As discussed
in section 2, it is desirable to formulate the modeling equations in linear form if possible,
which can be achieved by considering the balances in total mass. This is not always possible
because many models call for component flows, especially in the case of reaction modeling.
However, there is no reaction present in the system, and the mass balances can be specified
in total form. The x-vector therefore represents the total mass of each flow as labeled in
figure 10.

In order to model the separator (V-100) accurately, detailed data for the thermodynamic
properties of the gas flow is needed. However, from HYSYS-simulations it can be seen that a
very small percentage of fluid is condensed. To simplify the modeling, it is therefore assumed
that 5 percent of the fluid is condensed and separated. By assuming steady state, the mass
balances for the system can be formulated as follows:
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1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.05 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −1


︸ ︷︷ ︸

A



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17


︸ ︷︷ ︸

x

=



G
0
0
0
0
0
−L
0
0
0
0
0
0
0
0


︸ ︷︷ ︸

b

(5)

Here it is assumed that the gas and the oil flow from the four-phase-separator is known.
Equation 5 can be modeled in GAMS by using sums. By constructing a set i = {1,2...n} for
the mass flows and k = {1,2...m} for the mass balances, the equation takes the form:

n∑
i=1

Ai,k xi = bk for k = 1, 2...m (6)

where xi is mass flow i, and bk is the right hand side of equation k. By solving the mass
balances for the system, the equipment can be sized according to relevant flows.

5.1.2 Unused units

Equation 4c in the model formulation specifies that the flows that correspond to unused
pieces of equipment should be set to zero, in order to satisfy the logic of the system. This
can be implemented by forcing the inflow of a unit with a zero-binary variable to be set to
zero as well. From the mass balance in equation 5, the consecutive flows will also be set to
zero. The general form of the constraint is similar to the one given in equation 3d in section
2.1.2. The set of constraints can be formulated as in equation 7.
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x1 − U y1 ≤ 0 (7a)
x7 − U y5 ≤ 0 (7b)
x10 − U y5 ≤ 0 (7c)
x11 − U y4 ≤ 0 (7d)
x5 − U y6 ≤ 0 (7e)
x6 − U y8 ≤ 0 (7f)
x15 − U y11 ≤ 0 (7g)
x16 − U y8 ≤ 0 (7h)

Here U acts as an upper limit for the mass flows of the system. Equation 7a ensures that if
the cooler is not chosen (y1=0), the corresponding inflow (x1) is zero as well. However, if the
cooler is chosen (y1=1), x1 can not exceed the specified upper limit limit U for the flows. All
the other constraints in equation set 7 follow the same logic. Equation 7b specifies that the
phases will not be mixed prior to the pressure increase if multiphase boosting is not chosen.
In addition, the flow to the multiphase pump will be set to zero, as specified by equation
7c. If the pump is not chosen, equation 7d will set the inflow to zero. Equation 7f and 7h
ensures that the phases are not mixed after the pressure increase if the multiphase transport
line is not installed. The remaining constraints (7e and 7g) set the single phase flows to the
FPSO to zero in the case where the transport lines for oil and gas are not installed.

By the logic of the system (described in detail in section 5.1.3), only four of the constraints of
the set will be active at the same time. By the dimensions of the A-matrix given in equation
5, it follows that the mass balances will have an unique solution for the given set of optimal
binary variables.

5.1.3 Logical conditions

Equation set 4d in the optimization model consists of logical constraints related to the binary
variables. These constraints are included in order to ensure that the optimal solution will be
logically feasible. The logical conditions are linear in the binary variables and are given in
equation set 8 below.

y4 + y5 = 1 (8a)
y6 + y8 = 1 (8b)
y5 − y8 ≤ 0 (8c)

y1 = y2 = y3 = y4 (8d)
y6 = y7 = y11 = y12 (8e)
y8 = y9 = y10 (8f)
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Equation 8a and 8b both ensure the selection of only one item among two choices. The
former specifies that multiphase pumping can not be chosen at the same time as the oil pump.
The latter specifies that multiphase transport can not be chosen at the same time as the gas
transport line. Equation 8c is an implication constraint. If the multiphase pump is installed,
the multiphase transport line must also be installed. However, the multiphase transport line
can be installed without installing the multiphase pump. This opens up the possibility to mix
the phases after the pressure increase in order to transport them in a single pipe. Equation
8d-8f relates the equipment that can not be chosen independently from the other equipment
in the same set. By equation 8d, the cooler, the separator, the compressor and the oil pump,
can not be installed without the additional installment of the other units in the set. Similarly
the gas transport line can not be installed without a riser for the gas, as well as a transport
line and riser for the oil flow. This is ensured by equation 8e. Finally, equation 8f specifies
that the multiphase transport and rising of the gas leads to the installment of a topsides
separator. The units can not be chosen without the installment of the related units.

