TFY4205 Quantum Mechanics II
 Problemset 2 fall 2022

SUGGESTED SOLUTION

Problem 1

1. The average value can be expressed through the raising and lowering operators:

$$
\begin{equation*}
\left\langle q^{5}\right\rangle=\langle n| \hat{q}^{5}|n\rangle \propto\langle n|\left(a+a^{\dagger}\right)^{5}|n\rangle . \tag{1}
\end{equation*}
$$

It expands into a sum of terms with products of 5 operators. It is impossible to go 5 steps up and/or down in a ladder and end up exactly where one started: hence, the expectation value is zero since $\left(a+a^{\dagger}\right)^{5}|n\rangle$ is orthogonal to $|n\rangle$.
2. Using that $\hat{q}=q_{0}\left(a+a^{\dagger}\right)$ with $q_{0}=\sqrt{\hbar /(2 m \omega)}$ we obtain

$$
\begin{equation*}
\langle 0| \hat{q}^{4}|0\rangle=q_{0}^{4}\langle 0|\left(a+a^{\dagger}\right)^{4}|0\rangle . \tag{2}
\end{equation*}
$$

Only terms carrying two lowering and two raising operators will contribute (ladder argument). Using that $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ and $a|n\rangle=\sqrt{n}|n-1\rangle$, we obtain

$$
\begin{equation*}
\left\langle q^{4}\right\rangle=3 q_{0}^{4} \tag{3}
\end{equation*}
$$

3. We have that

$$
\begin{equation*}
\langle 0| \hat{q}^{4}|0\rangle=\langle 0| \hat{q}^{2} \cdot \hat{q}^{2}|0\rangle \tag{4}
\end{equation*}
$$

which is the norm squared of $\hat{q}^{2}|0\rangle$. We compute that

$$
\begin{equation*}
\hat{q}^{2}|0\rangle=q_{0}^{2}\left(a+a^{\dagger}\right)|1\rangle=q_{0}^{2}(|0\rangle+\sqrt{2}|2\rangle) . \tag{5}
\end{equation*}
$$

The norm of this state is $3 q_{0}^{4}$, just as before.
4. We have

$$
\begin{equation*}
\langle k| \hat{q}|l\rangle=q_{0}\langle k|(\sqrt{l}|l-1\rangle+\sqrt{l+1}|l+1\rangle)=q_{0}\left(\sqrt{l} \delta_{k, l-1}+\sqrt{l+1} \delta_{k, l+1}\right) . \tag{6}
\end{equation*}
$$

5. Using the result from 4., we have

$$
\begin{equation*}
\langle\Psi| \hat{q}|\Psi\rangle=\sqrt{3} / 4(\langle 0| \hat{q}|1\rangle+\langle 1| \hat{q}|0\rangle)=\sqrt{3} q_{0} / 2 \tag{7}
\end{equation*}
$$

6. The state is a superposition of two stationary states, so that the solution of the time dependent Schrodinger equation is a superposition of the same two states, but with each of them carrying a time-dependent factor $\mathrm{e}^{-\mathrm{i} E_{n} t / \hbar}$ where $E_{n}=(n+1 / 2) \hbar \omega$. Thus:

$$
\begin{equation*}
|\Psi(t)\rangle=\frac{1}{2} \mathrm{e}^{-\mathrm{i} \omega t / 2}|0\rangle+\frac{\sqrt{3}}{2} \mathrm{e}^{-3 i \omega t / 2}|1\rangle . \tag{8}
\end{equation*}
$$

The average position is then computed to be

$$
\begin{equation*}
\langle\Psi| \hat{q}|\Psi\rangle=\frac{\sqrt{3}}{2} q_{0} \cos (\omega t) . \tag{9}
\end{equation*}
$$

Problem 2

1. Let us set $\lambda=1$ (the book-keeping parameter in perturbation theory), so that effectively F may be thought of as the small parameter. Using non-degenerate perturbation theory, we find to lowest order that

$$
\begin{equation*}
E_{n}^{(1)}=\langle n|-F x|n\rangle=-F \int_{-\infty}^{\infty}\left[\psi_{n}^{0}(x)\right]^{*} x \psi_{n}^{0}(x) d x=0 \tag{10}
\end{equation*}
$$

since the integrand is antisymmetric. To second order we find that

$$
\begin{equation*}
E_{n}^{(2)}=\sum_{k \neq n} \frac{|\langle k|-F x| n\rangle\left.\right|^{2}}{E_{n}^{0}-E_{k}^{0}} . \tag{11}
\end{equation*}
$$

We showed in problem 1 that

$$
\begin{equation*}
\langle k| x|n\rangle=\sqrt{\hbar /(2 m \omega)}\left(\sqrt{n} \delta_{k, n-1}+\sqrt{n+1} \delta_{k, n+1}\right) . \tag{12}
\end{equation*}
$$

Using this in Eq. (11), it follows that

$$
\begin{equation*}
E_{n}^{(2)}=-F^{2} \frac{1}{2 m \omega^{2}} \tag{13}
\end{equation*}
$$

