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Problem 1
We will in this problem consider an electron with charge e and mass m constrained to move
in the (x, y) plane limited by 0 ≤ x ≤ L and 0 ≤ y ≤ W . We assume that the system is
periodic in the x direction.
There is a constant magnetic field perpendicular to the the plane, ~B = B~ez. Associated
with the magnetic field, there is a vector potential ~A, and we have that ~B = ~∇ × ~A. The
hamiltonian (1) then becomes

H =
1

2m

(
~p+ e ~A

)2
. (1)

The standard commutation relations apply,

[x, px] = [y, py] = ih̄ , (2)

and
[x, y] = [x, py] = [y, px] = [px, py] = 0 . (3)

In the following, we choose the Landau gauge, ~A = (−By, 0, 0).
Let us now define two sets of variables,

ξ =
1

eB
(py + eAy) , (4)

η = − 1

eB
(px + eAx) , (5)

and
X = x− ξ , (6)

Y = y − η . (7)

ξ and η are called the relative coordinates and X and Y are called the guiding center coordi-
nates.
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a) Show that

[X,Y ] = −[ξ, η] = i

(
h̄

eB

)
= il2 , (8)

where we have defined the magnetic length

l =

√
h̄

eB
. (9)

Furthermore, show that

[ξ,X] = [η, Y ] = [ξ, Y ] = [η,X] = 0 . (10)

Comment on the commutation relations in (8): what do they say about the relation
between ξ and η, and X and Y ?

b) Show that the hamiltonian, (1) can be written

H =
m

2
ω2
(
ξ2 + η2

)
, (11)

where we have defined the cyclotron frequency

ω =
eB

m
. (12)

Show that this is the harmonic oscillator hamiltonian in disguise. Try to give a physical
interpretation of the motion of the harmonic oscillator relative to the guiding center
coordinates, (X,Y ).

This implies that the energy levels of the system is given by

En = h̄ω

(
n+

1

2

)
, (13)

where n = 0, 1, 2, · · · . These are the Landau levels (which we now have derived by a
different route than in the text book — this one being due to Ryogo Kubo).

c) We now construct the energy eigenfunctions for this system. Show that

[X,H] = [Y,H] = 0 , (14)

where H is given in equation (1). This implies that the energy eigenfunctions may also
be eigenfunctions of either X or Y , but not both. Why is this?

We have split the coordinates x and y into two pairs, (ξ, η) and (X,Y ). We will express
the wave function in terms of the variables X and η. Why can we not use all four at
the same time?

We choose our energy eigenfunctions also to be eigenfunctions of Y . Hence, we will
construct ψΥ,n(X, η) such that

HψΥ,n(X, η) = h̄ω

(
n+

1

2

)
ψΥ,n(X, η) , (15)
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and
Y ψΥ,n(X, η) = ΥψΥ,n(X, η) . (16)

Show that the eigenfunctions we seek are

ψΥ,n(X, η) =
eiΥX/l2

√
L

φn(η) , (17)

where φn is the harmonic oscillator energy eigenfunction.

We stated that the system is periodic in the x direction with periodicity L. It must
then also be periodic in X.Hence, we must have that

ψΥ,n(X + L, η) = ψΥ,n(X, η) . (18)

Show that this periodicity leads to

Υ =
2πl2

L
k , (19)

where k is an integer.

The system has a width (in the y direction) W . Show that this leads to the inequalities

0 < k <
WL

2πl2
. (20)

Each energy level n is then degenerate. Show that the degeneration is given by

Φtot

h/e
, (21)

where Φtot = WLB is the total magnetic flux through the system. We ignore here the
degeneration due to electron spin.

d) So far we have considered one single electron. Now we assume that there are many in
the system. We ignore interactions between them.

Electrons are fermions and obey the Pauli principle: only one electron in each state. As
the system is degenerate with respect to the electron spin, we may place two electrons
in each Landau level n. Suppose we have a two-dimensional electron density ρ, what
magnetic field B = B0 will ensure that all electrons will be in the first Landau level?
Plot the Fermi energy — the energy of the most energetic electron — as a function of
magnetic field B. Explain why the figure looks like what it does.

Problem 2
The lowest-order Born approximation to the scattering amplitude from a potential V (~r) is
given by

fB = − m

2πh̄2

∫
d3~r V (~r)e−i(

~k−~k′)·~r . (22)

Here ~k and ~k′ point along the momentum direction of the scattered particle before and after
the scattering event. We place the z-direction in such a way that it points along ~k. In polar
coordinates we then have k′x = k sin θ cosφ, k′y = k sin θ sinφ and k′z = k cos θ, where k = |~k|.
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a) We assume a potential

V (~r) =
α

πbc
e−(y/b)2−(z/c)2δ(x) , (23)

where α and b ≥ c are positive constants and δ(x) is the Dirac delta-function. Further-
more, ~r = (x, y, z). Sketch the equipotential surfaces of V when

1) b > c?
2) b = c?

b) Show that ∫
d3~rV (~r)e−i(

~k−~k′)·~r = αe−(b/2)2(ky−k′y)2−(c/2)2(kz−kz)2 . (24)

(Hint:
∫ +∞
−∞ exp(−x2)dx =

√
π — and think Cartesian! )

c) Find the scattering cross section (dσ/dΩ) expressed in polar coordinates.


