FY3464 Quantum Field Theory
 Problemset 11

SUGGESTED SOLUTION

Problem 1

We want to compute $C P\left(\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) P C$.
Consider first $P\left(\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) P$. We know that $P \bar{\psi} P=\bar{\psi} \gamma^{0}$ and $P \psi P=\gamma^{0} \psi$. Therefore,

$$
\begin{equation*}
P\left(\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) P=\mathrm{i} \bar{\psi} \gamma^{0} \gamma^{5} \gamma^{0} \psi=-\mathrm{i} \bar{\psi} \gamma^{5} \psi . \tag{1}
\end{equation*}
$$

We are left with $C\left(-\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) C$ and we know that $C \psi C=\mathrm{i} \gamma^{2} \psi^{*}, C \bar{\psi} C=\mathrm{i} \psi^{T} \gamma^{2} \gamma^{0}$. The latter follows by using that $\left(\gamma^{2}\right)^{\dagger}=-\gamma^{2}$. We thus obtain

$$
\begin{equation*}
C\left(-\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) C=-\mathrm{i}\left[\mathrm{i} \psi^{T} \gamma^{2} \gamma^{0}\right] \gamma^{5}\left[\mathrm{i} \gamma^{2} \psi^{*}\right]=\psi^{T} \gamma^{2} \gamma^{0} \gamma^{5} \gamma^{2} \psi^{*} . \tag{2}
\end{equation*}
$$

Now use that $\left(\gamma^{2}\right)^{2}=-1$ and that γ^{2} anticommutes with γ^{0} and γ^{5} :

$$
\begin{equation*}
C\left(-\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) C=-\mathrm{i} \psi^{T} \gamma^{0} \gamma^{5} \psi=-\mathrm{i} \psi_{\alpha}\left(\gamma^{0} \gamma^{5}\right)_{\alpha \beta} \psi_{\beta}^{*}=\mathrm{i} \psi_{\beta}^{*}\left(\gamma^{0} \gamma^{5}\right)_{\alpha \beta} \psi_{\alpha} \tag{3}
\end{equation*}
$$

were we used the anticommutativity of the Dirac spinor elements. Now we use that

$$
\begin{equation*}
\left(\gamma^{0} \gamma^{5}\right)_{\alpha \beta}=\left[\left(\gamma^{0} \gamma^{5}\right)^{T}\right]_{\beta \alpha}=\left(\gamma^{5} \gamma^{0}\right)_{\beta \alpha}=-\left(\gamma^{0} \gamma^{5}\right)_{\beta \alpha} \tag{4}
\end{equation*}
$$

and thus finally obtain

$$
\begin{equation*}
C P\left(\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) P C=C\left(-\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) C=-\mathrm{i} \psi_{\beta}^{*}\left(\gamma^{0} \gamma^{5}\right)_{\beta \alpha} \psi_{\alpha}=-\mathrm{i} \bar{\psi} \gamma^{5} \psi . \tag{5}
\end{equation*}
$$

Problem 2

Start by considering the action in the problem:

$$
\begin{equation*}
S=\int d t\left(\bar{\psi}(t)\left(\mathrm{i} \partial_{0}-m+\mathrm{i} \varepsilon\right) \psi(t)+\bar{\eta}(t) \psi(t)+\bar{\psi}(t) \eta(t)\right) . \tag{6}
\end{equation*}
$$

The Fourier-transformations of the field ψ and the source η is:

$$
\begin{equation*}
\psi(t)=\frac{1}{2 \pi} \int \tilde{\Psi}(\omega) \mathrm{e}^{-\mathrm{i} \omega t}, \eta(t)=\frac{1}{2 \pi} \int \tilde{\eta}(\omega) \mathrm{e}^{-\mathrm{i} \omega t} . \tag{7}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\bar{\psi}(t)=\frac{1}{2 \pi} \int \tilde{\bar{\Psi}}(\omega) \mathrm{e}^{\mathrm{i} \omega t}, \bar{\eta}(t)=\frac{1}{2 \pi} \int \tilde{\eta}(\omega) \mathrm{e}^{\mathrm{i} \omega t} . \tag{8}
\end{equation*}
$$

Inserting these into S, we obtain:

$$
\begin{equation*}
\int \frac{d \omega}{2 \pi}(\tilde{\tilde{\Psi}}(\omega)(\omega-m+\mathrm{i} \varepsilon) \tilde{\Psi}(\omega)+\tilde{\eta}(\omega) \tilde{\Psi}(\omega)=\tilde{\tilde{\Psi}}(\omega) \tilde{\eta}(\omega)) . \tag{9}
\end{equation*}
$$

Now define the new fields:

$$
\begin{equation*}
\tilde{\psi}^{\prime}(\omega) \equiv \tilde{\psi}(\omega)+\frac{\eta(\omega)}{\omega-m+\mathrm{i} \varepsilon}, \tilde{\bar{\psi}}^{\prime \prime}(\omega) \equiv \tilde{\bar{\psi}}(\omega)+\frac{\bar{\eta}(\omega)}{\omega-m+\mathrm{i} \varepsilon} \tag{10}
\end{equation*}
$$

