FY3464 Quantum Field Theory
 Problemset 12

SUGGESTED SOLUTION

Problem 1

The starting assumption is that $k_{1} \neq-k_{2}$. In the case $n=m=1$, we start with

$$
\begin{equation*}
\int \prod_{j=1}^{2} \frac{k_{j}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} \mathrm{e}^{-\mathrm{i} k_{j} y_{j}}\left\langle T\left\{\phi\left(y_{1}\right) \phi\left(y_{2}\right) \phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}\right\rangle_{\mathrm{free}} \tag{1}
\end{equation*}
$$

Using Wick's theorem, this equals

$$
\begin{align*}
\int \prod_{j=1}^{2} & \frac{k_{j}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} \mathrm{e}^{-\mathrm{i} k_{j} y_{j}}=[\overbrace{\left\langle: \phi\left(y_{1}\right) \phi\left(y_{2}\right) \phi\left(x_{1}\right) \phi\left(x_{2}\right):\right\rangle_{\text {free }}}^{=0 \text { since }: A B C \ldots:|0\rangle_{\text {free }}=0}+\overbrace{\text { terms with two fields contracted }} \\
& =0 \text { for the same reason } \tag{2}\\
& +G_{F}\left(y_{1}-y_{2}\right) G_{F}\left(x_{1}-x_{2}\right)+G_{F}\left(y_{1}-x_{1}\right) G_{F}\left(y_{2}-x_{2}\right)+G_{F}\left(y_{1}-x_{2}\right) G_{F}\left(y_{2}-x_{1}\right) .
\end{align*}
$$

Looking back at our definition of $G_{F}(x-y)$, we see that it satisfies $G_{F}(x-y)=G_{F}(y-x)$. Therefore, we have that Eq. (2) may be written

$$
\begin{equation*}
\left[\int \prod_{j=1}^{2} d^{4} y_{j} \frac{k_{j}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} \mathrm{e}^{-\mathrm{i} k_{j} y_{j}} G_{F}\left(y_{1}-y_{2}\right) G_{F}\left(x_{1}-x_{2}\right)\right]+\mathrm{e}^{-\mathrm{i}\left(k_{1} x_{1}+k_{2} x_{2}\right)}+\mathrm{e}^{-\mathrm{i}\left(k_{1} x_{2}+k_{2} x_{1}\right)} \tag{3}
\end{equation*}
$$

by using that

$$
\begin{equation*}
\tilde{G}_{F}(k)=\int d^{4} y \mathrm{e}^{\mathrm{i} k y} G_{F}(y)=\frac{\mathrm{i}}{k^{2}-m^{2}+\mathrm{i} \varepsilon} \tag{4}
\end{equation*}
$$

Thus, Eq. (3) gives the desired result if we can prove that the first term (the integral) is zero. We solve this integral by shifting measure from $d^{4} y_{1} d^{4} y_{2}$ to $d^{4} y d^{4} y_{2}$ with $y=y_{1}-y_{2}$ being the relative coordinate. The Jacobian of this transformation is

$$
\operatorname{det}\left|\begin{array}{cc}
\partial y / \partial y_{1} & \partial y / \partial y_{2} \tag{5}\\
\partial y_{2} / \partial y_{1} & \partial y_{2} / \partial y_{1}
\end{array}\right|=\operatorname{det}\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|=1
$$

so $d^{4} y_{1} d^{4} y_{2}=d^{4} y d^{4} y_{2}$. We thus obtain that the first term in Eq. (3) is

$$
\begin{align*}
& \iint d^{4} y d^{4} y_{2} \frac{k_{1}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} \frac{k_{2}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} G_{F}(y) \mathrm{e}^{-\mathrm{i} k_{1} y_{1}-\mathrm{i} k_{2} y_{2}} G_{F}\left(x_{1}-x_{2}\right) \\
& =\iint d^{4} y d^{4} y_{2} \frac{k_{1}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} \frac{k_{2}^{2}-m^{2}+\mathrm{i} \varepsilon}{\mathrm{i}} G_{F}(y) \mathrm{e}^{-\mathrm{i} k_{1}\left(y_{1}-y_{2}\right)-\mathrm{i} y_{2}\left(k_{1}+k_{2}\right)} G_{F}\left(x_{1}-x_{2}\right) \\
& =\left[\int d^{4} y_{2} \tilde{G_{F}}\left(-k_{1}\right) \mathrm{e}^{-\mathrm{i} y_{2}\left(k_{1}+k_{2}\right)}\right] G_{F}\left(x_{1}-x_{2}\right) \\
& =(2 \pi)^{4} \delta\left(k_{1}+k_{2}\right) G_{F}\left(x_{1}-x_{2}\right) \tilde{G}_{F}\left(-k_{1}\right) . \tag{6}
\end{align*}
$$

This is zero since our initial assumption was that $k_{1} \neq-k_{2}$, which completes the proof.

