TFY4205 Quantum Mechanics II

Problemset mandatory exercise 2 fall 2022

SUGGESTED SOLUTION

Problem 1

1. Since the given expression for δ_{l} does not depend on energy, the scattering amplitude

$$
\begin{equation*}
f(\vartheta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \delta_{l} P_{l}(\cos \vartheta) \tag{1}
\end{equation*}
$$

will be proportional to k^{-1}, and the differential cross section will be inversely proportional to the energy:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left|f^{2}\right| \propto 1 / k^{2} \propto 1 / E . \tag{2}
\end{equation*}
$$

2. For small g, we have

$$
\begin{equation*}
\delta_{l}=\frac{\pi}{2}\left(l+\frac{1}{2}-\sqrt{\left(l+\frac{1}{2}\right)^{2}+g}\right) \simeq-\frac{\pi g / 2}{2 l+1} \tag{3}
\end{equation*}
$$

The phase shifts are negative, as expected for a positive potential as discussed in the lectures. Inserting this phase-shift into the scattering amplitude and using that $\left|\delta_{l}\right| \ll 1$, we get:

$$
\begin{equation*}
f(\vartheta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \delta_{l} P_{l}(\cos \vartheta)=-\frac{\pi g}{2 k} \sum_{l=0}^{\infty} P_{l}(\cos \vartheta) \tag{4}
\end{equation*}
$$

With the help of the generating function for Legendre polynomials

$$
\begin{equation*}
\sum_{l=0}^{\infty} s^{l} P_{l}(\cos \vartheta)=\left(1-2 s \cos \vartheta+s^{2}\right)^{-1 / 2} \tag{5}
\end{equation*}
$$

we get with $s=1$ that

$$
\begin{equation*}
\sum_{l=0}^{\infty} P_{l}(\cos \vartheta)=\frac{1}{2 \sin (\vartheta / 2)} \tag{6}
\end{equation*}
$$

The scattering amplitude then becomes

$$
\begin{equation*}
f(\vartheta)=-\frac{\pi g}{4 k \sin (\vartheta / 2)} \tag{7}
\end{equation*}
$$

and scattering cross section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\pi^{2} g^{2}}{16 k^{2} \sin ^{2}(\vartheta / 2)} \tag{8}
\end{equation*}
$$

3. The Born approximation for the scattering cross section is $d \sigma / d \Omega=|f|^{2}$ with

$$
\begin{equation*}
f(\vartheta)=-\frac{m}{2 \pi \hbar^{2}} \int V(r) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} d \boldsymbol{r}=-\frac{2 m}{\hbar^{2} q} \int_{0}^{\infty} V(r) \sin (q r) r d r \tag{9}
\end{equation*}
$$

when integration over the angles is done. Here, $q=2 k \sin (\vartheta / 2)$. For our potential we get

$$
\begin{equation*}
f(\vartheta)=-\frac{g}{q} \int_{0}^{\infty} \frac{\sin \xi}{\xi} d \xi=-\frac{g \pi}{2 q} . \tag{10}
\end{equation*}
$$

We have introduced $q r=\xi$ and used that the last integral is $\pi / 2$. Inserting q, the scattering amplitude in the Born approximation becomes

$$
\begin{equation*}
f(\vartheta)=-\frac{\pi g}{4 k \sin (\vartheta / 2)} . \tag{11}
\end{equation*}
$$

This is precisely the same expression as the one we got from the scattering phases.
4. The radial equation for this potential is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+\frac{\hbar^{2} g}{2 m r^{2}}\right] u=E u . \tag{12}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
-\frac{d^{2} u}{d r^{2}}+\frac{\tilde{l}(\tilde{l}+1)}{r^{2}} u-k^{2} u=0 . \tag{13}
\end{equation*}
$$

Here, $E=\hbar^{2} k^{2} / 2 m$ and

$$
\begin{equation*}
\tilde{l}(\tilde{l}+1)=l(l+1)+g . \tag{14}
\end{equation*}
$$

The rewritten equation now looks like a radial equation without any potential, with the asymptotic solution

$$
\begin{equation*}
R_{l}(r) \propto \frac{\sin (k r-\tilde{l} \pi / 2)}{r} \tag{15}
\end{equation*}
$$

The solution of the Schrodinger equation has the following form at large r :

$$
\begin{equation*}
R_{l}(r) \propto \frac{\sin \left(k r-l \pi / 2+\delta_{l}\right)}{r} \tag{16}
\end{equation*}
$$

which is used to define the scattering phase shift δ_{l}. Comparing the last two equations gives

$$
\begin{equation*}
\delta_{l}=\pi(l-\tilde{l}) / 2 \tag{17}
\end{equation*}
$$

The only remaining task is to solve the second order equation Eq. (14) with respect to \tilde{l} :

$$
\begin{equation*}
\tilde{l}=-\frac{1}{2} \pm \sqrt{(l+1 / 2)^{2}+g} . \tag{18}
\end{equation*}
$$

We must use the $+\operatorname{sign}$ in front of the square root to ensure that $\tilde{l}>0$ (and when $g=0$ we must have $\tilde{l}=l$). Inserted, we get

$$
\begin{equation*}
\delta_{l}=\frac{\pi}{2}\left(l+\frac{1}{2}-\sqrt{\left(l+\frac{1}{2}\right)^{2}+g}\right) . \tag{19}
\end{equation*}
$$

Problem 2

a) The wavefunction must be defined for $r=0$, so only the sin term is allowed $(C=0)$. Moreover, the wavefunction is continuous at $r=a$, whereas its derivative is not continuous due to the δ-function potential. Specifically, consider the radial equation for u (recall that $\psi=R(r)=u(r) / r)$:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\alpha \delta(x) u=E u \tag{20}
\end{equation*}
$$

Integrating across an infinitesimal interval centered at $r=a$, i.e. from $r=a-\varepsilon$ to $r=a+\varepsilon$ and taking $\lim _{\varepsilon \rightarrow 0}$, we get

$$
\begin{equation*}
\left.\lim _{\varepsilon \rightarrow 0} \frac{d u}{d r}\right|_{a-\varepsilon} ^{a+\varepsilon}=\frac{2 m \alpha}{\hbar^{2}} u(a) \tag{21}
\end{equation*}
$$

Using now the continuity and derivative boundary condition to get rid of the remaining unknown constants A and B, we obtain the equation

$$
\begin{equation*}
c+i k a_{0} y=(\beta s / a+k c)\left(a_{0} y / s+1 / k\right) \tag{22}
\end{equation*}
$$

where we defined the quantities

$$
\begin{equation*}
\beta=2 m \alpha a / \hbar^{2}, s=\sin (k a), c=\cos (k a), y=e^{i k a} \tag{23}
\end{equation*}
$$

Solving for a_{0} and taking the limit $k a \ll 1$ gives

$$
\begin{equation*}
a_{0} \simeq-\frac{\beta a}{1+\beta} \tag{24}
\end{equation*}
$$

b) The total scattering cross section is

$$
\begin{equation*}
\sigma=\int d \Omega|f|^{2}=\int d \Omega\left|a_{0}\right|^{2}=4 \pi \frac{\beta^{2} a^{2}}{(1+\beta)^{2}} \tag{25}
\end{equation*}
$$

As $\alpha \rightarrow \infty$, we get $\beta \rightarrow \infty$, which in turn makes $\sigma \rightarrow 4 \pi a^{2}$. This is the same result as the quantum mechanical total scattering cross section for low-energy scattering on a hard sphere potential of radius a.