Equation 8d-8f indicates that several binary variables can be eliminated from the model
before the implementation in GAMS. This would of course simplify the model by giving it
a more compact form. However, by including all binary variables for the equipment, the
output file will be simple in the sense that it gives the existence of all the proposed equipment
directly. The model will therefore be implemented as presented in this section. Equation
8d-8f have to be decomposed into several equations in order to be implemented in GAMS.
Equation 8d is implemented as follows:

y1 − y2 = 0
y2 − y3 = 0
y3 − y4 = 0

(9)

Equation 8e-8f is implemented the same way as shown in equation 9.

5.2 Objective function

The objective function is given by equation 4a in the model formulation and is used to
evaluate the economic performance of the alternatives present in the superstructure. The
selection of the optimizing criteria can strongly influence the generation of the optimal
solution. Common criteria include total investment costs, annual costs, internal rate of return
and net present value. For this paper, two different approaches will be evaluated. For the
first case, the investment costs of the plant will be minimized by using fixed costs for the
equipment. For the second case the net present value (NPV) will be maximized. The second
case will therefore include revenues and operating costs for the plant. In addition, a set of
the equipment will be cost estimated based on the mass flows of the system, provided by
equation 5.
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5.2.1 Case I: Minimizing the investment costs

In order to evaluate the investment costs of the plant, the cost for all potential equipment
must be estimated. For the case of fixed operating conditions, fixed costs can be used for the
units. Table 2 shows the fixed costs for the equipment for the base case [11].

Table 2: Pre-estimated costs for the equipment in the base case [11].

Unit Symbol Cost [USD]
Cooler Cc 423 885
Separator Cs 1 003 096
Compressor Ck 22 760 726
Oil pump Cp 3 045 354
Multiphase pump CMP 16 000 000
Gas transport line Cfg 93 675 000
Gas riser Crg 714 000
Multiphase transport line Cfm 154 500 000
Multiphase riser Cmr 2 177 700
Topsides separator Cts 462 183
Oil transport line Cfo 129 165 000
Oil riser Cfr 1 438 200

From the data in table 2 the objective function takes the form of equation 10.

C0 =
13∑

j=1
Cj yj (10)

Here, the cost of each potential unit is multiplied by its corresponding binary variable from
table 1. This makes the optimization model a mixed integer linear problem (MILP).

5.2.2 Case II: Maximizing the net present value (NPV)

In order to calculate the net present value of the plant, revenues and operating costs must be
taken into account. The general formula for the net present vaule is given by equation 11.

NPV =
T∑

t=1

CF

(1 + r)t
− C0 (11)

Here, CF is the cash flow, r is the interest rate, C0 is the initial investment and T is the time
horizon for the project. The cash flow can be calculated by adding the revenues from the gas
and the oil flows and subtracting the cost of the power as illustrated by equation 12
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CF = (Foil poil + Fgas pgas) hy − (Pk + Pp + PMP )hy pe (12)

Here, Foil and Fgas are the flows of oil and gas given in barrels and MMBTU respectively.
The mass flows must therefore be converted into the respective units, as implemented in the
script given appendix A.2. poil, pgas and pe denotes the prices for oil, gas and electricity. The
operating hours per year is given by hy, and Pk, Pp and PMP are the power-consumption of
the compressor, pump and multiphase pump respectively. The mass flows and power will be
calculated by the model. The remaining parameters are given in table 3.

Table 3: Parameters for calculation of cash flows

Parameter Value Unit
poil [12] 57.30 [USD/bbl]
pgas [12] 2.61 [USD/MMBTU]
pe [13] 0.12 [USD/kWh]
hy 8000 [hours/year]

To calculate the utility cost of the system, the power consumption of each unit in the flowsheet
must be calculated as a function of the mass flow vector x. The power consumption of the
compressor was calculated by equation 13.

