FY3464 Quantum Field Theory Problemset 8

SUGGESTED SOLUTION

Problem 1

Consider an infinitesimal Lorentz-transformation $\Lambda^{\mu}{ }_{v}=\delta_{v}^{\mu}-\varepsilon^{\mu}{ }_{v}=\delta_{v}^{\mu}+\varepsilon_{v}{ }^{\mu}$. By using the result in Eq. (1) of the problem text, we obtain

$$
\begin{align*}
\Lambda_{v}^{\mu} \gamma^{\nu} & =\gamma^{\mu}-\frac{i}{2} \varepsilon_{v \lambda} S^{\nu \lambda} \gamma^{\mu}+\frac{i}{2} \gamma^{\mu} \varepsilon_{v \lambda} S^{\nu \lambda} \\
& \simeq\left(1-\frac{i \varepsilon_{v \lambda}}{2} S^{v \lambda}\right) \gamma^{\mu}\left(1+\frac{i \varepsilon_{v \lambda}}{2} S^{\nu \lambda}\right) \tag{1}
\end{align*}
$$

We could write the last step since $\varepsilon_{v \lambda}$ is infinitesimal and thus the term $O\left(\varepsilon^{2}\right)$ is negligible. Now, perform another infinitesimal Lorentz transformation of the same form:

$$
\begin{equation*}
\Lambda_{\mu}^{\sigma} \Lambda_{v}^{\mu} \gamma^{\nu} \simeq\left(1-\frac{\mathrm{i} \varepsilon_{v \lambda}}{2} S^{\nu \lambda}\right)^{2} \gamma^{\sigma}\left(1+\frac{\mathrm{i} \varepsilon_{v \lambda}}{2} S^{\nu \lambda}\right)^{2} \tag{2}
\end{equation*}
$$

Thus, repeating this N times, letting $N \rightarrow \infty$ and using the formula

$$
\begin{equation*}
\lim _{N \rightarrow \infty}(1+\mathrm{i} x)^{N}=\mathrm{e}^{\mathrm{i} N x} \tag{3}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\left(\Lambda_{v}^{\kappa}\right)_{\operatorname{tot}} \gamma^{\nu}=\mathrm{e}^{-\mathrm{i} \omega_{\lambda \sigma} S^{\lambda \sigma} / 2} \gamma^{\mathrm{K}} \mathrm{e}^{\mathrm{i} \omega_{\lambda \sigma} S^{\lambda \sigma} / 2} \tag{4}
\end{equation*}
$$

In Eq. (4), we have $\omega_{\lambda \sigma}=N \varepsilon_{\lambda \sigma}$, assumed to be finite, while

$$
\begin{equation*}
\left(\Lambda_{v}^{\kappa}\right)_{\text {tot }}=\Lambda_{\delta}^{\kappa} \Lambda_{\rho}^{\delta} \ldots \Lambda_{v}^{\mu} \tag{5}
\end{equation*}
$$

now constitutes a finite Lorentz transformations.

Problem 2

Writing out the exponential, we have

$$
u(\boldsymbol{k})=\left[\cosh \frac{\eta}{2}\left(\begin{array}{ll}
1 & 0 \tag{6}\\
0 & 1
\end{array}\right)-\sinh \frac{\eta}{2}\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & -\sigma^{3}
\end{array}\right)\right] \sqrt{m}\binom{\xi}{\xi}
$$

Squaring the two block matrices no the diagonal gives

$$
\begin{align*}
\left(\cosh \eta / 2 \mp \sigma^{3} \sinh \eta / 2\right)^{2} & =\cosh \eta \mp \sigma^{3} \sinh \eta \\
& =\left(k^{0} \mp k^{3} \sigma^{3}\right) / m \\
& = \begin{cases}k \cdot \sigma / m & \text { for }- \\
k \cdot \bar{\sigma} / m & \text { for }+\end{cases} \tag{7}
\end{align*}
$$

Here, we used that the η in our expressions should be $\eta \operatorname{sign}\left(k_{3}\right)$ if we allow for k_{3} to have both positive and negative values. This is because the exponent in $U_{\gamma}(\Lambda)$ has $k_{3} /\left|k_{3}\right|$ if we allow for boosts along either $+\boldsymbol{z}$ or $-\boldsymbol{z}$, so that the two block matrices on the diagonal then become

$$
\begin{equation*}
\cosh \eta / 2 \mp \operatorname{sign}\left(k_{3}\right) \sigma^{3} \sinh \eta / 2 \tag{8}
\end{equation*}
$$

and we have $\operatorname{sign}\left(k_{3}\right) \sinh \eta=k_{3} / m$ from our definition of $m \sinh \eta=|\boldsymbol{k}|$. Since the direction of the $+\hat{z}$-axis is arbitrary (we choose our coordinate system as we like), Eq. (8) should be valid for any direction of \boldsymbol{k}.

It is then clear that we may write

$$
\begin{equation*}
u(\boldsymbol{k})=\binom{\sqrt{k \cdot \sigma} \xi}{\sqrt{k \cdot \sigma} \xi} \tag{9}
\end{equation*}
$$

where $\sqrt{k \cdot \sigma}$ is a matrix that squares to $k \cdot \sigma$. It remains to show that a matrix with eigenvalues equal to the square root of the eigenvalues of $k \cdot \sigma$ satisfies this.

First, let $A=k \cdot \sigma$. We see that $A=A^{\dagger}$. Therefore, there exists a unitary matrix U which diagonalizes A according to $U A U^{\dagger}$. Now take the square root of every diagonal element in $U A U^{\dagger}$ to get a diagonal matrix with the square root of the eigenvalues of A. If we now rotate this matrix back, we can define this as a matrix \sqrt{A} where:

$$
\begin{equation*}
\sqrt{A} \equiv U^{\dagger} \sqrt{U A U^{\dagger}} U . \tag{10}
\end{equation*}
$$

The matrix $\sqrt{A}=\sqrt{k \cdot \sigma}$ has precisely the desired property: its eigenvalues are the square root of the eigenvalues of A and squaring it gives A :

$$
\begin{align*}
\sqrt{A}^{2} & =U^{\dagger} \sqrt{U A U^{\dagger}} U U^{\dagger} \sqrt{U A U^{\dagger}} U \\
& =U^{\dagger} \sqrt{U A U^{\dagger}} \sqrt{U A U^{\dagger} U} \\
& =U^{\dagger} U A U^{\dagger} U \\
& =A . \tag{11}
\end{align*}
$$

