TFY4205 Quantum Mechanics II Problemset 12 fall 2022

SUGGESTED SOLUTION

Problem 1

1. They will get at least one white card $3 / 4$ of the time, so if they just always pick the same door, lets say the left one, they have a winning probability of 75%.
2. There are four possible combinations of cards:

- Both cards white: They win if A_{1} and B_{1} give the same result. This means that $A_{1} B_{1}=$ $+1 \rightarrow$ win, and $A_{1} B_{1}=-1 \rightarrow$ lose.

$$
\left\langle A_{1} B_{1}\right\rangle=P(\mathrm{~W}) \cdot 1+P(\mathrm{~L}) \cdot(-1)=P(\mathrm{~W})-P(\mathrm{~L})
$$

- The same logic holds for when each of them gets white card. The same measurement means a win, and different means they lose.

$$
\left\langle A_{1} B_{2}\right\rangle=P(\mathrm{~W})-P(\mathrm{~L})=\left\langle A_{2} B_{1}\right\rangle
$$

- Both cards black: They now win if A_{2} and B_{2} give different results. This means that $A_{2} B_{2}=-1 \rightarrow$ win, and $A_{2} B_{2}=+1 \rightarrow$ lose.

$$
\left\langle A_{2} B_{2}\right\rangle=P(\mathrm{~W}) \cdot(-1)+P(\mathrm{~L}) \cdot 1=-(P(\mathrm{~W})-P(\mathrm{~L}))
$$

Adding these four exepectation values together (subtracting the last), we get

$$
4(P(\mathrm{~W})-P(\mathrm{~L}))=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle=\left\langle A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right\rangle
$$

We can now recognize the rhs as C in eq. (5.8) in the "Additional notes relevant for curriculum" regarding quantum entanglement (http://www.damtp.cam.ac.uk/user/tong/aqm/topics5.pdf). The CHSH inequality then gives

$$
P(\mathrm{~W})-P(\mathrm{~L}) \leq \frac{1}{4} 2 \sqrt{2}
$$

If we do measurements of the EPR-pair (which essentially are spins), in angles that differ by 45°, we get an equality instead of an inequality. We also know that $P(\mathrm{~W})+P(\mathrm{~L})=1$. Combining these, we get that

$$
P(\mathrm{~W})=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+1\right) \approx 0.854
$$

which beats the classical strategy.

Problem 2

Alices four options:

- Alice does nothing; I. The entangled pair remains $\left|\chi^{-}\right\rangle$
- Alice acts with σ_{x}. This changes the state to $-\left|\phi^{-}\right\rangle$, where

$$
\left|\phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\uparrow\rangle-|\downarrow\rangle|\downarrow\rangle)
$$

- Alice acts with σ_{y}. This changes the state to $i\left|\phi^{+}\right\rangle$, where

$$
\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\uparrow\rangle+|\downarrow\rangle|\downarrow\rangle)
$$

- Alice acts with σ_{z}. This changes the state to $\left|\chi^{+}\right\rangle$, where

$$
\left|\chi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle+|\downarrow\rangle|\uparrow\rangle)
$$

This was computed by i.e using that

$$
\sigma_{y}|\downarrow\rangle=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-i\left[\begin{array}{l}
1 \\
0
\end{array}\right]=-i|\uparrow\rangle
$$

Now it is Bobs turn to do a measurement. The possible results he can measure are

$$
\sigma_{x} \otimes \sigma_{x}\left|\phi^{ \pm}\right\rangle= \pm\left|\phi^{ \pm}\right\rangle \quad \sigma_{x} \otimes \sigma_{x}\left|\chi^{ \pm}\right\rangle= \pm\left|\chi^{ \pm}\right\rangle
$$

and

$$
\sigma_{z} \otimes \sigma_{z}\left|\phi^{ \pm}\right\rangle=+\left|\phi^{ \pm}\right\rangle \quad \sigma_{z} \otimes \sigma_{z}\left|\chi^{ \pm}\right\rangle=-\left|\chi^{ \pm}\right\rangle
$$

- If Bob measures $\sigma_{x} \otimes \sigma_{x}=+1$ and $\sigma_{z} \otimes \sigma_{z}=+1$ then he knows he has the state $\left|\phi^{+}\right\rangle$
- If Bob measures $\sigma_{x} \otimes \sigma_{x}=+1$ and $\sigma_{z} \otimes \sigma_{z}=-1$ then he knows he has the state $\left|\chi^{+}\right\rangle$
- If Bob measures $\sigma_{x} \otimes \sigma_{x}=-1$ and $\sigma_{z} \otimes \sigma_{z}=+1$ then he knows he has the state $\left|\phi^{-}\right\rangle$
- If Bob measures $\sigma_{x} \otimes \sigma_{x}=-1$ and $\sigma_{z} \otimes \sigma_{z}=-1$ then he knows he has the state $\left|\chi^{-}\right\rangle$

From this, Bob now knows which measurement Alice did. One out of four possibilities means a transfer of two bits.