Pk = p1

ηk

(
x3

ρg 3600

)
γ

γ − 1

(p2

p1

) γ−1
γ

− 1
 (13)

Here, p1 and p2 are the inlet- and outlet pressures of the compressor respectively.. Both
pressures are given in kPa. ρg is the density of the gas in kg/m3 and γ is the dimensionless
heat capacity ratio of the gas. x3 is the mass flow to the compressor calculated by the mass
balances given in equation 5. ηk denotes the adiabatic efficiency of the compressor. The
power consumption of the pump was calculated by equation 14 [13].

Pp = x11 ∆P
3.6× 106 ρoil ηp

(14)

x11 is the mass flow to the pump, and ∆P is the pressure difference. Equation 15 gives the
power consumption of the multiphase pump [14].

PMP = x10 g h

3.6× 106 ηMP

(15)

Here, h is the head in meters converted from the differential pressure by:

p = 0.0981 h SG,
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where SG is the specific gravity of the fluid. From the constraints given in section 5.1.2, the
inflows of the unused units are set to zero. From equation 13-15 it is then clear that the
power consumption of the unused units will be zero as well, which is why the power of all
three components are included in equation 12 for the cash flow. The parameters presented in
the equations above were obtained from HYSYS and the subsea separation report [11]. The
parameters are presented in table 4.

Table 4: Parameters power consumption calculations

Parameter Value Unit
p1 6500 kPa
p2 30500 kPa
∆P 30e6 Pa
γ 1.56 -
ρg 53.45 kg/m3

ρo 844 kg/m3

ηk 0.75 -
ηp 0.75 -
ηMP 0.75 -
SG 0.7514 -
h 2713.25 m

C0 in equation 11 is the investment costs. In order to evaluate cases with varying mass flows
from the 4-phase gravity separator, the potential equipment was sized and cost estimated
in the objective function. The cost of the equipment was calculated by the cost estimation
equations proposed by Sinnott and Towler [13], for which the general form is presented in
equation 16.

Ce = a+ b Sn (16)

The equation gives the purchased equipment cost as the sum of a constant cost coefficient a,
and a term dependent on the size factor S. In addition the cost in equation 16 was multiplied
by cost indices to account for installation, subsea environment operation and price changes
in time. The cost indices are given in table 5.

Table 5: Cost indices

Cost index Value Description
finst [11] 4.208 Installation
fsub [11] 3 Subsea operation
fI [11] 1.1035 Cost changes in time

Equation 17 was used to estimate the cost of the compressor.
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Ck = (490000 y3 + 16800 P 0.6
k ) finst fsub fI (17)

Here Pk is the power consumption of the compressor in kW. This quantity is provided by
solving equation 13. The cost of the pump was estimated by equation 18.

Cp = Cpm +
6900 y4 + 206

(
x11

ρo 3.6

)0.9
 finst fsub fI (18)

where x11 is the mass flow to the pump and Cpm is the cost of the motor given by:

Cpm = (−950 y4 + 1770 P 0.6
p ) finst fsub fI (19)

Here Pp is the power consumption of the pump given by equation 14. The cost of the cooler
was estimated by:

Cc = (24000 y1 + 46 A1.2) finst fsub fI (20)

Where A is the heat exchange area, calculated by equation 21.

A = x1 Cpg ∆T
3600 Uh ∆TLM

(21)

Cpg is the heat capacity for the gas. ∆T is the temperature difference between the in- and the
out-flow of the cooler. Uh is the overall heat transfer coefficient and ∆Tlm is the logarithmic
mean temperature difference. Table 6 shows the parameters used for the estimation of the
heat transfer area.

Table 6: Parameters for estimation of heat transfer

Parameter Value Unit
Cpg 2681 J/kgK
Uh [13] 20 W/m2

∆T 2.5 K
∆TLM 19.6 K

The cost estimations given by equation 17-20 are composed of a fixed cost as well as a term
that is dependent on the capacity. The fixed cost is multiplied with the corresponding binary
variable for the unit in order to only include it when the unit is installed. The second term is
automatically set to zero when the unit is not chosen because the mass flow to the unit is
forced to zero by the constraints proposed in section 5.1.2. The rest of the units are given
by their fixed costs in table 2. This is of course not accurate, but for the simplicity of the
model it is assumed that the costs does not change much in the region of mass flows that are
studied in this case.
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6 Results

The optimization models proposed in section 5 were implemented and solved by the use of
GAMS. The solutions of the problems were given as optimal sets of binary variables that
satisfied the constraints defined in section 5.1. From these sets of binary variables, the optimal
configurations of units were extracted for the two cases.

