## FY3464 Quantum Field Theory <br> Problemset 10

## SUGGESTED SOLUTION

## Problem 1

The Dirac Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\mathrm{i} \bar{\psi}(x) \not \subset \mathcal{\psi}(x)-m \bar{\psi}(x) \psi(x) \tag{1}
\end{equation*}
$$

with $\gamma^{\prime}=\partial_{\mu} \gamma^{\mu}$. Performing the transformation given in the problem text gives

$$
\begin{equation*}
\mathcal{L}=\mathrm{i} \bar{\psi}^{\prime}\left(x^{\prime}\right) q^{\prime} \psi^{\prime}\left(x^{\prime}\right)-m \bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right) \tag{2}
\end{equation*}
$$

where $\chi^{\prime}=\partial_{\mu}^{\prime} \gamma^{\mu}$. We know that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}\right)=U_{\gamma} \psi(x) \tag{3}
\end{equation*}
$$

Based on this, it follows that

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) U_{\gamma}^{-1} . \tag{4}
\end{equation*}
$$

by using that $U_{\gamma}=\mathrm{e}^{\mathrm{i} \omega_{\mu \nu} S^{\mu \nu} / 2}$ and $\left(S^{\mu \nu}\right)^{\dagger}=\gamma^{0} S^{\mu \nu} \gamma^{0}$. The latter can be verified from its definition. Taken in combination, this gives

$$
\begin{equation*}
\gamma^{0} U_{\gamma}^{\dagger} \gamma^{0}=U_{\gamma}^{-1} \tag{5}
\end{equation*}
$$

Based on Eqs. (3) and (4), it is clear that the mass-term in $\mathcal{L}$ is invariant:

$$
\begin{align*}
m \bar{\Psi}^{\prime}\left(x^{\prime}\right) \Psi^{\prime}\left(x^{\prime}\right) & =m^{2}\left[\bar{\psi}(x) U_{\gamma}^{-1}\right] U_{\gamma} \psi(x) \\
& =m \bar{\psi}(x) \psi(x) \tag{6}
\end{align*}
$$

Now for the kinetic term, which requires a bit more care. We have

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}\left(x^{\prime}\right) \bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) U_{\gamma}^{-1} \gamma^{\mu} \Lambda_{\mu}^{v} \partial_{\nu} U_{\gamma} \psi(x) . \tag{7}
\end{equation*}
$$

Now recall that we previously derived the following identity:

$$
\begin{equation*}
\Lambda_{v}^{\mu} \gamma^{\nu}=U_{\gamma}^{-1} \gamma^{\mu} U_{\gamma} \tag{8}
\end{equation*}
$$

Since $\delta_{\mu}^{\sigma}=\Lambda^{\rho}{ }_{\mu} \Lambda_{\rho}^{\sigma}$, multiplying Eq. 8] with $\Lambda_{\mu}{ }^{\lambda}$ gives

$$
\begin{equation*}
\gamma^{\lambda}=U_{\gamma}^{-1} \Lambda_{\mu}^{\lambda} \gamma^{\mu} U_{\gamma} . \tag{9}
\end{equation*}
$$

Using this in Eq. (7), we get

$$
\begin{equation*}
\bar{\psi}(x) U_{\gamma}^{-1} \gamma^{\mu} \Lambda_{\mu}{ }^{v} \partial_{\nu} U_{\gamma} \psi(x)=\bar{\psi}(x) \gamma^{\nu} \partial_{\nu} \psi(x), \tag{10}
\end{equation*}
$$

which proves in the invariance of $\mathcal{L}$.

## Problem 2

You were given a head-start on this problem in the lectures, but let's start from the beginning any way.

