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TFY4205 Quantum Mechanics II

Problemset mandatory exercise 2 fall 2022
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1

1. Since the given expression for δl does not depend on energy, the scattering amplitude

f (ϑ) =
1
k

∞

∑
l=0

(2l +1)eiδl sinδlPl(cosϑ) (1)

will be proportional to k−1, and the differential cross section will be inversely proportional to
the energy:

dσ

dΩ
= | f 2| ∝ 1/k2

∝ 1/E. (2)

2. For small g, we have

δl =
π

2

(
l +

1
2
−
√
(l +

1
2
)2 +g

)
'− πg/2

2l +1
. (3)

The phase shifts are negative, as expected for a positive potential as discussed in the lectures.
Inserting this phase-shift into the scattering amplitude and using that |δl| � 1, we get:

f (ϑ) =
1
k

∞

∑
l=0

(2l +1)δlPl(cosϑ) =−πg
2k

∞

∑
l=0

Pl(cosϑ). (4)

With the help of the generating function for Legendre polynomials

∞

∑
l=0

slPl(cosϑ) = (1−2scosϑ+ s2)−1/2, (5)

we get with s = 1 that

∞

∑
l=0

Pl(cosϑ) =
1

2sin(ϑ/2)
. (6)

The scattering amplitude then becomes

f (ϑ) =− πg
4k sin(ϑ/2)

(7)

and scattering cross section

dσ

dΩ
=

π2g2

16k2 sin2(ϑ/2)
. (8)
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3. The Born approximation for the scattering cross section is dσ/dΩ = | f |2 with

f (ϑ) =− m
2πh̄2

∫
V (r)e−iq·rdr =− 2m

h̄2q

∫
∞

0
V (r)sin(qr)rdr (9)

when integration over the angles is done. Here, q = 2k sin(ϑ/2). For our potential we get

f (ϑ) =−g
q

∫
∞

0

sinξ

ξ
dξ =−gπ

2q
. (10)

We have introduced qr = ξ and used that the last integral is π/2. Inserting q, the scattering
amplitude in the Born approximation becomes

f (ϑ) =− πg
4k sin(ϑ/2)

. (11)

This is precisely the same expression as the one we got from the scattering phases.

4. The radial equation for this potential is

− h̄2

2m
d2u
dr2 +

[ h̄2l(l +1)
2mr2 +

h̄2g
2mr2

]
u = Eu. (12)

This can be rewritten as

−d2u
dr2 +

l̃(l̃ +1)
r2 u− k2u = 0. (13)

Here, E = h̄2k2/2m and

l̃(l̃ +1) = l(l +1)+g. (14)

The rewritten equation now looks like a radial equation without any potential, with the asymp-
totic solution

Rl(r) ∝
sin(kr− l̃π/2)

r
. (15)

The solution of the Schrodinger equation has the following form at large r:

Rl(r) ∝
sin(kr− lπ/2+δl)

r
(16)

which is used to define the scattering phase shift δl . Comparing the last two equations gives

δl = π(l− l̃)/2. (17)

The only remaining task is to solve the second order equation Eq. (14) with respect to l̃:

l̃ =−1
2
±
√
(l +1/2)2 +g. (18)

We must use the + sign in front of the square root to ensure that l̃ > 0 (and when g = 0 we must
have l̃ = l). Inserted, we get

δl =
π

2

(
l +

1
2
−
√

(l +
1
2
)2 +g

)
. (19)
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Problem 2
a) The wavefunction must be defined for r = 0, so only the sin term is allowed (C = 0). Moreover,
the wavefunction is continuous at r = a, whereas its derivative is not continuous due to the δ-function
potential. Specifically, consider the radial equation for u (recall that ψ = R(r) = u(r)/r):

− h̄2

2m
d2u
dr2 +αδ(x)u = Eu. (20)

Integrating across an infinitesimal interval centered at r = a, i.e. from r = a−ε to r = a+ε and taking
limε→0, we get

lim
ε→0

du
dr

∣∣∣∣∣
a+ε

a−ε

=
2mα

h̄2 u(a). (21)

Using now the continuity and derivative boundary condition to get rid of the remaining unknown
constants A and B, we obtain the equation

c+ ika0y = (βs/a+ kc)(a0y/s+1/k), (22)

where we defined the quantities

β = 2mαa/h̄2, s = sin(ka), c = cos(ka), y = eika. (23)

Solving for a0 and taking the limit ka� 1 gives

a0 '−
βa

1+β
. (24)

b) The total scattering cross section is

σ =
∫

dΩ| f |2 =
∫

dΩ|a0|2 = 4π
β2a2

(1+β)2 . (25)

As α→ ∞, we get β→ ∞, which in turn makes σ→ 4πa2. This is the same result as the quantum
mechanical total scattering cross section for low-energy scattering on a hard sphere potential of radius
a.