6.1 Case I: Minimizing the investment costs

The code for minimizing the investment cost is given in appendix A.1. The model consists
of the constraints defined in section 5.1 and the objective function defined in 5.2.1. Since
the model was a MILP-problem, CPLEX was used to obtain the solution. The optimal set
of binary variables is given in table 7, with the minimum investment. The corresponding
optimal flowsheet is given in figure 11. The total mass flows calculated by GAMS is given in
appendix A.3, with the initial values for the oil and gas flow from the 4-phase separator.

Table 7: Optimal set of binary variables and investment cost for case I.

Variable Description Value in optimal solution
C0 Investment cost 173.140 [Mill USD]
y1 Cooler 0
y2 Separator 0
y3 Compressor 0
y4 Oil pump 0
y5 Multiphase pump 1
y6 Gas transport line 0
y7 Gas riser 0
y8 Multiphase transport line 1
y9 Multiphase riser 1
y10 Topsides separator 1
y11 Oil transport line 0
y12 Oil riser 0
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Figure 11: Optimal flowsheet for case I

6.2 Case II: Maximizing the net present value

The code for maximizing the net present value is given in appendix A.2. The model consists
of the constraints defined in section 5.1 and the objective function and cost equations defined
in 5.2.2. Since the model was a MINLP-problem, DICOPT was used to obtain the optimal
solution. The problem was solved for two stages of the reservoirs life-time: early production
and late production. The flow rates for these cases are given in appendix A.3, with the
solution of the mass balances calculated by GAMS.

6.2.1 Early production

The optimal solution for early production was the same as for case I. The optimal set of
binary variables is given in table 7. The corresponding optimal flowsheet is given in figure 11.
Table 8 shows the costs, power consumption and heat transfer area calculated by GAMS.

6.2.2 Late production

For the case of late production, the optimal set of binary variables are given in table 9.
The corresponding optimal flowsheet is given in figure 11. Table 10 shows the costs, power
consumption and heat transfer area calculated by GAMS.
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Table 8: Costs, power consumption and heat transfer area calculated by GAMS
for maximizing the NPV for early production.

Variable Value Unit
NPV 4146.847 Mill USD
C0 173.140 Mill USD
CF 703.058 Mill USD
Ck 0 Mill USD
Cp 0 Mill USD
Cc 0 Mill USD
Pk 0 kW
Pp 0 kW
PMP 2158.144 kW
A 0 m2

Table 9: Optimal set of binary variables for case II with late production rates.

Binary variable Unit Value in optimal solution
y1 Cooler 1
y2 Separator 1
y3 Compressor 1
y4 Oil pump 1
y5 Multiphase pump 0
y6 Gas transport line 0
y7 Gas riser 0
y8 Multiphase transport line 1
y9 Multiphase riser 1
y10 Topsides separator 1
y11 Oil transport line 0
y12 Oil riser 0

23



Figure 12: Optimal flowsheet for case II late production

Table 10: Costs, power consumption and heat transfer area calculated by
GAMS for maximizing the NPV for late production.

Variable Value Unit
NPV 72.922 Mill USD
C0 169.199 Mill USD
CF 39.404 Mill USD
Ck 10.121 Mill USD
Cp 0.597 Mill USD
Cc 0.338 Mill USD
Pk 82.079 kW
Pp 153.060 kW
PMP 0 kW
A 4.412 m2
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7 Discussion

Figure 11 shows that the minimum investment cost of the subsea separation system is obtained
by using multiphase boosting, transportation and rising with the additional installment of a
topsides separator. Due to the limited size of the combinatorial problem, it is easy to verify
that this is indeed the optimal solution. Furthermore, the optimal set of binary variables from
table 7 satisfies the specified logical constraints in equation 8 as well as the mass balances
in equation 5, which confirms that the solution is in fact feasible. This indicates that the
optimization model works as intended.

The same optimal configuration is obtained by maximizing the net present value for early
production. This indicates that the calculated investment cost should be equal to the one
obtained in case I, which is verified by table 8. In addition, the data in table 8 shows that
the calculated power consumption and costs for the unused units are set to zero, as specified
in section 5.2.2. The results in table 9 show that the optimal set of binary variables changes
for the late production. For these conditions, the maximum net present value is obtained by
using separate compression and pumping for the phases before mixing them in order to use
multiphase transport and rising. The reason behind this is that the reduced flows from the
4-phase separator lowers the costs of the oil pump and the compressor as can be seen from
comparing the fixed costs in table 2 with the costs calculated by GAMS in table 10. However,
these results should should be interpreted with skepticism since the cost of the multiphase
pump has a high level of uncertainty. There are no current cost relations for multiphase
pumps, and the fixed cost estimate used in this report does not account for the flow size,
which makes the accuracy of the results questionable.

