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TFY4205 Quantum Mechanics II

Problemset 1 fall 2022
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
The stationary Schrodinger equation in one dimension,

− h̄2

2m
ψ
′′(x)+V (x)ψ(x) = Eψ(x), (1)

has a complete set of real solutions. In fact, if ψ(x) is a complex solution then we may complex
conjugate the equation to prove that ψ∗(x) is a solution with the same energy E. Hence the real and
imaginary parts of ψ(x),

Re{ψ}= 1
2
(ψ+ψ

∗), Im{ψ}= 1
2i
(ψ−ψ

∗), (2)

are real solutions with the same energy E. Thus, we may assume without loss of generality that ψ(x)
is real for all x. The equation may then be written as

ψ′′

ψ
=

2m
h̄2 [V (x)−E]. (3)

Let us now investigate the cases (i)E <Vmin and (ii)E >V+ separately.

1. For E <Vmin the right hand side of Eq. (3) is positive for all x, so that

ψ
′′/ψ > 0. (4)

The function ψ will then turn away from the x-axis in both limits x →±∞. A function |ψ(x)|2
that increases in the limits x →±∞ cannot have a finite integral.

2. For E >V+, the right hand side of Eq. (3) can become negative for large values of x. We label
this coefficient −k2. This means that for large values of |x|, the stationary Schrodinger equation
will become similar to the equation

ψ
′′+ k2

ψ = 0 (5)

which is solved by ψ(x) = Asin(kx)+Bcos(kx). The wavefunction will then oscillate and not
decay towards zero when x → ∞. The norm of the wavefunction becomes infinite.

The conclusion is that we cannot find eigenfunctions with finite norm for energies in the two intervals
we have investigated.

Problem 2
To get a better grasp on Hilbert space in QM, consider first ordinary vectors.
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• They exist in a N-dimensional space (we are used to N = 3).

• We have a set of basis vectors (N of them for an N-dimensional space). There are many possible
choices: Cartesian coordinates, spherical coordinates, and so forth.

• The basis vectors span the N-dimensional space and form a complete set. The latter statement
means that any vector v = ∑i viei is a unique linear combination of basis vectors ei.

• Each scalar vi is the projection of the arbitrary vector v on to basis vector i.

All of these statements have analogies in the general formulation of QM. Consider the state vector
|Ψ⟩ which describes the system:

• It lives in Hilbert-space which can be both finite or infinite dimensional.

• We have a set of basis vectors which span Hilbert-space. For an infinitely dimensional space,
the basis may be countable (discretely labelled basis |n⟩) or uncountable (continuously labelled
basis vectors |x⟩).

• The basis for a Hilbert space is complete: any state-vector can be expanded in them in a unique
way, e.g. |Ψ⟩= ∑i vi|i⟩ or |Ψ⟩=

∫
d pcp|p⟩.

• The coefficients in the expansion are the projections of the state-vector on the basis vectors.

For instance: if we use position eigenvectors |x⟩ as basis vectors, then ⟨x|Ψ⟩ tells us what the state
|Ψ⟩ looks like as a function of x. In effect, |⟨x|Ψ⟩|2 is the probability of finding the system in position
x.

We see that |Ψ⟩ can be thought of as an analogy to a vector v whereas ψ(x) are the specific compo-
nents vx,vy,vz in a particular basis. Thus, we don’t need to use |x⟩ as basis vectors at all, just as little
as we must use Cartesian instead of spherical coordinates!

Thus, a Hilbert space is formally an abstract vector space where the inner product operation is defined
(so that we can measure lengths of vectors in that space). Moreover, it is a space which is complete,
which essentially means that we can use the methods of vector algebra and calculus in Hilbert space.

What we have stated above is what we need in practice for calculations. There are some distinctions
between a discrete and continuous basis which are good to be aware of, and we have discussed these
in the lectures.

Problem 3
Generally, the dual vector to c|a⟩ is c∗⟨a| and using that ⟨a|a⟩= 1 and ⟨d|c⟩= ⟨c|d⟩∗, we obtain

1. ⟨b|= (1− i)⟨a|.

2. ⟨a|b⟩= 1+ i.

3. ⟨b|a⟩= 1− i.

4. ⟨b|b⟩= 2.
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Problem 4

1. Both states that make up |ν⟩ have l = 1: thus measuring L2 we will with certainty obtain the
value l(l +1)h̄2 = 2h̄2.

2. The eigenvalues of Lz are mh̄ where m is an integer, so a measurement must in general give one
of these values. For |ν⟩, we can obtain the values m = 0 or m = 1 corresponding to the first and
second term. The probability to obtain each of these values is obtained from the square of the
absolute value of the coefficients, namely 1/3 and 2/3.

3. Eigenvalues for Sz are msh̄ where ms =±1/2. We can thus measure either +h̄/2 or −h̄/2 and,
as above, the probabilities are 1/3 and 2/3.

4. The eigenvalues of L2 are h̄2 j( j+1). Since the value of l is 1 and the spin value of the electron
is s = 1/2, j can take the values l + s = 3/2 and l − s = 1/2. So when measuring L2, we can
obtain either 3h̄2/4 or 15h̄2/4. Denote the probabilities for measuring these values p1/2 and
p3/2 = 1− p1/2, respectively. Now, we can make use of the fact that the problem text revealed
that ⟨L2⟩= 41h̄2/12, because this must be equal to

⟨L2⟩= p1/23h̄2/4+(1− p1/2)15h̄2/4 = 41h̄2/12. (6)

This equation can now be solved for p1/2 and gives the result 1/9. We immediately conclude
that p3/2 = 8/9.

5. We apply Jz = Sz +Lz to the state vector, which we for brevity now denote as |ν⟩ = A|1,0⟩| ↑
⟩+B|1,1⟩| ↓⟩. We obtain:

Jz|ν⟩=
1
2

h̄A|1,0⟩| ↑⟩− 1
2

h̄B|1,1⟩| ↓⟩+ h̄B|1,1⟩| ↓⟩= 1
2

h̄|ν⟩. (7)

Consequently, the given state is an eigenstate of Jz with eigenvalue h̄/2 and measuring Jz will
with certainty provide that value.