Expressing S in terms of these new fields, we obtain:

$$
\begin{equation*}
\int \frac{d \omega}{2 \pi}\left(\tilde{\bar{\psi}}^{\prime \prime}(\omega)(\omega-m+\mathrm{i} \varepsilon) \tilde{\psi}^{\prime}(\omega)-\frac{\tilde{\bar{\eta}}(\omega) \eta(\omega)}{\omega-m+\mathrm{i} \varepsilon}\right) \tag{11}
\end{equation*}
$$

If we now Fourier-transform back to time-space, we obtain

$$
\begin{equation*}
\int d t \bar{\psi}^{\prime \prime}(t)\left(\mathrm{i} \partial_{0}-m+\mathrm{i} \varepsilon\right) \psi^{\prime}(t)-\iint d t d t^{\prime} \bar{\eta}(t)\left(\frac{1}{2 \pi} \int d \omega \frac{\mathrm{e}^{-\mathrm{i} \omega\left(t-t^{\prime}\right)}}{\omega-m+\mathrm{i} \varepsilon}\right) \eta\left(t^{\prime}\right) \tag{12}
\end{equation*}
$$

Note that

$$
\begin{align*}
\psi^{\prime}(t) & =\frac{1}{2 \pi} \int \mathrm{e}^{-\mathrm{i} \omega t}\left(\tilde{\psi}(\omega)+\frac{\eta(\omega)}{\omega-m+\mathrm{i} \varepsilon}\right) d \omega \\
& =\psi(t)+\int d t^{\prime} \eta\left(t^{\prime}\right) \overbrace{\left(\frac{1}{2 \pi} \int d \omega \frac{\mathrm{e}^{-\mathrm{i} \omega\left(t-t^{\prime}\right)}}{\omega-m+\mathrm{i} \varepsilon}\right)}^{-\mathrm{i} S_{F}\left(t-t^{\prime}\right)} \\
& =\psi(t)-\mathrm{i} S_{F} \eta(t) \tag{13}
\end{align*}
$$

just like we wrote in the lectures. Similarly for $\bar{\psi}^{\prime \prime}(t)$. Since ψ^{\prime} are just shifted by a constant relative ψ, so that $\mathcal{D} \psi=\mathcal{D} \psi^{\prime}$, we obtain for Eq. 12 (after renaming ψ^{\prime} to ψ and $\bar{\psi}^{\prime \prime}$ to $\bar{\psi}$):

$$
\begin{equation*}
S=\int d t \bar{\psi}(t)\left(\mathrm{i} \partial_{0}-m+\mathrm{i} \varepsilon\right) \psi(t)-\frac{1}{\mathrm{i}} \iint d t d t^{\prime} \bar{\eta}(t) S_{F}\left(t-t^{\prime}\right) \eta\left(t^{\prime}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{F}\left(t-t^{\prime}\right)=\frac{1}{2 \pi} \int d \omega \frac{\mathrm{i}}{\omega-m_{0}+\mathrm{i} \varepsilon} \mathrm{e}^{-\mathrm{i} \omega\left(t-t^{\prime}\right)} \tag{15}
\end{equation*}
$$

All that remains is to verify that $S_{F}\left(t-t^{\prime}\right)$ satisfies the equation given in the problem text. Using the residue-theorem and that the integrand of Eq. (15) has a pole at $\omega=m-\mathrm{i} \varepsilon$, this is straight-forward to verify using the residue-theorem (close the contour in the lower half-plane for $t-t^{\prime}>0$ and in the upper half-plane for $t-t^{\prime}<0$). Finally, to confirm that $S_{F}\left(t-t^{\prime}\right)$ also satisfies the Eq. (15) for $t=t^{\prime}$, observe that $S_{F} \rightarrow 1$ for $t->t^{\prime}$ from above while $S_{F}=0$ for $t->t^{\prime}$ from below. Hence, it is a step-function at $t=t^{\prime}$ and its derivative is a Dirac-delta function, as is consistent with the equation of motion.

Problem 3

Suppose that a massive particle $(m \neq 0)$ has spin pointing backward along its line of flight, so that $\langle\boldsymbol{\sigma}\rangle \|-\boldsymbol{k}$. It is a left-handed particle. But since it is massive, there exists a Lorentz-boost Λ bringing us to the rest frame of the particle. Boosting even further, beyond this rest frame, brings us to a frame where the particle is moving in the opposite direction of what it did in the original frame. But since its spin is unchanged, the particle is now right-handed.

Instead, if $m=0$, the particle has no rest frame since it moves with the speed of light c. Thus, we can never change the handedness of the particle. A left-handed particle is always a left-handed particle ina ny reference frame, and is thus Lorentz-invariant.

