FY3464 Quantum Field Theory Problemset 9

SUGGESTED SOLUTION

Problem 1

We wish to prove that

$$
\begin{equation*}
\bar{u}^{s}(-\boldsymbol{k}) \gamma^{0} v^{r}(\boldsymbol{k})=0 . \tag{1}
\end{equation*}
$$

Multiply the equation with $2 m$ and use that since $u(\boldsymbol{k})$ satisfies

$$
\begin{equation*}
(k y-m) u^{s}(\boldsymbol{k})=0, \tag{2}
\end{equation*}
$$

then $u(-\boldsymbol{k})$ satisfies

$$
\begin{equation*}
\left(k_{0} \gamma^{0}+\boldsymbol{k} \cdot \gamma-m\right) u^{s}(-\boldsymbol{k})=0 \tag{3}
\end{equation*}
$$

We then obtain from the lhs of Eq. (1) that

$$
\begin{align*}
2 m \bar{u}^{s}(-\boldsymbol{k}) \gamma^{0} v^{r}(\boldsymbol{k}) & =2 m\left[u^{s}(-\boldsymbol{k})\right]^{\dagger} \gamma^{0} \gamma^{0} v^{r}(\boldsymbol{k}) \\
& =2 m\left(\left[2 m+k_{0} \gamma^{0}+\boldsymbol{k} \cdot \gamma-m\right] u^{s}(-\boldsymbol{k})\right)^{\dagger} v^{r}(\boldsymbol{k}) \\
& =\left((k \not+m)^{\dagger} \gamma^{0} \gamma^{0} u^{s}(-\boldsymbol{k})\right]^{\dagger} v(\boldsymbol{k}) \\
& =\bar{u}^{s}(-\boldsymbol{k}) \gamma^{0}(\not k+m) v^{r}(\boldsymbol{k})=0, \tag{4}
\end{align*}
$$

since $(\not k+m) v^{r}(\boldsymbol{k})=0$.

Problem 2

We start with:

$$
\begin{align*}
S_{F}(x-y)_{\alpha \beta} & \equiv\left\langle T\left\{\psi_{\alpha}(x) \bar{\Psi}_{\beta}(y)\right\}\right\rangle \\
& =\int \frac{d^{3} q}{(2 \pi)^{3} 2 q^{0}}\left[\theta\left(x^{0}-y^{0}\right) \mathrm{e}^{-i q(x-y)}(d+m)_{\alpha \beta}-\theta\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} q(x-y)}(q-m)_{\alpha \beta}\right] \tag{5}
\end{align*}
$$

Thus, the Fourier-transform is (dropping the subscript indices for brevity of notation):

$$
\begin{align*}
\tilde{S}_{F}(k) & =\int d^{4} x \mathrm{e}^{\mathrm{i} k x} S_{F}(x) \\
& =\int \frac{d^{3} q}{(2 \pi)^{3} 2 q^{0}} \int d x^{0} \mathrm{e}^{\mathrm{i} k^{0} x^{0}}\left[\theta\left(x^{0}\right) \mathrm{e}^{-\mathrm{i} q^{0} x^{0}}(2 \pi)^{3} \boldsymbol{\delta}(\boldsymbol{k}-\boldsymbol{q})\left(\gamma^{0} q^{0}-\boldsymbol{\gamma} \cdot \boldsymbol{q}+m\right)\right. \\
& \left.-\theta\left(-x^{0}\right) \mathrm{e}^{\mathrm{i} q^{0} x^{0}}(2 \pi)^{3} \boldsymbol{\delta}(\boldsymbol{k}+\boldsymbol{q})\left(\gamma^{0} q^{0}-\boldsymbol{\gamma} \cdot \boldsymbol{q}-m\right)\right] . \tag{6}
\end{align*}
$$

Here, we used the integral over $\int d \boldsymbol{x}$ to get some δ-functions in the integrand. The integration over \boldsymbol{q} now forces $\boldsymbol{q}=\boldsymbol{k}$ and therefore we must have $q^{0}=\omega(\boldsymbol{k})$ since

$$
\begin{equation*}
q^{2}=m^{2}=\left(q^{0}\right)^{2}-\boldsymbol{q}^{2}=\left(q^{0}\right)^{2}-\boldsymbol{k}^{2} . \tag{7}
\end{equation*}
$$

The fact that the integration variable $q^{2}=m^{2}$ follows from the fact that the Dirac fields have to satisfy the Dirac equation. On the other hand, note that we have not used $k^{2}=m^{2}$ anywhere.

