# TFY4205 Quantum Mechanics II Problemset 11 fall 2022 

## SUGGESTED SOLUTION

## Problem 1

Proof by contradiction. Assume that $\left|W_{n}\right\rangle$ is not entangled. Then we can find coefficients $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ such that:
$\left(a_{1}|0\rangle+b_{1}|1\rangle\right) \otimes\left(a_{2}|0\rangle+b_{2}|1\rangle\right) \otimes \ldots \otimes\left(a_{n}|0\rangle+b_{n}|1\rangle\right)=\frac{1}{\sqrt{n}}(|0 \ldots 001\rangle+|0 \ldots 010\rangle+|0 \ldots 100\rangle+\ldots+\mid 1$

Expanding the left-hand side and comparing to the right-hand side, we can see that the coefficients must have the following relationship:

$$
\begin{equation*}
a_{1} \ldots a_{n-1} b_{n}=a_{1} \ldots b_{n-1} a_{n}=\ldots=b_{1} \ldots a_{n-1} a_{n}=\frac{1}{\sqrt{n}} \tag{2}
\end{equation*}
$$

Clearly, for this to be the case, all of the $a_{i}$ and $b_{i}$ must be non-zero for $i=1, \ldots, n$. But if all of these coefficients were non-zero, then every possible $n$-qubit state would appear on the right-hand side of (1) with a non-zero coefficient.

However, we see that, for instance, the state $|1 \ldots 111\rangle$ does not appear on the right-hand side of (1). This implies that one of the $b_{i}$ 's must be zero. This is a contradiction to what we stated earlier. Therefore the state $\left|W_{n}\right\rangle$ is entangled.

## Problem 2

We are faced with the task of computing the correlation functions for the given density matrix describing the total system. For example, we have that $E(P, R)=\operatorname{Tr}(\rho P \otimes R)$. Computing the four correlations functions that comprise the total CHSH-like quantity, we get:

$$
\begin{align*}
E(P, R) & =p-1  \tag{3}\\
E(Q, R) & =\frac{p-1}{\sqrt{2}}  \tag{4}\\
E(P, S) & =\frac{p-1}{\sqrt{2}}  \tag{5}\\
E(Q, S) & =0 \tag{6}
\end{align*}
$$

Let us show the calculation for $E(P, R)$ in detail: the procedure for the remaining expectation values is similar.

We have

$$
\begin{equation*}
\operatorname{Tr}(\rho P \otimes R)=\sum_{n_{A}, n_{B}, n_{A}^{\prime}, n_{B}^{\prime}}\left\langle n_{A} n_{B}\right| \rho\left|n_{A}^{\prime} n_{B}^{\prime}\right\rangle\left\langle n_{A}^{\prime} n_{B}^{\prime}\right| \sigma_{z}^{A} \sigma_{z}^{B}\left|n_{A} n_{B}\right\rangle \tag{7}
\end{equation*}
$$

by inserting a completeness relation

$$
\begin{equation*}
\sum_{n_{A}^{\prime}, n_{B}^{\prime}}\left|n_{A}^{\prime} n_{B}^{\prime}\right\rangle\left\langle n_{A}^{\prime} n_{B}^{\prime}\right|=1 \tag{8}
\end{equation*}
$$

and where $n_{A}, n_{B}=\{0,1\}$. Above, we have omitted the $\otimes$ symbol for brevity of notation. Inserting the given $\hat{\rho}$, we obtain:

$$
\begin{align*}
\operatorname{Tr}(\rho P \otimes R) & =\sum_{n_{A}, n_{B}, n_{A}^{\prime}, n_{B}^{\prime}}\left[\frac{p}{4} \delta_{n_{A}, n_{A}^{\prime}} \delta_{n_{B}, n_{B}^{\prime}}+\frac{1-p}{2}\left\langle n_{A} n_{B}\right|\left(\left|0^{A}\right\rangle\left|1^{B}\right\rangle-\left|1^{A}\right\rangle\left|0^{B}\right\rangle\right)\left(\left\langle 0^{A}\right|\left\langle 1^{B}\right|-\left\langle 1^{A} \mid\left\langle 0^{B}\right|\right) n_{A}^{\prime} n_{B}^{\prime}\right\rangle\right] \\
& \times\left[\delta_{n_{A}, n_{A}^{\prime}}\left(\delta_{n_{A}, 0}-\delta_{n_{A}, 1}\right) \delta_{n_{B}, n_{B}^{\prime}}\left(\delta_{n_{B}, 0}-\delta_{n_{B}, 1}\right)\right] \\
& =\sum_{n_{A}, n_{B}}\left[0+\frac{1-p}{2}\left(\delta_{n_{A}, 0} \delta_{n_{B}, 1}+\delta_{n_{A}, 1} \delta_{n_{B}, 0}\right)\left(\delta_{n_{A}, 0} \delta_{n_{B}, 0}-\delta_{n_{A}, 0} \delta_{n_{B}, 1}-\delta_{n_{A}, 1} \delta_{n_{B}, 0}+\delta_{n_{A}, 1} \delta_{n_{B}, 1}\right)\right] \\
& =\frac{1-p}{2}(-1-1)=p-1 . \tag{9}
\end{align*}
$$

Therefore, the CHSH-like quantity is equal to

$$
\begin{equation*}
\frac{\sqrt{2}+2}{\sqrt{2}}(1-p) . \tag{10}
\end{equation*}
$$

This violates the CHSH bound (is equal to $>2$ ) when $p<0.1716$. Thus, we see that we do not have to deviate much from the maximally entangled state before failing to satisfy the CHSH inequality.

