FY3464 Quantum Field Theory Problemset 10

SUGGESTED SOLUTION

Problem 1

The Dirac Lagrangian is

$$\mathcal{L} = i\bar{\psi}(x)\partial \psi(x) - m\bar{\psi}(x)\psi(x), \tag{1}$$

with $\partial = \partial_{\mu}\gamma^{\mu}$. Performing the transformation given in the problem text gives

$$\mathcal{L} = i\bar{\psi}'(x')\partial''\psi'(x') - m\bar{\psi}'(x')\psi'(x'), \qquad (2)$$

where $\partial' = \partial'_{\mu} \gamma^{\mu}$. We know that

$$\psi'(x') = U_{\gamma}\psi(x). \tag{3}$$

Based on this, it follows that

$$\bar{\psi}'(x') = \bar{\psi}(x)U_{\gamma}^{-1}.\tag{4}$$

by using that $U_{\gamma} = e^{i\omega_{\mu\nu}S^{\mu\nu}/2}$ and $(S^{\mu\nu})^{\dagger} = \gamma^0 S^{\mu\nu} \gamma^0$. The latter can be verified from its definition. Taken in combination, this gives

$$\gamma^0 U^{\dagger}_{\gamma} \gamma^0 = U^{-1}_{\gamma}. \tag{5}$$

Based on Eqs. (3) and (4), it is clear that the mass-term in \mathcal{L} is invariant:

$$m\bar{\psi}'(x')\psi'(x') = m^2[\bar{\psi}(x)U_{\gamma}^{-1}]U_{\gamma}\psi(x)$$

= $m\bar{\psi}(x)\psi(x).$ (6)

Now for the kinetic term, which requires a bit more care. We have

$$\bar{\psi}'(x')\gamma^{\mu}\partial'_{\mu}\psi'(x')\bar{\psi}'(x') = \bar{\psi}(x)U_{\gamma}^{-1}\gamma^{\mu}\Lambda_{\mu}^{\nu}\partial_{\nu}U_{\gamma}\psi(x).$$
⁽⁷⁾

Now recall that we previously derived the following identity:

$$\Lambda^{\mu}_{\ \nu}\gamma^{\nu} = U^{-1}_{\gamma}\gamma^{\mu}U_{\gamma}.$$
(8)

Since $\delta^{\sigma}_{\mu} = \Lambda^{\rho}_{\ \mu} \Lambda^{\sigma}_{\rho}$, multiplying Eq. (8) with $\Lambda^{\ \lambda}_{\mu}$ gives

$$\gamma^{\lambda} = U_{\gamma}^{-1} \Lambda_{\mu}^{\ \lambda} \gamma^{\mu} U_{\gamma}. \tag{9}$$

Using this in Eq. (7), we get

$$\bar{\Psi}(x)U_{\gamma}^{-1}\gamma^{\mu}\Lambda_{\mu}^{\nu}\partial_{\nu}U_{\gamma}\Psi(x) = \bar{\Psi}(x)\gamma^{\nu}\partial_{\nu}\Psi(x), \qquad (10)$$

FY3464 PROBLEMSET 10 which proves in the invariance of \mathcal{L} .

Problem 2

You were given a head-start on this problem in the lectures, but let's start from the beginning any way.

We recall first that when the Lagrangian transforms as

$$\mathcal{L} \to \mathcal{L} + \varepsilon \partial_{\mu} J^{\mu} \tag{11}$$

under a field transformation $\phi(x) \rightarrow \phi(x) + \varepsilon f[\phi(x)]$, then the conserved current is

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} f(\phi) - J^{\mu}.$$
 (12)

Now we consider the specific transformation that we're interested in:

$$\Psi(x) \to \Psi'(x) = \Psi(x) + \delta \Psi(x). \tag{13}$$

We need to find out what $\delta \psi(x)$ is for an infinitesimal transformation. We have previously derived that

$$\psi'(x') = U_{\gamma}(\Lambda)\psi(x), \ U_{\gamma}(\Lambda) = e^{i\varepsilon_{\mu\nu}S^{\mu\nu}/2}, \tag{14}$$

for an infinitesimal transformation $\varepsilon_{\mu\nu}$. Moreover, we know that

$$x' = U^{-1}(\Lambda)x, U(\Lambda) = e^{i\epsilon_{\mu\nu}J^{\mu\nu}/2}$$
(15)