It is important to emphasize that the investment costs and net present values presented in
table 7, 8 and 10 does not reflect the actual costs or profitability of the total plant. These
values only account for the equipment and costs relevant for the optimization problem, and
are therefore used exclusively for comparing the alternative configurations within the search
space of the superstructure. This means that essential equipment and costs that are common
for the configurations like the cost of the desander, water treatment system, 4-phase separator
as well as drilling are excluded from the model in order to make it as simple as possible
for the purpose of the optimization. The values for the investment costs and net present
values should therefore not be used as a basis for evaluating profitability of the process. It is
also important to emphasize that the net present values are calculated based on constant
production rates of gas and oil during the time horizon for both the early and late production
cases. This is of course not accurate as the production rate will change gradually in time.
The truly optimal configuration should therefore account for estimated flow profiles as a
function of time, such that accurate results for the operational costs are obtained.

It is clear from the process description in section 3.1 that the base case described in this report
has a relatively limited number of combinatorial possibilities. As a result, superstructure
optimization may not be the most efficient approach for obtaining the optimal configuration
in this case. In fact, the optimal configuration can be identified relatively easily by evaluating
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each possible alternative and comparing them to each other. However, this approach would
be very time consuming for systems of higher complexity. Superstructure optimization is
therefore most commonly applied when there are numerous alternatives and units spanned by
the superstructure, which is not the case for the problem studied in this report. Nevertheless,
the model presents an approach for quickly identifying the optimal configuration for a variety
of flow rates, which makes it applicable to other systems.

As discussed in section 2.3, one of the main advantages of superstructure optimization is
the ability to simultaneously identify the best possible configuration of a flow sheet while at
the same time optimizing the operating conditions of the process. The model presented in
this report however, does not utilize optimization of the operating conditions. This means
that the solutions presented for the system in theory only are valid for the specific set of
operating conditions applied in the base case. It is likely that a different set of operating
conditions could give a higher value for the NPV, but it would not necessarily change the
optimal configurations of units in the plant. A more complete model would include the
operating conditions as decision variables, as well as constraints for the operating conditions
to ensure safe and efficient production.

8 Conclusion

Minimizing the investment costs of the subsea separation system gave multiphase boosting
and transport/rising as the optimal solution. The same solution was obtained by maximizing
the net present value. However the optimal solution is dependent on the production rate,
and for late production separate pumping/compression with multiphase transport/rising was
identified as the optimal solution (when maximizing the net present value). Uncertainty
in the cost estimated for the multiphase pump may have affected the results. In addition,
the operating conditions were not optimized for the process. The optimization model could
be improved by including the operating conditions as decision variables with appropriate
constraints, and accounting for variable production rates as a function of time.
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9 List of Symbols

Symbol Description
a Constant cost coefficient
A Heat transfer area
b Cost coefficient for variable cost
C Cost
C0 Investment cost
CF Cash flow
Cp Heat capacity
finst Cost factor for installation
fsub Cost factor for subsea operation
fI Cost factor for price changes in time
hy Operating hours
n Exponential cost factor
NPV net present value
p Pressure
P Power
r Interest rate
SG Specific gravity
T Temperature
∆Tlm Logarithmic mean temperature difference
U Upper limit for continuous variable
Uh Heat transfer coefficient
x Total mass flow
y Binary variable for equipment
γ heat capacity ratio
η Efficiency
ρ Density
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Appendix
A GAMS

A.1 Case I: Minimizing the investment costs

1 $Title Minimizing the investment cost of a subsea separation system.

3 $Ontext
4 Optimization of the model presented in the report: "Superstructure
5 optimization of a subsea separation system".
6 Objective: Find the combination of process units that minimizes the investment
7 costs and satisfies the the specifications of the process.
8 $Offtext

10 *Defining a symbol for an end of line comment.
11 $eolcom ->
12 *.

