FY3464 Quantum Field Theory
 Problemset 4

SUGGESTED SOLUTION

Problem 1

To find probability of the system being in a state $\left|\psi_{2}\right\rangle$ at time t_{2} when we know that it was in the state $\left|\psi_{1}\right\rangle$ at time t_{1}, i.e. $\left|\Psi, t_{1}\right\rangle=\left|\psi_{1}\right\rangle$, we need to compute the overlap amplitude $\left\langle\psi_{2} \mid \Psi, t_{2}\right\rangle$

$$
\begin{equation*}
\left\langle\psi_{2} \mid \Psi, t_{2}\right\rangle=\left\langle\psi_{2}\right| \mathrm{e}^{-\mathrm{i} H\left(t_{2}-t_{1}\right)}\left|\psi_{1}\right\rangle \equiv\left\langle\psi_{2}, t_{2} \mid \psi_{1}, t_{1}\right\rangle \tag{1}
\end{equation*}
$$

where we used that the state of the system $\left|\Psi, t_{2}\right\rangle$ at t_{2} is obtained by applying the time-evolution operator to $\left|\psi_{1}\right\rangle$. Now, insert two completeness relations at times t_{1} and time t_{2}, i.e. integrals over states with labels $\left|\boldsymbol{x}\left(t_{1}\right)\right\rangle$ and $\left|\boldsymbol{x}\left(t_{2}\right)\right\rangle$:

$$
\begin{equation*}
\left\langle\psi_{2} \mid \Psi, t_{2}\right\rangle=\iint\left\langle\psi_{2} \mid \boldsymbol{x}\left(t_{2}\right)\right\rangle\left\langle\boldsymbol{x}\left(t_{2}\right)\right| \mathrm{e}^{-\mathrm{i} H\left(t_{2}-t_{1}\right)}\left|\boldsymbol{x}\left(t_{1}\right)\right\rangle\left\langle\boldsymbol{x}\left(t_{1}\right) \mid \psi_{1}\right\rangle d \boldsymbol{x}\left(t_{2}\right) d \boldsymbol{x}\left(t_{1}\right) \tag{2}
\end{equation*}
$$

But we have already evaluated the quantity $\left\langle\boldsymbol{x}\left(t_{2}\right)\right| \mathrm{e}^{-\mathrm{i} H\left(t_{2}-t_{1}\right)}\left|\boldsymbol{x}\left(t_{1}\right)\right\rangle$ in the lectures [using the notation $\left.\boldsymbol{x}_{2}=\boldsymbol{x}\left(t_{2}\right)\right]$:

$$
\begin{equation*}
\left\langle\boldsymbol{x}\left(t_{2}\right)\right| \mathrm{e}^{-\mathrm{i} H\left(t_{2}-t_{1}\right)}\left|\boldsymbol{x}\left(t_{1}\right)\right\rangle=\left(\frac{m}{2 \pi \mathrm{i} \hbar \Delta t}\right)^{3 N / 2} \int \prod_{t_{1}<t<t_{2}} d \boldsymbol{x}(t) \mathrm{e}^{\mathrm{i} S / \hbar} \tag{3}
\end{equation*}
$$

Inserting this into Eq. (2) gives us:

$$
\begin{equation*}
\left.\left.\left\langle\Psi_{2} \mid \Psi, t_{2}\right\rangle=\left\langle\psi_{2}, t_{2} \mid \psi_{1}, t_{1}\right\rangle=\left(\frac{m}{2 \pi \mathrm{i} \hbar \Delta t}\right)^{3 N / 2} \int \prod_{t_{1} \leq t \leq t_{2}}(\psi] \boldsymbol{x}\left(t_{2}\right)\right]\right)^{*} \psi\left[\boldsymbol{x}\left(t_{1}\right)\right] \mathrm{e}^{\mathrm{i} S / \hbar} d \boldsymbol{x}(t) \tag{4}
\end{equation*}
$$