Therefore, we have $\left(q^{0}\right)^{2}=\boldsymbol{k}^{2}+m^{2}$, and we also have written in general the dispersion relation as $[\omega(\boldsymbol{k})]^{2}=\boldsymbol{k}^{2}+m^{2}$. It then follows that $q^{0}=\omega(\boldsymbol{k})$ upon doing the integral over the delta-functions. This gives

$$
\begin{equation*}
\tilde{S}_{F}(k)=\frac{1}{2 \omega} \int d x^{0}\left[\mathrm{e}^{\mathrm{i} x^{0}\left(k^{0}-\omega\right)} \theta\left(x^{0}\right)\left(\gamma^{0} \omega-\gamma \cdot \boldsymbol{k}+m\right)-\mathrm{e}^{\mathrm{i} x^{0}\left(k^{0}+\omega\right)}\left(\gamma^{0} \omega+\boldsymbol{\gamma} \cdot \boldsymbol{k}+m\right)\right], \tag{8}
\end{equation*}
$$

where $\omega=\omega(k)$. We can now perform the integration and obtain:

$$
\begin{equation*}
\tilde{S}_{F}(k)=\left.\frac{1}{2 \omega}\left(\gamma^{0} \omega-\gamma \cdot \boldsymbol{k}+m\right) \frac{\mathrm{e}^{\mathrm{i}\left(k^{0}-\omega+\mathrm{i} \varepsilon\right) x^{0}}}{\mathrm{i}\left(k^{0}-\omega+\mathrm{i} \varepsilon\right)}\right|_{0} ^{\infty}-\left.\frac{1}{2 \omega}\left(\gamma^{0} \omega+\boldsymbol{k} \cdot \gamma-m\right) \frac{\mathrm{e}^{\mathrm{i}\left(k^{0}+\omega-\mathrm{i}\right) x^{0}}}{\mathrm{i}\left(k^{0}+\omega-\mathrm{i} \varepsilon\right)}\right|_{-\infty} ^{o} . \tag{9}
\end{equation*}
$$

As before, we let $\omega \rightarrow \omega-i \varepsilon$ in the integral in order to make it well-defined at asymptotic times (think of this as as an effective boundary condition that makes the Green function vanish at infinite times, as is physically reasonable). Continuing, we have:

$$
\begin{align*}
\tilde{S}_{F}(k) & =\frac{\mathrm{i}}{2 \omega}\left[\frac{\left[\gamma^{0}\left(\omega-k^{0}\right)+\not k+m\right]\left(k^{0}+\omega\right)+\left[\gamma^{0}\left(\omega+k^{0}\right)-\not k-m\right]\left(k^{0}-\omega\right)}{\left(k^{0}\right)^{2}-\omega+\mathrm{i} \varepsilon}\right] \\
& =\frac{\mathrm{i}}{2 \omega}\left[\frac{2 \omega(k \not+m)+\gamma^{0}\left(\omega-k^{0}\right)\left(\omega+k^{0}\right)+\gamma^{0}\left(\omega+k^{0}\right)\left(k^{0}-\omega\right)}{k^{2}-m^{2}+\mathrm{i} \varepsilon}\right] \\
& =\frac{i(k \not+m)}{k^{2}-m^{2}+\mathrm{i} \varepsilon} . \tag{10}
\end{align*}
$$

In the transition from the first to second line in the equation above, we used that $\omega^{2}+\boldsymbol{k}^{2}+m^{2}$. Again, note that while $q^{2}=m^{2}$ in the integral, we have not assumed anything about k^{2} being on-shell ($k^{2}=m^{2}$).