14 *Defining the sets
15 Set
16 i mass flow index /i1*i17/
17 j bin var index /j1*j12/
18 k eq number /k1*k13/;

20 *Parameters for the model
21 Parameters
22 G gas stream /12720/
23 O oil stream /206200/
24 U upper limit for mass flows /250000/
25 b(k) RHS coeff for mass balances /set.k 0/

27 *Fixed costs for the units Binary variables
28 C c Cost for cooler /423885/ -> y1.
29 C s Cost for separator /1003096/ -> y2.
30 C k Cost for compressor /22760726/ -> y3.
31 C p Cost for pump / 3045354/ -> y4.
32 C MP Cost for multiphase pump /16000000/ -> y5.
33 C fg Cost for flowline gas /93675000/ -> y6.
34 C rg Cost for riser gas /714000/ -> y7.
35 C fm Cost for flowline multiphase /154500000/ -> y8.
36 C rm Cost for riser multiphase /2177700/ -> y9.
37 C ts Cost for toptside separator /462183/ -> y10.
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38 C fo Cost for flowline oil /129165000/ -> y11.
39 C ro Cost for riser oil /1438200/; -> y12.

42 *Assigning numbers to the vector.
43 b('k1') = G;
44 b('k7') = -O;

46 Table A(k,i)
47 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17
48 k1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
49 k2 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 k3 0 0.05 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
51 k4 0 -1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
52 k5 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
53 k6 0 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0
54 k7 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0
55 k8 0 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 0 0
56 k9 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0
57 k10 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0
58 k11 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0
59 k12 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0
60 k13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 -1;

62 *Variables
63 Positive variables x(i) mass flows;

65 Binary variables y(j);

67 Variable c0 investment
68 inv cost investment cost;

70 *Declaring equations
71 Equations
72 obj objective function
73 MB(k) mass balances
74 q1 flow to zero
75 q2 flow to zero
76 q3 flow to zero
77 q4 flow to zero
78 q5 flow to zero
79 q6 flow to zero
80 q7 flow to zero
81 q8 flow to zero
82 l1 logic eq 1
83 l2 logic eq 2
84 l3 logic eq 3
85 l4 logic eq 4
86 l5 logic eq 5
87 l6 logic eq 6
88 l7 logic eq 7
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89 l8 logic eq 8
90 l9 logic eq 9
91 l10 logic eq 10
92 l11 logic eq 11;

94 *Defining the equations
95 obj.. inv cost =e= 1E-6*(C c*y('j1') + C s*y('j2') + C k*y('j3') +
96 C p*y('j4')+ C MP* y('j5') + C fg*y('j6') + C rg*y('j7') +
97 C fm*y('j8') + C rm*y('j9') + C ts*y('j10') +
98 C fo*y('j11') + C ro*y('j12'));
99 MB(k).. sum(i,A(k,i)*x(i)) =e= b(k); ->Mass balances.
100 q1.. x('i1') - U*y('j1') =l= 0;
101 q2.. x('i7') - U*y('j5') =l= 0;
102 q3.. x('i10') - U*y('j5') =l= 0;
103 q4.. x('i11') - U*y('j4') =l= 0;
104 q5.. x('i5') - U*y('j6') =l= 0;
105 q6.. x('i6') - U*y('j8') =l= 0;
106 q7.. x('i15') - U*y('j11') =l= 0;
107 q8.. x('i16') - U*y('j8') =l= 0;
108 l1.. y('j4') + y('j5') =e= 1;
109 l2.. y('j6') + y('j8') =e= 1;
110 l3.. y('j5') - y('j8') =l= 0;
111 l4.. y('j1') - y('j2') =e= 0;
112 l5.. y('j2') - y('j3') =e= 0;
113 l6.. y('j3') - y('j4') =e= 0;
114 l7.. y('j6') - y('j7') =e= 0;
115 l8.. y('j7') - y('j11') =e= 0;
116 l9.. y('j11') - y('j12') =e= 0;
117 l10.. y('j8') - y('j9') =e= 0;
118 l11.. y('j9') - y('j10') =e= 0;

120 Model Subpro /all/;

122 Option optcr=0.0; ->Zero optimality gap.
123 Option reslim=9E9; ->Increased time limit.
124 option mip = cplex;

126 *Solving the model
127 Solve Subpro using MIP minimizing inv cost;

129 display y.l;

A.2 Case II: Maximizing the net present vaue

1 $Title Maxiizing the NPV of a subsea separation system.

