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FY3464 Quantum Field Theory

Problemset 6
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
The key difference between a gauge and a global symmetry is that the former is in our theoretical
description, while the latter is a property of the system. A gauge symmetry has no ”physical” mean-
ing: it is an artifact of our choice for the coordinates/fields with which we describe the system. For
instance, there are infinitely many gauge choices for the vector potential that gives the same physical,
magnetic field. The gauge choice does not change the equations of motion or the physical state, and
all states related by a gauge transformation are physically the same state.

In contrast, while a global symmetry transformation leaves the equations of motion the same, the state
of the system is not physically the same after such a transformation. The easiest way to visualize
this is to consider a ferromagnetic material. It has a magnetization m that points in some direction.
Assume that there is no magnetic anisotropy in the system that favors a particular magnetization di-
rection. In that case, the equations of motion that describe the magnetization have to be identical
regardless of which direction the magnetization points in: the Lagrangian describing the ferromagnet
has a rotational symmetry. However, a material with a magnetization that points in the z-direction is
not physically identical to a material where the magnetization points in the x-direction, even if two
such states are energetically equivalent. In other words, the possible ground states of the system are
physically distinct, despite that the equations of motion for m are rotationally invariant. This is dif-
ferent from gauge symmetries, where the ground states corresponding to different gauge choices are
physically identical.

Problem 2
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Let us now perform the Wick rotations. Consider first the integral over dk0
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Here, R is a real number that can be both positive and negative. If we’re to be allowed to Wick rotate
k0

1 in the usual way that we demonstrated in the lectures, its poles should never lie in the 1st or 3rd
quadrant. Let’s then check both R > 0 and R < 0. For R > 0, we get the poles:
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while for R < 0, we get the poles:
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In both cases, the poles lie in the 2nd and 4th quadrant in the complex plane. Similarly, you can also
verify that there is no problem for R = 0. We conclude that the Wick rotation for k0

1 can be done.
Thus, we obtain:∫ ∫ d4k1d4k2
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To do the Wick rotation for k0
2, we can use exactly the same reasoning and verify that the poles of the

integrand on the rhs of Eq. (5) always lie in the 2nd and 4th quadrant. Thus, we have now proven that
the double Wick rotation can be done for the

∫ ∫
d4k1d4k21/D3 integral for any value of k2.

All that remains now is to show that the remaining integral is equal to the integral we obtained when
we did Wick rotations first and then Feynman parametrization. In the present problem, we are left
with the following integral after having done the Wick rotations (absorbing the iε back into m2):
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and that d4k1Ed4k2E = d4l1Ed4l2E . The latter is shown in the same way as in the lectures (using the
Jacobian of the transformation matrix) where we proved that d4k1d4k2 = d4l1d4l2. We then obtain
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In the lectures, we used that
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when we did the Feynman parametrization. Since k2
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Inserting Eq. (10) into Eq. (8), we finally obtain
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