FY3464 Quantum Field Theory Problemset 5

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1

The symmetry factor is $S=2 \times 2=4$: factor 2 for two propagators going between two vertices and factor 2 for the top propagator starting and ending at the same point. Note that there is no factor 2 for reflection along an axis running upwards through the loops since the original, non-truncated diagram has different endpoints t_{1} and t_{2}.

The truncated diagram expression is obtained from the non-truncated diagram expression by getting rid of the operators associated with the end-points (exponentials), getting rid of the integral over the frequency coming out of/going into the end-points, and finally dividing on a propagator for each endpoint. The non-truncated diagram, starting at t_{1} and ending at t_{2}, is (dropped all internal exponential factors corresponding to energy flow out of and into vertices, which anyway cancel each other out in the end):

$$
\begin{align*}
& \int \frac{d \omega d \omega_{1} d \omega_{2} d \omega_{3} d \omega_{4}}{(2 \pi)^{5}} \frac{(-\mathrm{i} \lambda)^{2}}{S} \mathrm{e}^{-\mathrm{i} \omega t_{1}+\mathrm{i} \omega_{4} t_{2}}(2 \pi)^{2} \delta\left(\omega+\omega_{3}-\omega_{1}-\omega_{4}\right) \delta\left(\omega_{1}-\omega_{3}\right) \\
& \times \tilde{G}(\omega) \tilde{G}\left(\omega_{1}\right) \tilde{G}\left(\omega_{2}\right) \tilde{G}\left(\omega_{3}\right) \tilde{G}\left(\omega_{4}\right) \\
& =\frac{(-\mathrm{i} \lambda)^{2}}{S} \int \frac{d \omega d \omega_{1} d \omega_{2}}{(2 \pi)^{3}}\left(\frac{\mathrm{i}}{\omega^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}\right)^{2}\left(\frac{\mathrm{i}}{\omega_{1}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}\right)^{2} \frac{\mathrm{i}}{\omega_{2}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon} \mathrm{e}^{-\mathrm{i} \omega\left(t_{1}-t_{2}\right)} . \tag{1}
\end{align*}
$$

Therefore, the truncated diagram is:

$$
\begin{equation*}
\frac{(-\mathrm{i} \lambda)^{2}}{S} \int \frac{d \omega_{1} d \omega_{2}}{(2 \pi)^{2}}\left(\frac{\mathrm{i}}{\omega_{1}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}\right)^{2} \frac{\mathrm{i}}{\omega_{2}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon} \tag{2}
\end{equation*}
$$

We perform the integration over ω_{2} first by using

$$
\begin{equation*}
\int_{C} d \omega_{2} \frac{\mathrm{i}}{\omega_{2}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}=\int_{C} d \omega_{2} \frac{\mathrm{i}}{\left(\omega_{2}-m_{0}+\mathrm{i} \varepsilon\right)\left(\omega_{2}+m_{0}-\mathrm{i} \varepsilon\right)}=2 \pi \mathrm{i} \sum_{i} \operatorname{Res} f\left(\omega=\omega_{i}\right) . \tag{3}
\end{equation*}
$$

where ω_{i} are the poles of

$$
\begin{equation*}
f(\omega)=\frac{\mathrm{i}}{\omega^{2}-m_{0}^{2}+\mathrm{i} \varepsilon} \tag{4}
\end{equation*}
$$

contained within the closed contour C. Taking this contour to be the real axis and closing it in the upper half-plane, so that the pole $\omega_{+}=-m_{0}+\mathrm{i} \varepsilon$ is enclosed, we have that $\int_{C}=\int_{-\infty}^{\infty}$ since the integrand goes to zero on the semicircle with radius $R \rightarrow \infty$ closing the contour.

Now in general, the residue of a function $f(\omega)$ which has a pole of n 'th order in ω_{0} is given by

$$
\begin{equation*}
\operatorname{Res} f\left(\omega=\omega_{0}\right)=\frac{1}{(n-1)} \lim _{z \rightarrow \infty} \frac{d^{n-1}}{d \omega^{n-1}}\left[\left(\omega-\omega_{0}\right)^{n} f(\omega)\right] . \tag{5}
\end{equation*}
$$

Therefore, for f given in Eq. (4), we have:

$$
\begin{equation*}
\operatorname{Res} f\left(\omega=\omega_{+}\right)=-\frac{\mathrm{i}}{2 m_{0}} . \tag{6}
\end{equation*}
$$

The expression for the diagram is then, after performin the ω_{2}-integral, reduced to

$$
\begin{equation*}
\frac{(-\mathrm{i} \lambda)^{2}}{S} \frac{1}{2 m_{0}} \int \frac{d \omega_{1}}{2 \pi}\left(\frac{\mathrm{i}}{\omega_{1}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}\right)^{2} . \tag{7}
\end{equation*}
$$