We recall first that when the Lagrangian transforms as

$$
\begin{equation*}
\mathcal{L} \rightarrow \mathcal{L}+\varepsilon \partial_{\mu} J^{\mu} \tag{11}
\end{equation*}
$$

under a field transformation $\phi(x) \rightarrow \phi(x)+\varepsilon f[\phi(x)]$, then the conserved current is

$$
\begin{equation*}
j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} f(\phi)-J^{\mu} . \tag{12}
\end{equation*}
$$

Now we consider the specific transformation that we're interested in:

$$
\begin{equation*}
\psi(x) \rightarrow \psi^{\prime}(x)=\psi(x)+\delta \psi(x) \tag{13}
\end{equation*}
$$

We need to find out what $\delta \psi(x)$ is for an infinitesimal transformation. We have previously derived that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}\right)=U_{\gamma}(\Lambda) \psi(x), U_{\gamma}(\Lambda)=\mathrm{e}^{\mathrm{i} \varepsilon_{\mu N} S^{\mu \mu} / 2} \tag{14}
\end{equation*}
$$

for an infinitesimal transformation $\varepsilon_{\mu v}$. Moreover, we know that

$$
\begin{equation*}
x^{\prime}=U^{-1}(\Lambda) x, U(\Lambda)=\mathrm{e}^{\mathrm{i} \varepsilon_{\mu v} J^{\mu \nu} / 2} \tag{15}
\end{equation*}
$$

where $J^{\mu \nu}=\mathrm{i}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)$. From now on, drop the argument $(\Lambda)$ in the $U$ and $U_{\gamma}$ operators for brevity of notation, but keep the important distinction between $U_{\gamma}$ and $U$. Taylor-expanding, it is seen that

$$
\begin{equation*}
\psi(U x)=U \psi(x) \tag{16}
\end{equation*}
$$

for an infinitesimal transformation $U=1-\varepsilon_{\mu v} J^{\mu \nu} / 2$ and using the definition of $J^{\mu \nu}$. Therefore, we have that

$$
\begin{equation*}
\psi^{\prime}(x)=\psi(x)+\frac{\mathrm{i}}{2} \varepsilon_{\mu v}\left(S^{\mu v}+J^{\mu v}\right) \psi(x), \tag{17}
\end{equation*}
$$

allowing us to identify:

$$
\begin{equation*}
\delta \psi(x)=\frac{\mathrm{i}}{2}\left[S^{\mu \nu}+\mathrm{i}\left(x^{\mu} \partial^{v}-x^{\nu} \partial^{\mu}\right) .\right. \tag{18}
\end{equation*}
$$

This expression gives us part of the conserved current [the $f$-term in Eq. [12)]. Next, we need to identify $\delta \mathcal{L}$ to see if there is a $J$-term as well. The transformed Lagrangian is

$$
\begin{align*}
\mathcal{L}^{\prime}(x) & =\mathcal{L}(x)+\delta \mathcal{L}(x)=\bar{\psi}^{\prime}(x)(\mathrm{iq} \nmid-m) \psi^{\prime}(x) \\
& =\psi^{\dagger}(U x) U_{\gamma}^{\dagger} \gamma^{0} \mathrm{i} \gamma^{\mu} \partial_{\mu} U_{\gamma} \psi(U x) \\
& -\psi^{\dagger}(U x) U_{\gamma}^{\dagger} \gamma^{0} U_{\gamma} \psi(U x) m . \tag{19}
\end{align*}
$$

For an infinitesimal transformation $U=1-\frac{1}{2} \varepsilon_{\mu \nu}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)$, we saw previously that $\psi(U x)=$ $U \psi(x)$. Using also that the $U_{\gamma}$ matrices are not unitary, since $U_{\gamma}^{\dagger}=\gamma^{0} U_{\gamma}^{-1} \gamma^{0}$, we obtain

$$
\begin{equation*}
\mathcal{L}^{\prime}(x)=\mathrm{i} U \bar{\psi}(x) \Lambda^{\mu}{ }_{\mathrm{v}} \gamma^{\nu} \partial_{\mu} U \psi(x)-U \bar{\psi}(x) U \psi(x) m . \tag{20}
\end{equation*}
$$

