SUGGESTED SOLUTION

Problem 1

a) We showed in the beginning of this course that the Lorentz-transformation tensor has to satisfy:

$$
\begin{equation*}
\eta_{\mu \nu}=\Lambda_{v}^{\alpha} \eta_{\alpha \beta} \Lambda_{v}^{\beta} \tag{1}
\end{equation*}
$$

Inserting

$$
\begin{equation*}
\Delta^{\mu}{ }_{v}=\delta_{v}^{\mu}-\varepsilon^{\mu}{ }_{v} \tag{2}
\end{equation*}
$$

into this equation gives us

$$
\begin{align*}
\eta_{\mu v} & =\left(\delta_{\mu}^{\alpha}-\varepsilon_{\mu}^{\alpha}\right) \eta_{\alpha \beta}\left(\delta_{v}^{\beta}-\varepsilon_{v}^{\beta}\right) \\
& =\eta_{\mu v}-\left(\varepsilon_{\mu v}+\varepsilon_{\mu v}\right)+O\left(\varepsilon^{2}\right) \tag{3}
\end{align*}
$$

This shows that ε must be antisymmetric in its indices.
b) An infinitesimal Lorentz-transformation applied to a contravariant 4-vector reads:

$$
\begin{equation*}
x^{\mu} \rightarrow\left(x^{\prime}\right)^{\mu}=x^{\mu}+\varepsilon_{v}^{\mu} x^{v}=x^{\mu}-\frac{i}{2} \varepsilon_{v \lambda} J^{\nu \lambda} x^{\mu} \tag{4}
\end{equation*}
$$

Applying this transformation N times and taking the limit $N \rightarrow \infty$, we obtain

$$
\begin{equation*}
x^{\mu} \rightarrow\left(x^{\prime}\right)^{\mu}=\mathrm{e}^{-\mathrm{i} N \varepsilon_{\mu v} J^{\mu v} / 2} x^{\mu} \tag{5}
\end{equation*}
$$

by using the formula

$$
\begin{equation*}
\lim _{N \rightarrow \infty}(1-\mathrm{i} J / N)^{N}=\mathrm{e}^{-\mathrm{i} \mathrm{~J}} \tag{6}
\end{equation*}
$$

c) We see that it $\omega_{\nu \mu}=N \varepsilon_{\mu v}$. It is thus assumed that while ε is infinitesimal and $N \rightarrow \infty$, their product is finite.

Problem 2

First, we note that

$$
\begin{align*}
{\left[S^{\mu \lambda}, S^{v \sigma}\right] } & =\left(\frac{i}{4}\right)^{2}\left[\left(\gamma^{\mu} \gamma^{\lambda}-\gamma^{\lambda} \gamma^{\mu}\right),\left(\gamma^{v} \gamma^{\sigma}-\gamma^{\sigma} \gamma^{v}\right)\right] \\
& =-\frac{1}{4}\left(\left[\gamma^{\mu} \gamma^{\lambda}, \gamma^{\nu} \gamma^{\sigma}\right]-\left[\gamma^{\mu} \gamma^{\lambda}, \gamma^{\sigma} \gamma^{\nu}\right]\right. \\
& \left.-\left[\gamma^{\lambda} \gamma^{\mu}, \gamma^{v} \gamma^{\sigma}\right]+\left[\gamma^{\lambda} \gamma^{\mu}, \gamma^{\sigma} \gamma^{v}\right]\right) \tag{7}
\end{align*}
$$

Now use the matrix identity

$$
\begin{equation*}
[A B, C D]=A\{B, C\} D-\{A, C\} B D+C A\{B, D\}-C\{A, D\} B . \tag{8}
\end{equation*}
$$

Using this on the first term of the second line of Eq. (7) gives

$$
\begin{equation*}
\left[\gamma^{\mu} \gamma^{\lambda}, \gamma^{v} \gamma^{\sigma}\right]=2\left(\eta^{\lambda v} \gamma^{\mu} \gamma^{\sigma}-\eta^{\mu v} \gamma^{\lambda} \gamma^{\sigma}+\eta^{\lambda \sigma} \gamma^{v} \gamma^{\mu}-\eta^{\mu \sigma} \gamma^{v} \gamma^{\lambda}\right) . \tag{9}
\end{equation*}
$$

Applying the identity to the remaining terms in a similar way verifies that S satisfies the Lorentz algebra.