We can now perform the ω_{1}-integral using the residue-theorem again. Closing the contour in the upper half-plane and using that the pole at $\omega_{+}=-m_{0}+$ i ε is now of second order for the function

$$
\begin{equation*}
f(\omega)=\left(\frac{\mathrm{i}}{\omega_{1}^{2}-m_{0}^{2}+\mathrm{i} \varepsilon}\right)^{2}, \tag{8}
\end{equation*}
$$

we find that the residue for f given by Eq. (8) is:

$$
\begin{equation*}
\operatorname{Res} f\left(\omega=\omega_{+}\right)=-\frac{2}{8 m_{0}^{3}} . \tag{9}
\end{equation*}
$$

Using finally $S=4$, we then have the final amplitude for the diagram:

$$
\begin{equation*}
\frac{(-\mathrm{i} \lambda)^{2}}{4} \frac{1}{2 m_{0}} \frac{-2 \mathrm{i}}{8 m_{0}^{3}}=\frac{\mathrm{i} \lambda^{2}}{32 m_{0}^{4}} . \tag{10}
\end{equation*}
$$

Problem 2

We found in the lectures that up to $O\left(\lambda^{2}\right)$, we had generally (without assuming anything about ω):

$$
\begin{equation*}
\omega^{2}-m_{0}^{2}-\Sigma_{0}(\omega) \simeq \omega^{2}-m_{0}^{2}-\frac{\lambda}{4 m_{0}}+\frac{\lambda^{2}}{32 m_{0}^{4}}-\frac{\lambda^{2}}{8 m_{0}^{2}} \frac{1}{\omega^{2}-9 m_{0}^{2}+\mathrm{i} \varepsilon} . \tag{11}
\end{equation*}
$$

Rewrite this as:

$$
\begin{equation*}
\omega^{2}-m_{0}^{2}-\Sigma_{0}(\omega) \simeq \omega^{2}-9 m_{0}^{2}+8 m_{0}^{2}-\frac{\lambda}{4 m_{0}}+\frac{\lambda^{2}}{32 m_{0}^{4}}-\frac{\lambda^{2}}{8 m_{0}^{2}} \frac{1}{\omega^{2}-9 m_{0}^{2}+\mathrm{i} \varepsilon} . \tag{12}
\end{equation*}
$$

We then observe that for $\omega^{2} \simeq 9 m_{0}^{2}$, the dominant terms will be:

$$
\begin{equation*}
\omega^{2}-m_{0}^{2}-\Sigma_{0}(\omega) \simeq 8 m_{0}^{2}-\frac{\lambda^{2}}{8 m_{0}^{2}} \frac{1}{\omega^{2}-9 m_{0}^{2}+\mathrm{i} \varepsilon} . \tag{13}
\end{equation*}
$$

We now omit i\& as it will have no consequence in what follows. Using the above result for $\omega^{2}-m_{0}^{2}-$ $\Sigma_{0}(\omega)$, the propagator now takes the form:

$$
\begin{equation*}
\frac{\mathrm{i}}{\omega^{2}-m_{0}^{2}-\Sigma_{0}(\omega)} \simeq \frac{\mathrm{i}\left(\omega^{2}-9 m_{0}^{2}\right) / 8 m_{0}^{2}}{\left(\omega^{2}-9 m_{0}^{2}\right)-\frac{\lambda^{2}}{64 m_{0}^{4}}} . \tag{14}
\end{equation*}
$$

Clearly, this has a pole at

$$
\begin{equation*}
\omega^{2}=9 m_{0}^{2}+\frac{\lambda^{2}}{64 m_{0}^{4}} . \tag{15}
\end{equation*}
$$

But be careful: setting $\lambda=0$ does not mean that the propagator has a pole at $\omega^{2}=9 m_{0}^{2}$ as is obvious by setting $\lambda=0$ in the original equation Eq. (11). Thus, our derived result is only valid for $\lambda \neq 0$ and for $\omega^{2} \simeq 9 m_{0}^{2}$.

With the identified pole, we can now identify the residue Z at this pole. Writing in general:

$$
\begin{equation*}
\frac{\mathrm{i}}{\omega^{2}-m_{0}^{2}-\Sigma_{0}(\omega)} \stackrel{\omega^{2} \simeq 9 m_{0}^{2}}{=} \frac{\mathrm{i} Z_{3}}{\omega^{2}-\left(9 m_{0}^{2}+\frac{\lambda^{2}}{64 m_{0}^{4}}\right)}, \tag{16}
\end{equation*}
$$

we see that the residue Z_{3} at the 3 -particle pole Eq. (15) is

$$
\begin{equation*}
Z=\left.\frac{\omega^{2}-9 m_{0}^{2}}{8 m_{0}^{2}}\right|_{\omega^{2}=9 m_{0}^{2}+\frac{\lambda^{2}}{64 m_{0}^{4}}}=\frac{\lambda^{2}}{512 m_{0}^{6}} . \tag{17}
\end{equation*}
$$