3 $Ontext
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4 Optimization of the model presented in the report: "Superstructure
optimization

5 of a subsea separation system".
6 Objective: Find the combination of process units that maximizes the NPV and
7 satisfies the the specifications of the process.
8 $Offtext

10 *Defining a symbol for an end of line comment.
11 $eolcom ->
12 *.

14 *Defining the sets
15 Set
16 i mass flow index /i1*i17/
17 j bin var index /j1*j12/
18 k eq number /k1*k13/
19 t years /1*10/;

21 *Parameters for the model
22 Parameters
23 U upper limit for mass flows /300000/
24 b(k) RHS coeff for mass balances /set.k 0/

26 *Early production
27 G gas stream /12720/
28 O oil stream /206200/

30 *Late production
31 * G gas stream /929/
32 * O oil stream /11580/

35 *Fixed costs for the units Binary variables
36 * C c Cost for cooler /0.750855/ -> y1.
37 C s Cost for separator /1.003096/ -> y2.
38 * C k Cost for compressor /22.760726/ -> y3.
39 * C p Cost for pump /0.222857/ -> y4.
40 C MP Cost for multiphase pump /16.000000/ -> y5.
41 C fg Cost for flowline gas /93.675000/ -> y6.
42 C rg Cost for riser gas /0.714000/ -> y7.
43 C fm Cost for flowline multiphase /154.500000/ -> y8.
44 C rm Cost for riser multiphase /2.177700/ -> y9.
45 C ts Cost for toptside separator /0.462183/ -> y10.
46 C fo Cost for flowline oil /129.165000/ -> y11.
47 C ro Cost for riser oil /1.438200/ -> y12.

49 *Economic factors
50 f inst installation factor /4.208/
51 f sub factor for installation subsea /3/
52 f I scaling economics for inflation /1.1035/
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54 *compressor
55 p1 pressure in /6500/
56 p2 pressure out /30500/
57 gamma Cp over Cv /1.557488545/
58 d gas density /53.44791051/
59 eff k effectivity /0.75/

61 *oil pump
62 d oil density of oil /844/
63 dp pressure difference /30000000/
64 eff p adiabatic efficiency pump /0.75/

66 *Multiphase pump
67 H head converted from differential pressure /2713.25/
68 eff MP multiphase pump efficiency /0.75/

70 *Heat exchanger
71 LMTD logarithmic mean temp difference /19.6/
72 dT temperature difference (out-in) /2.5/
73 Cp g Heat capacity of gas /2681/
74 U h heat transfer coefficient /20/

76 *cost and plant data
77 r discount rate /0.1/
78 p bbl price per barrel oil /57.30/
79 p g price natural gas /2.61/
80 bbl m3 barrels per cubic meter /6.29/
81 MMBTU m3 MMBTU per cubic meter /0.0354/
82 h y operating hours per year /8000/
83 p e price for electricity /0.09/;

86 *Assigning numbers to the vector
87 b('k1') = G;
88 b('k7') = -O;

90 Table A(k,i)
91 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17
92 k1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
93 k2 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 k3 0 0.05 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
95 k4 0 -1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
96 k5 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
97 k6 0 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0
98 k7 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0
99 k8 0 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 0 0
100 k9 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0
101 k10 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0
102 k11 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0
103 k12 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0
104 k13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 -1;

v



106 *Variables
107 Positive variables x(i) mass flows;

109 Binary variables y(j);

111 Variable NPV net present value
112 c0 investment cost
113 CF cash flow
114 P k power consumption of compressor
115 C k cost of compressor
116 P p power consumption of pump
117 C p cost of pump
118 C pmo cost of pump motor
119 P MP power consumption multiphase pump
120 Area heat exchange area
121 C c cost of cooler;

124 *Declaring equations
125 Equations
126 obj objective function
127 cinv investment costs
128 rev revenue
129 MB(k) mass balances
130 pwr k power consuption of compressor
131 Ck cost of compressor
132 pwr p power consumption of pump
133 Cp cost of pump
134 Cpmo cost of pump motor
135 pwr MP power consumption multiphase pump
136 Aeq Heat transfer area
137 Cc cost of cooler
138 q1 flow to zero
139 q2 flow to zero
140 q3 flow to zero
141 q4 flow to zero
142 q5 flow to zero
143 q6 flow to zero
144 q7 flow to zero
145 q8 flow to zero
146 l1 logic eq 1
147 l2 logic eq 2
148 l3 logic eq 3
149 l4 logic eq 4
150 l5 logic eq 5
151 l6 logic eq 6
152 l7 logic eq 7
153 l8 logic eq 8
154 l9 logic eq 9
155 l10 logic eq 10
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156 l11 logic eq 11;