Problem 2

We start by considering the partition function

$$
\begin{equation*}
Z=\int \mathcal{D} \phi \mathrm{e}^{\mathrm{i} S}=\int \mathcal{D} \phi \exp \left[\mathrm{i} \int d t \frac{1}{2}\left(\partial_{0} \phi\right)^{2}-\frac{1}{2} \omega_{0}^{2} \phi^{2}+\mathrm{i} \varepsilon \phi^{2}+J \phi\right] \tag{5}
\end{equation*}
$$

where $\phi=\phi(t)$ and $J=J(t)$. Consider now the action S in the partition function and insert the Fourier-transform

$$
\begin{equation*}
\phi(t)=\frac{1}{2 \pi} \int d \omega \tilde{\phi}(\omega) \mathrm{e}^{-\mathrm{i} \omega t} \tag{6}
\end{equation*}
$$

and similarly for $J(t)$. After cleaning up the expression a bit, we end up with

$$
\begin{equation*}
S=\int \frac{d \omega}{2 \pi}\left(\frac{1}{2}\left(\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon\right) \tilde{\phi}(\omega) \tilde{\phi}(-\omega)+\tilde{J}(\omega) \tilde{\phi}(-\omega)\right) \tag{7}
\end{equation*}
$$

Now define new field variables

$$
\begin{equation*}
\tilde{\phi}^{\prime}(\omega) \equiv \tilde{\phi}(\omega)+\frac{\tilde{J}(\omega)}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon} \tag{8}
\end{equation*}
$$

Now express S in terms of the new fields $\tilde{\phi}^{\prime}$ and get:

$$
\begin{equation*}
S=\int \frac{d \omega}{2 \pi}\left(\frac{1}{2}\left(\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon\right) \tilde{\phi}^{\prime}(\omega) \tilde{\phi}^{\prime}(-\omega)-\frac{1}{2} \tilde{J}(\omega) \frac{1}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon} \tilde{J}(-\omega)\right) \tag{9}
\end{equation*}
$$

We can now Fourier-transform back, i.e. use

$$
\begin{equation*}
\tilde{\phi}^{\prime}(\omega)=\int d t \phi^{\prime}(t) \mathrm{e}^{\mathrm{i} \omega t} \tag{10}
\end{equation*}
$$

and similarly for $\tilde{J}(\omega)$, to obtain

$$
\begin{equation*}
S=\int d t\left(\frac{1}{2}\left(\frac{1}{2}\left[\partial_{0} \phi^{\prime}(t)\right]^{2}-\frac{1}{2} \omega_{0}^{2}\left[\phi^{\prime}(t)\right]^{2}+\mathrm{i} \varepsilon\left[\phi^{\prime}(t)\right]^{2}\right)-\frac{1}{2} \iint d t d t^{\prime} J(t)\left[G_{F}\left(t-t^{\prime}\right) / \mathrm{i}\right] J\left(t^{\prime}\right)\right. \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{F}\left(t-t^{\prime}\right)=\int \frac{d \omega}{2 \pi} \frac{\mathrm{e}^{-\mathrm{i} \omega\left(t-t^{\prime}\right)}}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon} \tag{12}
\end{equation*}
$$

Note that it follows from Eq. (8) that

$$
\begin{equation*}
\phi^{\prime}(t)=\phi(t)+\int \frac{d \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega t} \frac{\tilde{J}(\omega)}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon}=\phi(t)-\mathrm{i} \int d t^{\prime} J\left(t^{\prime}\right) G_{F}\left(t-t^{\prime}\right) \tag{13}
\end{equation*}
$$

since we have proven in the lectures that

$$
\begin{equation*}
\tilde{G}_{F}(\omega)=\frac{\mathrm{i}}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \varepsilon} \tag{14}
\end{equation*}
$$

We have thus shown that the partition function can be written as

$$
\begin{equation*}
Z=Z(J=0) \times \mathrm{e}^{-\frac{1}{2} \iint d t d t^{\prime} J(t) G_{F}\left(t-t^{\prime}\right) J\left(t^{\prime}\right)} \tag{15}
\end{equation*}
$$