As for the first order correction to the state vector, we obtain

$$
\begin{align*}
\left|\psi_{n}\right\rangle & \simeq|n\rangle+\sum_{k \neq n} \frac{\langle k|-F x|n\rangle}{E_{n}^{0}-E_{k}^{0}}|k\rangle \\
& =|n\rangle-F \sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{\hbar \omega}\left(a-a^{\dagger}\right)|n\rangle . \tag{14}
\end{align*}
$$

2. Let us rewrite the Hamiltonian as follows:

$$
\begin{align*}
H=H_{0}-F x & =\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(x^{2}-\frac{2 F}{m \omega^{2}} x+\frac{F^{2}}{m^{2} \omega^{4}}\right)-\frac{F^{2}}{2 m \omega^{2}} \\
& =\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(x-x_{0}\right)^{2}-\frac{F^{2}}{2 m \omega^{2}} . \tag{15}
\end{align*}
$$

The perturbed Hamiltonian thus describes a harmonic oscillator with equilibrium position at the point $x_{0} \equiv F / m \omega^{2}$ and energy levels

$$
\begin{equation*}
E_{n}(F)=E_{n}^{0}-\frac{F^{2}}{2 m \omega^{2}} \tag{16}
\end{equation*}
$$

Problem 3

1. At $\lambda=0$, the Hamiltonian is the sum of two one dimensional harmonic oscillators: one in the x direction and one in the y-direction. The wavefunction is then a product of two wavefunctions: one for each Cartesian coordinate. Moreover, the energy eigenvalue is the sum of the energy eigenvalues for the two separate problems. In effect, we have:

$$
\begin{align*}
E_{n_{x}, n_{y}} & =\left(n_{x}+1 / 2\right) \hbar \omega+\left(n_{y}+1 / 2\right) \hbar \omega, n_{x}, n_{y}=0,1,2, \ldots \tag{17}\\
\psi_{n_{x}, n_{y}}(x, y) & =\psi_{n_{x}}(x) \psi_{n_{y}}(y) . \tag{18}
\end{align*}
$$

The three states with lowest energy are $|0,0\rangle$ with energy $\hbar \omega$, then $|0,1\rangle$ and $|1,0\rangle$ both with energy $2 \hbar \omega$.
2. We are now taking into account the perturbation

$$
\begin{equation*}
\lambda H_{1}=(\lambda / 2) m \omega^{2}\left(x^{2}+y^{2}\right) x y=\lambda k\left(x^{3} y+x y^{3}\right), \tag{19}
\end{equation*}
$$

where we defined $k=m \omega^{2} / 2$. Consider first the ground state. It is non-degenerate, and the first order perturbation theory gives the energy correction

$$
\begin{equation*}
\iint \psi_{00}(x, y) \lambda H_{1} \psi_{00}(x, y) d x d y . \tag{20}
\end{equation*}
$$

Since H_{1} contains both x and y to odd powers, the integral vanishes by symmetry arguments. In effect: $E_{00}=E_{00}^{0}=\hbar \omega$.

Consider now the first excited state for the unperturbed system. The energy of this level is $2 \hbar \omega$, and it is degenerate, with degree of degeneracy 2 . Using the technique we have discussed in the lectures for calculating the first order correction $E^{(1)}$ to the energy level of a degenerate state, the relevant determinant to evaluate is

$$
\left|\begin{array}{cc}
\langle 0,1| H_{1}|0,1\rangle-E^{(1)} & \langle 0,1| H_{1}|1,0\rangle \tag{21}\\
\langle 1,0| H_{1}|0,1\rangle & \langle 1,0| H_{1}|1,0\rangle-E^{(1)}
\end{array}\right|=0
$$

We have to compute all the matrix elements in this determinant. This is most easily done using the energy eigenvector basis $|n\rangle$. Since $q=q_{0}\left(a+a^{\dagger}\right)$ (where q is x or y) with $q_{0}=\sqrt{\hbar /(2 m \omega)}$, we have that

$$
\begin{gather*}
\langle 0| q|1\rangle=\langle 1| q|0\rangle=q_{0}, \\
\langle 0| q^{3}|1\rangle=\langle 1| q^{3}|0\rangle=q_{0}^{3}\langle 1|\left(a a^{\dagger}+a^{\dagger} a\right)|1\rangle=3 q_{0}^{3} . \tag{22}
\end{gather*}
$$

Substituting this into the determinant, we find the equation

$$
\begin{equation*}
\left[E^{(1)}\right]^{2}-\left(6 k q_{0}^{4}\right)^{2}=0 \tag{23}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
E^{(1)}= \pm \frac{3 \hbar^{2}}{4 m} \tag{24}
\end{equation*}
$$

The degeneracy is lifted by the perturbation, so that the former degenerate first excited states now has energies $2 \hbar \omega \pm \frac{3 \hbar^{2} \lambda}{4 m}$.

