FY3464 Quantum Field Theory Problemset 2

SUGGESTED SOLUTION

Problem 1

In light of the fact that \sqrt{z} is known to have branch-points at $z=0$ and $z \rightarrow \infty$, the candidates for branch points of $f(z)$ seems to be

- $z=\mathrm{i}$
- $z=-\mathrm{i}$
- $z \rightarrow \infty$.

Nowwe have

$$
\begin{equation*}
f(z)=\sqrt{z^{2}+1}=\sqrt{(z+\mathrm{i})(z-\mathrm{i})} \tag{1}
\end{equation*}
$$

Check $z=\mathrm{i}$ first. We set $z-\mathrm{i}=r \mathrm{e}^{\mathrm{i} \theta}$ and plug it into $f(z)$:

$$
\begin{equation*}
f(z)=\sqrt{r \mathrm{e}^{\mathrm{i} \theta}\left(r \mathrm{e}^{\mathrm{i} \theta}+2 \mathrm{i}\right)}=\sqrt{r} \mathrm{e}^{\mathrm{i} \theta / 2} \sqrt{r \mathrm{e}^{\mathrm{i} \theta}+2 \mathrm{i}} \tag{2}
\end{equation*}
$$

The result is clearly not invariant under $\theta \rightarrow \theta+2 \pi$ due to the $\mathrm{e}^{\mathrm{i} \theta / 2}$ factor. Same procedure shows that $z=-\mathrm{i}$ is also a branch point.

What about $z \rightarrow \infty$? Rewrite $f(z)$ to

$$
\begin{equation*}
f(z)=g(\xi)=\sqrt{1 / \xi^{2}+1} \tag{3}
\end{equation*}
$$

where $\xi \equiv 1 / z$. The question is now if $\xi=0$ is a branch point. Set $\xi=r \mathrm{e}^{\mathrm{i} \theta}$. As we let r be infinitesimal and perform $\theta \rightarrow \theta+2 \pi$, we see that the result is invariant. Thus, $z \rightarrow \infty$ is not a branch point.

Problem 2

With the assumption $\boldsymbol{x}=\boldsymbol{y}$ given in the problem text, we get

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{|\boldsymbol{k}|^{2} d|\boldsymbol{k}|}{\omega(|\boldsymbol{k}|)} \mathrm{e}^{-\mathrm{i} \omega\left(x^{0}-y^{0}\right)} \tag{4}
\end{equation*}
$$

where $\omega(k)=\sqrt{|\boldsymbol{k}|^{2}+m^{2}}$, and we used that there is no angular dependence in the integral over \boldsymbol{k} when $\boldsymbol{x}=\boldsymbol{y}$. Using

$$
\begin{equation*}
\frac{d \omega}{d|\boldsymbol{k}|}=\frac{|\boldsymbol{k}|}{\omega} \tag{5}
\end{equation*}
$$

we get:

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{1}{4 \pi^{2}} \int_{m}^{\infty} d \omega \sqrt{\omega^{2}-m^{2}} \mathrm{e}^{-\mathrm{i} \omega\left(x^{0}-y^{0}\right)} . \tag{6}
\end{equation*}
$$

Since this expression should be Lorentz-invariant, we can replace $x^{0}-y^{0}$ with $|x-y|$ (since we assumed $x^{0}-y^{0}>0$).

To solve the above integral, we make the variable substitution $r \equiv \omega / m-1$. This gives us

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{1}{4 \pi^{2}} m^{2} \mathrm{e}^{-\mathrm{i} m|x-y|} \int_{0}^{\infty} d r \sqrt{r^{2}+2 r} \mathrm{e}^{-\mathrm{i} r m|x-y|} . \tag{7}
\end{equation*}
$$

To make this integral convergent, we need to give the mass a small imaginary part: $m \rightarrow m-$ i ε where $\varepsilon>0$. This ensures that the integral vanishes in the limit $|x-y| \rightarrow \infty$, as is physically reasonable. We then end up with

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{1}{4 \pi^{2}} m^{2} \mathrm{e}^{-\mathrm{i} m|x-y|} \int_{0}^{\infty} d r \sqrt{r^{2}+2 r} \mathrm{e}^{-\mathrm{i} r m|x-y|} \mathrm{e}^{-\varepsilon r|x-y|} . \tag{8}
\end{equation*}
$$

Since this integrand contains no poles in the fourth quadrant, integrating it in the complex plane over a closed contour consisting of $\left(\lim _{R \rightarrow \infty}\right)[0, R]$, a circular arc extending from $z=R$ to $Z=-\mathrm{i} R$, and finally along $[-\mathrm{i} R, 0]$ must yield zero. The contribution from the circular arc vanishes due to the ε-factor. Therefore, promoting r to be a complex variable $(r \rightarrow z)$, we must have that

$$
\begin{equation*}
\int_{0}^{\infty} d z \ldots=\int_{0}^{-\mathrm{i} \infty} d z \ldots \tag{9}
\end{equation*}
$$

Shifting variables again to $\tau \equiv \mathrm{i} z$, we thus find that

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{1}{4 \pi^{2}} m^{2} \mathrm{e}^{-\mathrm{i} m|x-y|} \int_{0}^{\infty} d \tau \sqrt{\tau^{2}+2 \mathrm{i} \tau} \mathrm{e}^{-\tau m|x-y|} . \tag{10}
\end{equation*}
$$

In the limit $m|x-y| \gg 1$ that we are asked to consider, the integrand decays rapidly unless τ is small. Therefore, the main contribution to the integral will come from small values of τ where the τ^{2} inside the root can be neglected. We then obtain:

$$
\begin{align*}
\langle\phi(x) \phi(y)\rangle & =\frac{1}{4 \pi^{2}} m^{2} \mathrm{e}^{-\mathrm{i} m|x-y|} \sqrt{2 \mathrm{i}} \int_{0}^{\infty} d \tau \sqrt{\tau} \mathrm{e}^{-\tau m|x-y|} \\
& =\frac{1}{4 \pi^{2}} m^{2} \mathrm{e}^{-\mathrm{i} m|x-y|} \sqrt{2 \mathrm{i}} \frac{1}{2} \sqrt{\frac{\pi}{(m|x-y|)^{3}}} \\
& =\frac{1}{4 \pi^{2}}\left(\frac{m \pi \mathrm{i}}{2|x-y|^{3}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{i} m|x-y|} . \tag{11}
\end{align*}
$$