158 *Defining the equations
159 obj.. NPV =e= -C0 + sum(t,CF/((1+r)**ord(t)));
160 cinv.. C0 =e= C c + C s*y('j2') + C k + C p + C MP* y('j5') + C fg*y('j6')
161 + C rg*y('j7') + C fm*y('j8') + C rm*y('j9') + C ts*y('j10') +
162 C fo*y('j11') + C ro*y('j12');
163 rev.. CF =e= (1/1000000)*((O*bbl m3*p bbl/d oil + G*MMBTU m3*p g/d gas)*h y
164 - (P k+P p+P MP)*h y*p e);
165 pwr k.. P k =e= p1*(x('i3')/(d gas*3600))*(gamma/(gamma-1))*
166 ((p2/p1)**((gamma-1)/gamma)-1)/eff k;
167 Ck.. C k =e= (1/1000000)*(490000*y('j3') + 16800*P k**0.6)*
168 f inst*f sub*f I;
169 pwr p.. P p =e= dp*x('i11')/(d oil*3600*eff p*1000);
170 Cp.. C p =e= C pmo + (1/1000000)*(6900*y('j4') +
171 206*(x('i11')/(d oil*3.6))**0.9)*f inst*f sub*f I;
172 Cpmo.. C pmo =e= (1/1000000)*(-950*y('j4') + 1770*P p**0.6)*
173 f inst*f sub*f I;
174 pwr MP.. P MP =e= x('i10')*9.81*h/(3600000*eff MP);
175 Aeq.. Area =e= x('i1')*dT*Cp g/(3600*U h*LMTD);
176 Cc.. C c =e= (1/1000000)*(24000*y('j1')+46*Area**1.2)*f inst*f sub*f I;
177 MB(k).. sum(i,A(k,i)*x(i)) =e= b(k); ->Mass balances.
178 q1.. x('i1') - U*y('j1') =l= 0;
179 q2.. x('i7') - U*y('j5') =l= 0;
180 q3.. x('i10') - U*y('j5') =l= 0;
181 q4.. x('i11') - U*y('j4') =l= 0;
182 q5.. x('i5') - U*y('j6') =l= 0;
183 q6.. x('i6') - U*y('j8') =l= 0;
184 q7.. x('i15') - U*y('j11') =l= 0;
185 q8.. x('i16') - U*y('j8') =l= 0;
186 l1.. y('j4') + y('j5') =e= 1;
187 l2.. y('j6') + y('j8') =e= 1;
188 l3.. y('j5') - y('j8') =l= 0;
189 l4.. y('j1') - y('j2') =e= 0;
190 l5.. y('j2') - y('j3') =e= 0;
191 l6.. y('j3') - y('j4') =e= 0;
192 l7.. y('j6') - y('j7') =e= 0;
193 l8.. y('j7') - y('j11') =e= 0;
194 l9.. y('j11') - y('j12') =e= 0;
195 l10.. y('j8') - y('j9') =e= 0;
196 l11.. y('j9') - y('j10') =e= 0;

198 C pmo.up = 1000;
199 Model Subpro /all/;

201 Option optcr=0.0; ->Zero optimality gap.
202 Option reslim=9E9; ->Increased time limit.

204 *option sysout = on ;
205 option minlp = dicopt;
206 *option nlp = conopt;
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207 *option mip = gurobi;

209 *solving the model
210 Solve Subpro using MINLP maximizing NPV;

212 display y.l;

A.3 Mass balances

Table 12: Mass flows in t/h calculated by the model implemented in GAMS

Case I Case II
Flow Early production Late production
G [11] 12.720 12.720 0.929
O [11] 206.200 206.200 11.580
x1 0 0 0.929
x2 0 0 0.929
x3 0 0 0.882
x4 0 0 0.882
x5 0 0 0
x6 0 0 0.882
x7 12.720 12.720 0
x8 0 0 0.046
x9 218.920 218.920 11.626
x10 218.920 218.920 0
x11 0 0 11.626
x12 218.920 218.920 0
x13 0 0 11.626
x14 218.920 218.920 11.626
x15 0 0 0
x16 218.920 218.920 11.626
x17 218.920 218.920 12.509
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