FY3464 Quantum Field Theory Problemset 7

SUGGESTED SOLUTION

Problem 1

a) We showed in the beginning of this course that the Lorentz-transformation tensor has to satisfy:

$$\eta_{uv} = \Lambda^{\alpha}_{v} \eta_{\alpha\beta} \Lambda^{\beta}_{v}. \tag{1}$$

Inserting

$$\Delta^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} - \varepsilon^{\mu}_{\ \nu} \tag{2}$$

into this equation gives us

$$\eta_{\mu\nu} = (\delta^{\alpha}_{\mu} - \epsilon^{\alpha}_{\mu}) \eta_{\alpha\beta} (\delta^{\beta}_{\nu} - \epsilon^{\beta}_{\nu})
= \eta_{\mu\nu} - (\epsilon_{\mu\nu} + \epsilon_{\mu\nu}) + O(\epsilon^{2}).$$
(3)

This shows that ε must be antisymmetric in its indices.

b) An infinitesimal Lorentz-transformation applied to a contravariant 4-vector reads:

$$x^{\mu} \to (x')^{\mu} = x^{\mu} + \varepsilon_{\nu}^{\mu} x^{\nu} = x^{\mu} - \frac{i}{2} \varepsilon_{\nu\lambda} J^{\nu\lambda} x^{\mu}. \tag{4}$$

Applying this transformation N times and taking the limit $N \to \infty$, we obtain

$$x^{\mu} \rightarrow (x')^{\mu} = e^{-iN\epsilon_{\mu\nu}J^{\mu\nu}/2}x^{\mu}, \tag{5}$$

by using the formula

$$\lim_{N \to \infty} (1 - iJ/N)^N = e^{-iJ}.$$
 (6)

c) We see that it $\omega_{\nu\mu} = N\epsilon_{\mu\nu}$. It is thus assumed that while ϵ is infinitesimal and $N \to \infty$, their product is finite.

Problem 2

First, we note that

$$[S^{\mu\lambda}, S^{\nu\sigma}] = \left(\frac{i}{4}\right)^{2} [(\gamma^{\mu}\gamma^{\lambda} - \gamma^{\lambda}\gamma^{\mu}), (\gamma^{\nu}\gamma^{\sigma} - \gamma^{\sigma}\gamma^{\nu})]$$

$$= -\frac{1}{4} \left([\gamma^{\mu}\gamma^{\lambda}, \gamma^{\nu}\gamma^{\sigma}] - [\gamma^{\mu}\gamma^{\lambda}, \gamma^{\sigma}\gamma^{\nu}] - [\gamma^{\lambda}\gamma^{\mu}, \gamma^{\nu}\gamma^{\sigma}] + [\gamma^{\lambda}\gamma^{\mu}, \gamma^{\sigma}\gamma^{\nu}] \right). \tag{7}$$

FY3464 PROBLEMSET 7 PAGE 2 OF 2

Now use the matrix identity

$$[AB,CD] = A\{B,C\}D - \{A,C\}BD + CA\{B,D\} - C\{A,D\}B.$$
(8)

Using this on the first term of the second line of Eq. (7) gives

$$[\gamma^{\mu}\gamma^{\lambda}, \gamma^{\nu}\gamma^{\sigma}] = 2(\eta^{\lambda\nu}\gamma^{\mu}\gamma^{\sigma} - \eta^{\mu\nu}\gamma^{\lambda}\gamma^{\sigma} + \eta^{\lambda\sigma}\gamma^{\nu}\gamma^{\mu} - \eta^{\mu\sigma}\gamma^{\nu}\gamma^{\lambda}). \tag{9}$$

Applying the identity to the remaining terms in a similar way verifies that S satisfies the Lorentz algebra.