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TFY4205 Quantum Mechanics II

Problemset 4 fall 2022
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
Let us start by defining the quantity κ(x) =

√
2m
h̄2 [V (x)−E]. To describe an incident particle from the

left region x < 0, as well as the possibility that it may be reflected, we write for the wavefunction:

ψ = eikx +Be−ikx, x < 0. (1)

In the right region, x > a, we write down a plane-wave moving toward positive x. This represents the
possibility that the incident particle has been transmitted through the potential region, and thus

ψ = Feikx, x > 0. (2)

In the central region, 0 < x < a, the WKB approximation gives the following solution according to
our treatment in the lectures:

ψ ≃ C√
κ(x)

e
∫ x

0 κ(t)dt +
D√
κ(x)

e−
∫ x

0 κ(t)dt , 0 < x < a. (3)

We have here absorbed some numerical prefactors into the unknown coefficients C and D, which can
be done without loss of generality. We have four unknown coefficients {B,C,D,F} and four boundary
conditions (continuity of the wavefunction and its derivative at x = 0 and x = a), so all coefficients
may be determined. In turn, this allows us to compute the transmission probability T = |F |2. Note
that since we expect the wavefunction to decrease exponentially with respect to x between [0,a], the
higher the potential, the smaller the coefficient C should be.

Problem 2
The solution to the paradox is as follows. We see that the first order term in the expansion of ab = ab→b
contributes to |ab|2. However, the second order term of in the expansion of ab, which is not included,
will also contribute to |ab|2. These two contributions will partly cancel each other forcing Pb→b ≤ 1.

A toy example: for a real c1, the equation a = 1+ iλc1 gives |a|2 = 1+ λ2c2
1 > 1. However, the

equation a = 1+ iλc1 +λ2c2 gives |a|2 = 1+λ2(c2
1 + c2 + c∗2)+O(λ3), which is not necessary larger

than 1 since (c2
1 + c2 + c∗2) may be a negative number.

The order of the perturbation is given as powers of λ in the toy example and also in the real problem
if we write the perturbing potential as λV instead of V . Now, you are encouraged to compute the
transition probability to second order instead of first. Start with the exact equation

dan/dt =
1
ih̄ ∑

k
λVnk(t)eiωnktak(t). (4)
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We now expand the coefficients in λ according to:

an = a(0)n +λa(1)n +λ
2a(2)n + . . . (5)

Inserted into the exact equation, we then get the following equations order for order:

λ
0 : da(0)n /dt = 0,

λ
1 : da(1)n /dt =

1
ih̄ ∑

k
Vnk(t)eiωnkta(0)k (t),

λ
2 : da(2)n /dt =

1
ih̄ ∑

k
Vnk(t)eiωnkta(1)k (t). (6)

Assuming the system is initially in state b, the solution to the zeroth order equation is a(0)n (t) = δnb.
Inserting this value into the first order equation, only one term survives: k = b. Time integration gives

a(1)n (t) =
1
ih̄

∫ t

t0
Vnb(τ)eiωnbτdτ. (7)

Inserting this into the second order equation, we obtain for a(2)b :

da(2)b (t)
dt

=
1
ih̄ ∑

k
Vbk(t)eiωbkta(1)k (t) =

1
(ih̄)2 ∑

k
Vbk(t)eiωbkt

∫ t

t0
Vkb(τ)eiωkbτdτ. (8)

We can thus find a(2)b by integrating the above equation. In total, to second order in λ the probability
amplitude for the system to remain in state b at time t becomes a sum of three terms:

ab(t) = 1+
λ

ih̄

∫ t

t0
Vbb(τ)dτ− λ2

h̄2 ∑
k

∫ t

t0
Vbk(τ1)eiωbkτ1

∫
τ1

t0
Vkb(τ)eiωkbτdτdτ1 +O(λ3). (9)

Using that V ∗
kb =Vbk and ωbk =−ωkb, we get that

|ab(t)|2 = 1+
λ2

h̄2

[(∫ t

t0
Vbb(τ)dτ

)2
−

∫ t

t0

∫
τ1

t0
∑
k

Vbk(τ1)Vkb(τ)eiωbkτ1+iωkbτdτdτ1

−
∫ t

t0

∫
τ1

t0
∑
k

V ∗
bk(τ1)V ∗

kb(τ)e
−iωbkτ1−iωkbτdτdτ1

]
. (10)

