TFY4205 Quantum Mechanics II Problemset 10 fall 2022

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1

Unpolarized light means that it is an equal mixure of the two polarization states $|1\rangle$ and $|2\rangle$, so that the density operator becomes

$$
\begin{equation*}
\hat{\rho}=\frac{1}{2}(|1\rangle\langle 1|+|2\rangle\langle 2|) . \tag{1}
\end{equation*}
$$

To check whether this is a pure or mixed state, we recall that $\operatorname{Tr}(\rho)=\operatorname{Tr}\left(\rho^{2}\right)=1$ for a pure state. Since the above operator $\hat{\rho}$ satisfies

$$
\begin{equation*}
\hat{\rho}^{2}=\hat{\rho} / 2, \tag{2}
\end{equation*}
$$

we see that $\operatorname{Tr}\left(\rho^{2}\right)=\frac{1}{2}$ and hence it is a mixed state.
If the light-beam passes through a polarizer, we are left with only one of the states, say $|1\rangle$ for concreteness. Formally, this can be seen by applying the projection operator $\hat{\mathscr{P}}=|1\rangle\langle 1|$ on $\hat{\rho}$, which gives

$$
\begin{equation*}
\hat{\rho}_{\mathcal{P}}=\hat{\mathcal{P}} \cdot \hat{\rho}=\frac{|1\rangle\langle 1|}{2} . \tag{3}
\end{equation*}
$$

After doing so, we also have to normalize this density operator since we must always have $\operatorname{Tr}(\rho)=1$, which means removing the factor $\frac{1}{2}$ from $\hat{\rho}_{P}$.

We are then left with the properly normalized

$$
\begin{equation*}
\hat{\rho}_{\text {polarized }}=|1\rangle\langle 1| \tag{4}
\end{equation*}
$$

which does satisfy $\hat{\rho}_{\text {polarized }}=\left(\hat{\rho}_{\text {polarized }}\right)^{2}$, so that this is a pure state.

Problem 2

[a.]Suppose $|S\rangle$ were separable. Then, there would exist single qubit states $|\phi\rangle$ and $|\psi\rangle$ such that $|S\rangle=|\phi\rangle \otimes|\psi\rangle$. Without loss of generality, let

$$
\begin{align*}
|\phi\rangle & =a|0\rangle+b|1\rangle \tag{5}\\
|\Psi\rangle & =c|0\rangle+d|1\rangle \tag{6}
\end{align*}
$$

for some undetermined coefficients. Then:

$$
\begin{equation*}
|\phi\rangle \otimes|\psi\rangle=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle \tag{7}
\end{equation*}
$$

But since this must equal $|S\rangle$, we must have $a c=0$ and $b d=0$ since $|S\rangle$ has no component of $|00\rangle$ or $|11\rangle$. Then, either $a=0$ or $c=0$. If $a=0$, we have

$$
\begin{equation*}
|\phi\rangle \otimes|\psi\rangle=b c|10\rangle+b d|11\rangle \tag{8}
\end{equation*}
$$

If $c=0$, we have

$$
\begin{equation*}
|\phi\rangle \otimes|\psi\rangle=a d|01\rangle+b d|11\rangle \tag{9}
\end{equation*}
$$

It is now clear by inspection that in either case, no matter the choice of the remaining coefficients, we cannot make this equal to $|S\rangle$. This proof is equivalent for $|T, 0\rangle$. For any single qubit operator U, let

$$
\begin{align*}
& U|0\rangle=a|0\rangle+b|1\rangle \tag{10}\\
& U|1\rangle=c|0\rangle+d|1\rangle \tag{11}
\end{align*}
$$

In matrix-form,

$$
U\binom{|0\rangle}{|1\rangle}=\left(\begin{array}{ll}
a & b \tag{12}\\
c & d
\end{array}\right)\binom{|0\rangle}{|1\rangle} .
$$

Since U is a unitary operator, U must have $|a d-b c|=1$ since $|\operatorname{det}(U)|=1$ for a unitary matrix U. Now

$$
\begin{align*}
(U \otimes U)|S\rangle & =\frac{1}{\sqrt{2}}(U \otimes U)[|01\rangle-b|10\rangle] \tag{13}\\
& =\frac{1}{\sqrt{2}}[(a|0\rangle+b|1\rangle)(c|0\rangle+d|1\rangle)-(c|0\rangle+d|1\rangle)(a|0\rangle+b|1\rangle)] \tag{14}\\
& =\frac{1}{\sqrt{2}}[(a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle-a c|00\rangle-b c|01\rangle-a d|10\rangle-b d|11\rangle] \tag{15}\\
& =\frac{1}{\sqrt{2}}[((a d-b c)|01\rangle-(a d-b c))|10\rangle] \tag{16}\\
& =\frac{a d-b c}{\sqrt{2}}[|01\rangle-|10\rangle] \tag{17}
\end{align*}
$$

We are almost there! Now, note that acting on a state with a unitary operator preserves the norm of the state since $U^{-1} U=U^{\dagger} U=1$. For this to be true, $a d-b c$ must equal a $\mathrm{U}(1)$ number $\mathrm{e}^{\mathrm{i} \theta}$. This is consistent with the fact that for a unitary matrix U with elements as we defined earlier, a general property is that $|a d-b c|^{2}=1$. Thus, our final state is $e^{i \theta}|S\rangle$, which is just an overall phase times $|S\rangle$. This overall phase does not change the physical of the system and we have shown that the system is physically invariant upon acting on it with a unitary operator.