To obtain this equation, we made use of $\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}=U_{\gamma}^{-1} \gamma^{\mu} U_{\gamma}$ and that

$$
\begin{equation*}
\psi^{\dagger}(U x)=[\psi(U x)]^{\dagger}=[U \psi(x)]^{\dagger}=U \psi^{\dagger}(x) \tag{21}
\end{equation*}
$$

since the ${ }^{\dagger}$ means the complex conjugate and matrix transpose operation here, leaving the sign of the $\partial$ operators in $U$ unaffected by the ${ }^{\dagger}$ operation (unlike the ${ }^{\dagger}$ denoting an adjoint operator, defined from the inner product involving an operator, in which case $\partial_{\mu}^{\dagger}=-\partial_{\mu}$ ). In passing, we make note of the following property which will be useful later:

$$
\begin{equation*}
\left(\partial^{v} x^{\mu}-\partial^{\mu} x^{v}\right) \mathcal{L}=\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \mathcal{L} . \tag{22}
\end{equation*}
$$

Now insert into Eq. 20)

$$
\begin{equation*}
U=1-\frac{1}{2} \varepsilon_{\mu \nu}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right) \tag{23}
\end{equation*}
$$

and also $\Lambda^{\mu}{ }_{v}=\delta_{v}^{\mu}+\varepsilon_{v}{ }^{\mu}$ for our infinitesimal Lorentz-transformation. We then obtain [dropping from now on the argument (x) on all $\bar{\psi}$ and $\psi$ for brevity of notation]:

$$
\begin{align*}
\mathcal{L}^{\prime}(x) & =\mathrm{i} \bar{\psi} \partial^{\prime} \psi-\bar{\psi} m \psi \\
& +\left[-\frac{\mathrm{i}}{2} \varepsilon_{\mu v}\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \bar{\psi} \delta_{\sigma}^{\lambda} \gamma^{\sigma} \partial_{\lambda} \psi+\mathrm{i} \bar{\psi} \varepsilon_{v}{ }^{\mu} \gamma^{\nu} \partial_{\mu} \psi\right. \\
& \left.+\mathrm{i} \bar{\psi} \delta_{\sigma}^{\lambda} \gamma^{\sigma} \partial_{\lambda}\left(-\frac{1}{2}\right) \varepsilon_{\mu v}\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \psi+\frac{m}{2} \varepsilon_{\mu v}\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \bar{\psi} \cdot \psi+\frac{m}{2} \bar{\psi} \varepsilon_{\mu v}\left(x^{u} \partial^{v}-x^{v} \partial^{\mu}\right) \psi\right] . \tag{24}
\end{align*}
$$

After some simplifications, we can write this as

$$
\begin{align*}
\mathcal{L}^{\prime}(x)=\mathcal{L} & +\frac{1}{2} \varepsilon_{\mu v} \partial_{\lambda}\left[m\left(\eta^{\lambda v} x^{\mu}-\eta^{\lambda \mu} x^{v}\right)(\bar{\psi} \psi)\right] \\
& +\frac{\varepsilon_{\mu v}}{2}\left[2 \mathrm{i} \bar{\psi} \eta^{v \lambda} \gamma^{\mu} \partial_{\lambda} \psi-\mathrm{i}\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \bar{\psi} \cdot \partial^{\prime} \psi-\mathrm{i} \bar{\psi} \not \partial\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \psi\right], \tag{25}
\end{align*}
$$

where we, among other things, used that $\varepsilon_{v}{ }^{\mu}=\eta^{\sigma \mu} \varepsilon_{v \sigma}$ and afterwards renamed the indices for the corresponding term.

