# TFY4205 Quantum Mechanics II <br> Problemset 7 fall 2022 

Institutt for fysikk

## SUGGESTED SOLUTION

## Problem 1

When the spin part of the wavefunction is symmetric for identical fermions, the orbital part must be antisymmetric. Then, the differential scattering cross section is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\vartheta)-f(\pi-\vartheta)|^{2} . \tag{1}
\end{equation*}
$$

At low energies, only the partial waves with the lowest $l$-values contribute to the general expression

$$
\begin{equation*}
f(\vartheta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \delta_{l} P_{l}(\cos \vartheta) . \tag{2}
\end{equation*}
$$

Since $P_{0}=1$, independent of the angle, the contribution from $l=0$ to $f(\vartheta)-f(\pi-\vartheta)$ vanishes. The dominant contribution will therefore come from $l=1$. We need that $P_{1}[\cos \vartheta]=\cos \vartheta$ and thus $P_{1}[\cos (\pi-\vartheta)]=-\cos \vartheta$. The angle dependence of the differential scattering cross section is therefore:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \propto \cos ^{2} \vartheta \tag{3}
\end{equation*}
$$

## Problem 2

We have $\boldsymbol{p}+e \boldsymbol{A}=-\mathrm{i} \hbar \nabla+e \boldsymbol{A}$. Let us first differentiate a product of the form:

$$
\begin{equation*}
\nabla\left(\mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)} F\right)=\mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)}\left(\nabla F+\frac{\mathrm{i} e^{2} t}{4 \pi \varepsilon_{0} \hbar} \frac{r}{r^{3}} F\right) \tag{4}
\end{equation*}
$$

where $F$ is a function of space and time. Thus,

$$
\begin{equation*}
(\boldsymbol{p}+e \boldsymbol{A}) \mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)} F=\mathrm{e}^{-\mathrm{i} \mathrm{e}^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)} \boldsymbol{p} F \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(\boldsymbol{p}+e \boldsymbol{A})^{2} \mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)} F=(\boldsymbol{p}+e \boldsymbol{A}) \mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} t r\right)} \boldsymbol{p} F=\mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} \hbar r\right)} \boldsymbol{p}^{2} F . \tag{6}
\end{equation*}
$$

Setting $\Psi=\mathrm{e}^{-\mathrm{i} e^{2} t /\left(4 \pi \varepsilon_{0} t r\right)} \tilde{\Psi}$ in the Schrodinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial \Psi}{\partial t}=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m} \Psi \tag{7}
\end{equation*}
$$

we get, with the help of Eq. (??) and the elimination of the exponential functions on both sides:

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial \tilde{\Psi}}{\partial t}+\frac{e^{2}}{4 \pi \varepsilon_{0} r} \tilde{\Psi}=\frac{p^{2}}{2 m} \tilde{\Psi} \tag{8}
\end{equation*}
$$

which is what we are used to. It is clear that $\Psi$ and $\tilde{\Psi}$ provide the same probability density for position and they also provide the same probability current density (you can check this explicitly). Hence, the physics is unchanged.

