FY3464 Quantum Field Theory
 Problemset 3

SUGGESTED SOLUTION

Problem 1

Using the definition time-ordering operator, we see that

$$
\begin{equation*}
G_{F}(x-y)=\langle T\{\phi(x) \phi(y)\}\rangle=\int \frac{d \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}\left[\Theta\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}+\boldsymbol{\Theta}\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right] . \tag{1}
\end{equation*}
$$

Acting with the operator $\partial^{2}+m^{2}$ on $G_{F}\left(\partial^{2}=\partial_{\mu} \partial^{\mu}\right)$, we obtain:

$$
\begin{align*}
\left(\partial^{2}+m^{2}\right) G_{F}(x-y) & =\int \frac{d \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}\left[\partial _ { x ^ { 0 } } \left(\delta\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}-\mathrm{i} \omega \Theta\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}-\delta\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right.\right. \\
& \left.+\mathrm{i} \omega \Theta\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right) \\
& +\left(\boldsymbol{k}^{2}+m^{2}\right)\left[\boldsymbol{\Theta}\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}+\boldsymbol{\Theta}\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right] \\
& =\partial_{x^{0}} \int \frac{d \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}\left[\delta\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} \boldsymbol{k}(x-y)}-\delta\left(x^{0}-y^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right] \\
& +\int \frac{d \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}(-\mathrm{i} \omega)\left[\delta\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}-\delta\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right] \\
& +\int \frac{d \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}\left(-\omega^{2}+\boldsymbol{k}^{2}+m^{2}\right)\left[\boldsymbol{\Theta}\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k(x-y)}+\boldsymbol{\Theta}\left(y^{0}-x^{0}\right) \mathrm{e}^{\mathrm{i} k(x-y)}\right] . \tag{2}
\end{align*}
$$

We used above that $\delta(x)=\delta(-x)$. Recall that $k^{2}=\omega^{2}-\boldsymbol{k}^{2}=m^{2}$ and $k^{0}=\omega$. This is required in order for $\phi(x)$ to satisfy its equation of motion. Because of this, the term $\left(-\omega^{2}+\boldsymbol{k}^{2}+m^{2}\right)$ is zero. The first term on the rhs of the second equality sign in the equation above is also zero because:

$$
\begin{gather*}
\int \frac{d \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{2 \omega}\left[\boldsymbol{\delta}\left(x^{0}-y^{0}\right) \mathrm{e}^{-\mathrm{i} k^{0}\left(x^{0}-y^{0}\right)} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}-\delta\left(x^{0}-y^{0}\right) \mathrm{e}^{\mathrm{i} k^{0}\left(x^{0}-y^{0}\right)} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}\right] \\
\quad=\int \frac{d \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{2 \omega} \delta\left(x^{0}-y^{0}\right)\left[\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}-\mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}\right] \tag{3}
\end{gather*}
$$

by using that $\delta(x) f(x)=\delta(x) f(0)$. Thus, the above is equal to

$$
\begin{equation*}
\delta\left(x^{0}-y^{0}\right) \int \frac{d \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{2 \omega}\left[\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}-\mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}\right] \tag{4}
\end{equation*}
$$

and this expression is equal to zero, as can be seen by performing a variable shift $\boldsymbol{k} \rightarrow-\boldsymbol{k}$ in the second term and using that $\omega(\boldsymbol{k})=\omega(-\boldsymbol{k})$.

Therefore, all that remains of the original expression $\left(\partial^{2}+m^{2}\right) G_{F}$ is

$$
\begin{align*}
\left(\partial^{2}+m^{2}\right) G_{F}(x-y) & =-\mathrm{i} \int \frac{d \boldsymbol{k}}{(2 \pi)^{3}} \frac{1}{2} \delta\left(x^{0}-y^{0}\right)\left[\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}+\mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})}\right] \\
& =-\mathrm{i} \delta\left(x^{0}-y^{0}\right) \int \frac{d \boldsymbol{k}}{(2 \pi)^{3}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{y})} \\
& =-\mathrm{i} \delta^{4}(x-y) . \tag{5}
\end{align*}
$$

Problem 2

We start by noting that the total derivative of \mathcal{L} with respect to coordinate can be rewritten using the chain rule:

$$
\begin{equation*}
\frac{d \mathcal{L}}{d x_{v}} \equiv d^{v} \mathcal{L}=\frac{\partial \mathcal{L}}{\partial x_{v}}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)} \frac{\partial\left(\partial_{\mu} \phi_{\alpha}\right)}{\partial x_{v}}+\frac{\partial \mathcal{L}}{\partial \phi_{\alpha}} \frac{\partial \phi_{\alpha}}{\partial x_{v}} . \tag{6}
\end{equation*}
$$

The term $\frac{\partial \mathcal{L}}{\partial x_{v}} \equiv \partial^{v} \mathcal{L}$ is zero since we have translational invariance of the Lagrangian. Use now the Euler-Lagrange equation:

$$
\begin{equation*}
d_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)}\right)=\frac{\partial \mathcal{L}}{\partial \phi_{\alpha}} \tag{7}
\end{equation*}
$$

to rewrite Eq. (6) as

$$
\begin{equation*}
d^{v} \mathcal{L}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)} \partial_{\mu} \partial^{v} \phi_{\alpha}+d_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)}\right) \partial^{v} \phi_{\alpha} . \tag{8}
\end{equation*}
$$

Staring a little bit on the right hand side, we see that we can write it as the derivative of a product as follows:

$$
\begin{equation*}
d^{v} \mathcal{L}=d_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)} \partial^{v} \phi_{\alpha}\right), \tag{9}
\end{equation*}
$$

where we used that $d_{\mu} \phi_{\alpha}=\partial_{\mu} \phi_{\alpha}$, as seen from the definition of a total derivative:

$$
\begin{equation*}
d_{\mu}=\partial_{\mu}+\sum_{\alpha} \partial_{\mu} \phi_{\alpha} \frac{\partial}{\partial \phi_{\alpha}}+\sum_{\alpha v}\left(\partial_{\mu} \partial_{\nu} \phi_{\alpha}\right) \frac{\partial}{\partial\left(\partial_{\nu} \phi_{\alpha}\right)} . \tag{10}
\end{equation*}
$$

Since $d^{\nu} \mathcal{L}$ can be written as $\eta^{\mu \nu} d_{\mu} \mathcal{L}$, we can write the equation above as:

$$
\begin{equation*}
d_{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)} \partial^{v} \phi_{\alpha}-\eta^{\mu \nu} \mathcal{L}\right]=0 . \tag{11}
\end{equation*}
$$

The divergence of the expression inside the brackets is thus zero and we have identified the stressenergy tensor $T^{\mu v}$ satisfying $d_{\mu} T^{\mu v}=0$:

$$
\begin{equation*}
T^{\mu v}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{\alpha}\right)} \partial^{v} \phi_{\alpha}-\eta^{\mu v} \mathcal{L} . \tag{12}
\end{equation*}
$$