Using the above relations for V and ω and interchanging the variables in the last double integral, we see
that the integrands are identical. The limits in the first double integral are such that we integrate over
t0 ≤ τ< τ1 ≤ t. Afer the variable change in the second double integral we integrate over t0 ≤ τ1 < τ≤ t.
Together, this means that we integrate over t0 ≤ τ ≤ t and t0 ≤ τ1 ≤ t. Therefore, we end up with

|ab(t)|2 = 1+
λ2

h̄2

[(∫ t

t0
Vbb(τ)dτ

)2
−∑

k

∣∣∣∫ t

t0
Vbk(τ)eiωbkτdτ

∣∣∣2]. (11)

The term k = b in the sum exactly cancels the first term inside the brackets, and so

Pb→b = |ab(t)|2 = 1− ∑
k ̸=b

λ2

h̄2

∣∣∣∣∣
∫ t

t0
Vbk(τ)eiωbk τdτ

∣∣∣∣∣
2

. (12)
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The paradox is then resolved since Pb→b < 1. More precisely, we see that the final result is nothing
but a statement of probability conservation:

∑
k
|ak|2 = 1. (13)

A moral which can be taken away is then that it is easier to calculate 1 minus the probability for the
system to leave state b than to directly calculate the probability for the system to remain in state b.

Problem 3

1. We write the state at time t in terms of stationary states of the oscillator:

Ψ(q, t) =
∞

∑
n=0

an(t)ψn(q)e−iEnt/h̄. (14)

To first order in time-dependent perturbation theory, we find for n ̸= 1 that:

an(t) =
1
ih̄

∫ t

0
⟨n|(a+a†)|1⟩V0e−t ′/τei(En−E1)t ′/h̄dt ′. (15)

For the oscillator, we have that En −E1 = (n−1)h̄ω and

⟨n|(a+a†)|1⟩=


1 for n = 0√

2 for n = 2
0 otherwise

(16)

Therefore, evaluation of the integral gives

ih̄a0(t) =V0
1− e−[τ−1+iω]t

τ−1 + iω

ih̄a2(t) =
√

2V0
1− e−[τ−1−iω]t

τ−1 − iω
ih̄an(t) = 0 for n > 2. (17)

From the relation ∑n |an(t)|2 = 1, we see that a1(t) = 1−O(V 2
0 ). Let us show this in more

detail. Since |a1(t)|2 = 1−|a0(t)|2−|a2(t)|2 = 1−KV 2
0 +O(V 3

0 ) where K > 0 is a real positive
constant, we can write in general that

a1 = 1+ c1V0 + c2V 2
0 +O(V 3

0 ). (18)

Here, c1 and c2 are complex coefficients. It follows that

|a1|2 = 1+(c1 + c∗1)V0 +(c2 + c∗2 + |c1|2)V 2
0 +O(V 3

0 ). (19)

Since we know that |a1|2 = 1−KV 2
0 , the first-order term in V0 has to be zero. This is accom-

plished in one of two ways. The first way is if we set c1 = 0, and then we have proven that
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a1(t) = 1−O(V 2
0 ). The second way is if c1 = −c∗1, meaning that c1 is a purely imaginary

number. In that case, we may write c1 = iC where C is a real constant. It then follows that

a1 = 1+ iCV0 (20)

to first order in V0 (same order as the coefficients in Eq. (17)). But if that is the case, then
|a1|2 > 1 which is not reasonable for a probability amplitude. Therefore, setting c1 = 0 ensures
that the probability does not exceed 1. Thus, we have proven that the lowest order acceptable
correction to a1 is of order O(V 2

0 ).

Hence, the wavefunction is

Ψ(q, t) = a0(t)ψ0 +ψ1 +a2(t)ψ2 +O(V 2
0 ) (21)

to first order in V0.

2. When t → ∞, the wavefunction above becomes

Ψ(q, t) =
V0

τ−1 + iω
ψ0e−iωt/2 +ψ1e−3iωt/2 +

√
2V0

τ−1 − iω
ψ2e−5iωt/2 +O(V 2

0 ). (22)

Hence, the three energy eigenvalues h̄ω/2,3h̄ω/2,5h̄ω/2 are the most probable results of such
a measurement. The respective probabilities P(E) are given by the absolute square of the coef-
ficients in front of ψ0,ψ1,ψ2.

If the absolute square of the coefficients are used uncritically, one obtains P(3h̄ω/2) = 1, cor-
rect only to first order of V0. The value of P(3h̄ω/2) can be determined to second order in V0
by using that the sum of the probabilities is 1.


