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FY3464 Quantum Field Theory

Problemset 11
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
We want to compute CP(iψ̄γ5ψ)PC.

Consider first P(iψ̄γ5ψ)P. We know that Pψ̄P = ψ̄γ0 and PψP = γ0ψ. Therefore,
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ψ)P = iψ̄γ
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γ
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ψ =−iψ̄γ

5
ψ. (1)

We are left with C(−iψ̄γ5ψ)C and we know that CψC = iγ2ψ∗, Cψ̄C = iψT γ2γ0. The latter follows by
using that (γ2)† =−γ2. We thus obtain
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Now use that (γ2)2 =−1 and that γ2 anticommutes with γ0 and γ5:
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were we used the anticommutativity of the Dirac spinor elements. Now we use that

(γ0
γ
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and thus finally obtain
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Problem 2
Start by considering the action in the problem:

S =
∫

dt
(

ψ̄(t)(i∂0 −m+ iε)ψ(t)+ η̄(t)ψ(t)+ ψ̄(t)η(t)
)
. (6)

The Fourier-transformations of the field ψ and the source η is:

ψ(t) =
1

2π

∫
ψ̃(ω)e−iωt , η(t) =

1
2π

∫
η̃(ω)e−iωt . (7)

It then follows that

ψ̄(t) =
1

2π

∫
˜̄ψ(ω)eiωt , η̄(t) =

1
2π

∫
˜̄η(ω)eiωt . (8)

Inserting these into S, we obtain:∫ dω

2π

(
˜̄ψ(ω)(ω−m+ iε)ψ̃(ω)+ ˜̄η(ω)ψ̃(ω) = ˜̄ψ(ω)η̃(ω)

)
. (9)
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Now define the new fields:

ψ̃
′(ω)≡ ψ̃(ω)+

η(ω)

ω−m+ iε
, ˜̄ψ′′(ω)≡ ˜̄ψ(ω)+

η̄(ω)

ω−m+ iε
. (10)

Expressing S in terms of these new fields, we obtain:∫ dω

2π

(
˜̄ψ′′(ω)(ω−m+ iε)ψ̃′(ω)−

˜̄η(ω)η(ω)
ω−m+ iε

)
. (11)

If we now Fourier-transform back to time-space, we obtain∫
dtψ̄′′(t)(i∂0 −m+ iε)ψ′(t)−

∫ ∫
dtdt ′η̄(t)

( 1
2π

∫
dω

e−iω(t−t ′)

ω−m+ iε

)
η(t ′) (12)

Note that

ψ
′(t) =

1
2π

∫
e−iωt

(
ψ̃(ω)+

η(ω)

ω−m+ iε

)
dω

= ψ(t)+
∫

dt ′η(t ′)

−iSF (t−t ′)︷ ︸︸ ︷( 1
2π

∫
dω

e−iω(t−t ′)

ω−m+ iε

)
= ψ(t)− iSFη(t), (13)

just like we wrote in the lectures. Similarly for ψ̄′′(t). Since ψ′ are just shifted by a constant relative
ψ, so that Dψ = Dψ′, we obtain for Eq. (12) (after renaming ψ′ to ψ and ψ̄′′ to ψ̄):

S =
∫

dtψ̄(t)(i∂0 −m+ iε)ψ(t)− 1
i

∫ ∫
dtdt ′η̄(t)SF(t − t ′)η(t ′), (14)

where

SF(t − t ′) =
1

2π

∫
dω

i
ω−m0 + iε

e−iω(t−t ′). (15)

All that remains is to verify that SF(t − t ′) satisfies the equation given in the problem text. Using the
residue-theorem and that the integrand of Eq. (15) has a pole at ω = m− iε, this is straight-forward
to verify using the residue-theorem (close the contour in the lower half-plane for t − t ′ > 0 and in
the upper half-plane for t − t ′ < 0). Finally, to confirm that SF(t − t ′) also satisfies the Eq. (15) for
t = t ′, observe that SF → 1 for t−> t ′ from above while SF = 0 for t−> t ′ from below. Hence, it is
a step-function at t = t ′ and its derivative is a Dirac-delta function, as is consistent with the equation
of motion.

Problem 3
Suppose that a massive particle (m ̸= 0) has spin pointing backward along its line of flight, so that
⟨σ⟩ ∥ −k. It is a left-handed particle. But since it is massive, there exists a Lorentz-boost Λ bringing
us to the rest frame of the particle. Boosting even further, beyond this rest frame, brings us to a frame
where the particle is moving in the opposite direction of what it did in the original frame. But since
its spin is unchanged, the particle is now right-handed.

Instead, if m = 0, the particle has no rest frame since it moves with the speed of light c. Thus, we can
never change the handedness of the particle. A left-handed particle is always a left-handed particle
ina ny reference frame, and is thus Lorentz-invariant.