where $J^{\mu\nu} = i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})$. From now on, drop the argument (A) in the U and U_{γ} operators for brevity of notation, but keep the important distinction between U_{γ} and U. Taylor-expanding, it is seen that

$$\Psi(Ux) = U\Psi(x) \tag{16}$$

for an infinitesimal transformation $U = 1 - \epsilon_{\mu\nu} J^{\mu\nu}/2$ and using the definition of $J^{\mu\nu}$. Therefore, we have that

$$\psi'(x) = \psi(x) + \frac{\mathrm{i}}{2} \varepsilon_{\mu\nu} (S^{\mu\nu} + J^{\mu\nu}) \psi(x), \qquad (17)$$

allowing us to identify:

$$\delta \Psi(x) = \frac{i}{2} [S^{\mu\nu} + i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu}).$$
(18)

This expression gives us part of the conserved current [the *f*-term in Eq. (12)]. Next, we need to identify $\delta \mathcal{L}$ to see if there is a *J*-term as well. The transformed Lagrangian is

$$\mathcal{L}'(x) = \mathcal{L}(x) + \delta \mathcal{L}(x) = \bar{\psi}'(x)(i\partial' - m)\psi'(x)$$

$$= \psi^{\dagger}(Ux)U_{\gamma}^{\dagger}\gamma^{0}i\gamma^{\mu}\partial_{\mu}U_{\gamma}\psi(Ux)$$

$$-\psi^{\dagger}(Ux)U_{\gamma}^{\dagger}\gamma^{0}U_{\gamma}\psi(Ux)m.$$
(19)

FY3464 Problemset 10

For an infinitesimal transformation $U = 1 - \frac{1}{2} \epsilon_{\mu\nu} (x^{\mu} \partial^{\nu} - x^{\nu} \partial^{\mu})$, we saw previously that $\psi(Ux) = U\psi(x)$. Using also that the U_{γ} matrices are not unitary, since $U_{\gamma}^{\dagger} = \gamma^0 U_{\gamma}^{-1} \gamma^0$, we obtain

$$\mathcal{L}'(x) = iU\bar{\psi}(x)\Lambda^{\mu}_{\nu}\gamma^{\nu}\partial_{\mu}U\psi(x) - U\bar{\psi}(x)U\psi(x)m.$$
⁽²⁰⁾

PAGE 3 OF 4

To obtain this equation, we made use of $\Lambda^{\mu}_{\nu}\gamma^{\nu} = U_{\gamma}^{-1}\gamma^{\mu}U_{\gamma}$ and that

$$\Psi^{\dagger}(Ux) = [\Psi(Ux)]^{\dagger} = [U\Psi(x)]^{\dagger} = U\Psi^{\dagger}(x)$$
(21)

since the [†] means the complex conjugate and matrix transpose operation here, leaving the sign of the ∂ operators in *U* unaffected by the [†] operation (unlike the [†] denoting an adjoint operator, defined from the inner product involving an operator, in which case $\partial_{\mu}^{\dagger} = -\partial_{\mu}$). In passing, we make note of the following property which will be useful later:

$$(\partial^{\nu} x^{\mu} - \partial^{\mu} x^{\nu}) \mathcal{L} = (x^{\mu} \partial^{\nu} - x^{\nu} \partial^{\mu}) \mathcal{L}.$$
(22)

Now insert into Eq. (20)

$$U = 1 - \frac{1}{2} \varepsilon_{\mu\nu} (x^{\mu} \partial^{\nu} - x^{\nu} \partial^{\mu})$$
(23)

and also $\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \epsilon^{\mu}_{\nu}$ for our infinitesimal Lorentz-transformation. We then obtain [dropping from now on the argument (x) on all $\bar{\psi}$ and ψ for brevity of notation]:

$$\mathcal{L}'(x) = i\bar{\psi}\partial'\psi - \bar{\psi}m\psi + \left[-\frac{i}{2}\epsilon_{\mu\nu}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\bar{\psi}\delta^{\lambda}_{\sigma}\gamma^{\sigma}\partial_{\lambda}\psi + i\bar{\psi}\epsilon_{\nu}^{\ \mu}\gamma^{\nu}\partial_{\mu}\psi + i\bar{\psi}\delta^{\lambda}_{\sigma}\gamma^{\sigma}\partial_{\lambda}(-\frac{1}{2})\epsilon_{\mu\nu}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\psi + \frac{m}{2}\epsilon_{\mu\nu}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\bar{\psi}\cdot\psi + \frac{m}{2}\bar{\psi}\epsilon_{\mu\nu}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\psi\right].$$
(24)