We're almost there now, hang in there a little while longer. First, we want to move the $x^{\mu}$ and $x^{\nu}$ in the last term to the left of the $\chi$. This is achieved by using the commutator

$$
\begin{equation*}
\left[\partial_{\lambda}, x^{\mu}\right]=\delta_{\lambda}^{\mu} \tag{26}
\end{equation*}
$$

and by using that the infinitesimal displacement tensor $\varepsilon_{\mu \nu}$ is antisymmetric. Moving the $x^{\mu}$ and $x^{\nu}$ terms past the $\chi^{\prime}$ in this way then cancels the first term on the second line: $2 \mathrm{i} \bar{\psi} \gamma^{\mu} \partial^{v} \psi$. We are then left with

$$
\begin{align*}
\mathcal{L}^{\prime} & =\mathcal{L}+\frac{\varepsilon_{\mu v}}{2} \partial_{\lambda}\left[-\left(\eta^{v \lambda} x^{\mu}-\eta^{\mu \lambda} x^{v}\right) \mathcal{L}_{m}\right] \\
& +\frac{\varepsilon_{\mu v}}{2}\left[-i\left(x^{u} \partial^{v}-x^{v} \partial^{\mu}\right) \bar{\psi} \cdot \partial \bar{\psi}-i \bar{\psi}\left(x^{\mu} \partial^{v}-x^{v} \partial^{\mu}\right) \not \partial \psi \psi\right] \tag{27}
\end{align*}
$$

where $\mathcal{L}_{m}$ is the $m$-dependent part of $\mathcal{L}$. Making use of Eq. (22) on the second line, we get

$$
\begin{align*}
\mathcal{L}^{\prime} & =\mathcal{L}+\frac{\varepsilon_{\mu v}}{2} \partial_{\lambda}\left[-\left(\eta^{v \lambda} x^{\mu}-\eta^{\lambda \mu} x^{v}\right) \mathcal{L}_{m}\right] \\
& +\frac{\varepsilon_{\mu v}}{2} \partial_{\lambda}\left[-\mathrm{i}\left(\eta^{v \lambda} x^{\mu}-\eta^{\lambda \mu} x^{v}\right) \mathcal{L}_{\text {kin }}\right] \tag{28}
\end{align*}
$$

where $\mathcal{L}_{\text {kin }}$ is the kinetic energy part of the Dirac Lagrangian. Since $\mathcal{L}=\mathcal{L}_{\text {kin }}+\mathcal{L}_{m}$, we have therefore arrived at

$$
\begin{equation*}
\mathcal{L}^{\prime}=\mathcal{L}+\frac{\varepsilon_{\mu v}}{2} \partial_{\lambda}\left[-\left(\eta^{\vee \lambda} x^{\mu}-\eta^{\lambda \mu} x^{v}\right) L\right] . \tag{29}
\end{equation*}
$$

Here, $\partial_{\lambda}$ acts on the $\psi(x), \bar{\psi}(x)$ terms in $\mathcal{L}=\mathcal{L}(x)$. By instead considering $\mathcal{L}$ as a function of $\psi, \bar{\psi}$, and $x$, i.e. $\mathcal{L}=\mathcal{L}(\Psi, \bar{\psi}, x)$, we can replace $\partial_{\lambda}$ with a total derivative $d_{\lambda}$ and thus identify

$$
\begin{equation*}
J^{\lambda \mu \nu}=-\left(\eta^{\nu \lambda} x^{\mu}-\eta^{\lambda \mu} x^{\nu}\right) \mathcal{L} . \tag{30}
\end{equation*}
$$

At long last, the conserved Noether current satisfying $d_{\lambda} j^{\lambda \mu \nu}=0$ is now established:

$$
\begin{equation*}
j^{\lambda \mu \nu}=\frac{\partial \mathcal{L}}{\partial\left[\partial_{\lambda} \psi(x)\right]}(i)\left[S^{\mu \nu}+\mathrm{i}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)\right] \psi(x)+\left(\eta^{\nu \lambda} x^{\mu}-\eta^{\mu \lambda} x^{\nu}\right) \mathcal{L} . \tag{31}
\end{equation*}
$$

If you managed to derive this current without looking at this solution, I am impressed.