After some simplifications, we can write this as

$$\mathcal{L}'(x) = \mathcal{L} + \frac{1}{2} \varepsilon_{\mu\nu} \partial_{\lambda} [m(\eta^{\lambda\nu} x^{\mu} - \eta^{\lambda\mu} x^{\nu})(\bar{\psi}\psi)] + \frac{\varepsilon_{\mu\nu}}{2} [2i\bar{\psi}\eta^{\nu\lambda}\gamma^{\mu}\partial_{\lambda}\psi - i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\bar{\psi}\cdot\partial^{\lambda}\psi - i\bar{\psi}\partial^{\lambda}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\psi], \qquad (25)$$

where we, among other things, used that $\epsilon_{\nu}^{\ \mu} = \eta^{\sigma\mu}\epsilon_{\nu\sigma}$ and afterwards renamed the indices for the corresponding term.

We're almost there now, hang in there a little while longer. First, we want to move the x^{μ} and x^{ν} in the last term to the left of the ∂ . This is achieved by using the commutator

$$[\partial_{\lambda}, x^{\mu}] = \delta^{\mu}_{\lambda} \tag{26}$$

and by using that the infinitesimal displacement tensor $\varepsilon_{\mu\nu}$ is antisymmetric. Moving the x^{μ} and x^{ν} terms past the ∂ in this way then *cancels* the first term on the second line: $2i\bar{\psi}\gamma^{\mu}\partial^{\nu}\psi$. We are then left with

$$\mathcal{L}' = \mathcal{L} + \frac{\varepsilon_{\mu\nu}}{2} \partial_{\lambda} [-(\eta^{\nu\lambda} x^{\mu} - \eta^{\mu\lambda} x^{\nu}) \mathcal{L}_{m}] + \frac{\varepsilon_{\mu\nu}}{2} [-i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\bar{\psi} \cdot \partial^{\prime}\psi - i\bar{\psi}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\partial^{\prime}\psi], \qquad (27)$$

FY3464 Problemset 10

PAGE 4 OF 4

where \mathcal{L}_m is the *m*-dependent part of \mathcal{L} . Making use of Eq. (22) on the second line, we get

$$\mathcal{L}' = \mathcal{L} + \frac{\varepsilon_{\mu\nu}}{2} \partial_{\lambda} [-(\eta^{\nu\lambda} x^{\mu} - \eta^{\lambda\mu} x^{\nu}) \mathcal{L}_m] + \frac{\varepsilon_{\mu\nu}}{2} \partial_{\lambda} [-i(\eta^{\nu\lambda} x^{\mu} - \eta^{\lambda\mu} x^{\nu}) \mathcal{L}_{kin}]$$
(28)

where \mathcal{L}_{kin} is the kinetic energy part of the Dirac Lagrangian. Since $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_m$, we have therefore arrived at

$$\mathcal{L}' = \mathcal{L} + \frac{\varepsilon_{\mu\nu}}{2} \partial_{\lambda} [-(\eta^{\nu\lambda} x^{\mu} - \eta^{\lambda\mu} x^{\nu})\mathcal{L}].$$
⁽²⁹⁾

Here, ∂_{λ} acts on the $\psi(x), \bar{\psi}(x)$ terms in $\mathcal{L} = \mathcal{L}(x)$. By instead considering \mathcal{L} as a function of $\psi, \bar{\psi}$, and *x*, i.e. $\mathcal{L} = \mathcal{L}(\psi, \bar{\psi}, x)$, we can replace ∂_{λ} with a total derivative d_{λ} and thus identify

$$J^{\lambda\mu\nu} = -(\eta^{\nu\lambda}x^{\mu} - \eta^{\lambda\mu}x^{\nu})\mathcal{L}.$$
(30)

At long last, the conserved Noether current satisfying $d_{\lambda} j^{\lambda \mu \nu} = 0$ is now established:

$$j^{\lambda\mu\nu} = \frac{\partial \mathcal{L}}{\partial [\partial_{\lambda}\psi(x)]}(i)[S^{\mu\nu} + i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})]\psi(x) + (\eta^{\nu\lambda}x^{\mu} - \eta^{\mu\lambda}x^{\nu})\mathcal{L}.$$
(31)

If you managed to derive this current without looking at this solution, I am impressed.