FY3464 Quantum Field Theory Problemset 1

SUGGESTED SOLUTION

Problem 1

We require that

$$
\begin{equation*}
\left(x^{\prime}\right)^{\mu}\left(x^{\prime}\right)_{\mu}=x^{\alpha} x_{\alpha} . \tag{1}
\end{equation*}
$$

Starting with the lhs, we get:

$$
\begin{equation*}
\left(x^{\prime}\right)^{\mu}\left(x^{\prime}\right)_{\mu}=\eta_{\mu v}\left(x^{\prime}\right)^{\mu}\left(x^{\prime}\right)^{v}=\eta_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} x^{\alpha} x^{\beta} . \tag{2}
\end{equation*}
$$

Consider now the rhs, which equals

$$
\begin{equation*}
x^{\alpha} x_{\alpha}=\eta_{\alpha \beta} x^{\alpha} x^{\beta} . \tag{3}
\end{equation*}
$$

Comparing the two equations, it is clear that

$$
\begin{equation*}
\eta_{\alpha \beta}=\eta_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} . \tag{4}
\end{equation*}
$$

As for the inverse, we note that Eq. (4) can be written as

$$
\begin{equation*}
\eta_{\alpha \beta}=\Lambda_{\alpha}^{\mu} \Lambda_{\mu \beta} . \tag{5}
\end{equation*}
$$

Multiply this by $\eta^{\beta \gamma}$ (and sum over β, as indicated by the repeated index):

$$
\begin{equation*}
\delta_{\alpha}^{\gamma}=\Lambda_{\alpha}^{\mu} \Lambda_{\mu}^{\gamma} . \tag{6}
\end{equation*}
$$

Comparing this with the definition of the inverse given in the problem text, we see that

$$
\begin{equation*}
\Lambda_{\mu}^{\gamma}=\left(\Lambda^{-1}\right)_{\mu}^{\gamma} . \tag{7}
\end{equation*}
$$

which is what we set out to prove (after renaming indices).

Problem 2

We get:

$$
\begin{align*}
H\left|\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots\right\rangle & =\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \omega(\boldsymbol{k}) a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\left(\prod_{i=1}^{N} \sqrt{2 \omega\left(\boldsymbol{k}_{i}\right)} a_{\boldsymbol{k}_{i}}^{\dagger}\right)|0\rangle \\
& =\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \omega(\boldsymbol{k}) \sqrt{2 \omega\left(\boldsymbol{k}_{1}\right)} \sqrt{2 \omega\left(\boldsymbol{k}_{2}\right)} \ldots \times a_{\boldsymbol{k}}^{\dagger}\left[a_{\boldsymbol{k}_{1}}^{\dagger} a_{\boldsymbol{k}}+(2 \pi)^{3} \delta\left(\boldsymbol{k}-\boldsymbol{k}_{1}\right)\right] a_{\boldsymbol{k}_{2}}^{\dagger} \ldots|0\rangle \\
& =\omega\left(\boldsymbol{k}_{1}\right)\left|\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots\right\rangle+\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \omega(\boldsymbol{k}) a_{\boldsymbol{k}}^{\dagger} \sqrt{2 \omega\left(\boldsymbol{k}_{1}\right)} \sqrt{2 \omega\left(\boldsymbol{k}_{2}\right)} \ldots \times a_{\boldsymbol{k}_{1}}^{\dagger}\left[a_{\boldsymbol{k}_{2}}^{\dagger} a_{\boldsymbol{k}}+(2 \pi)^{3} \delta\left(\boldsymbol{k}-\boldsymbol{k}_{2}\right)\right] a_{\boldsymbol{k}_{3}}^{\dagger} \ldots|0\rangle \\
& =\omega\left(\boldsymbol{k}_{1}\right)\left|\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots\right\rangle+\omega\left(\boldsymbol{k}_{2}\right)\left|\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots\right\rangle+\ldots \\
& =\sum_{i=1}^{N} \omega\left(\boldsymbol{k}_{i}\right)\left|\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots\right\rangle \tag{8}
\end{align*}
$$

Problem 3

Writing out the Poisson brackets explicitly, we have

$$
\begin{align*}
\dot{\phi}(\boldsymbol{x}) & =\int d \boldsymbol{x}^{\prime}\left(\frac{\delta \phi(\boldsymbol{x})}{\delta \phi\left(\boldsymbol{x}^{\prime}\right)} \frac{\delta H}{\delta \Pi\left(\boldsymbol{x}^{\prime}\right)}-\frac{\delta \phi(\boldsymbol{x})}{\delta \Pi\left(\boldsymbol{x}^{\prime}\right)} \frac{\delta H}{\delta \phi\left(\boldsymbol{x}^{\prime}\right)}\right), \\
\dot{\Pi}(\boldsymbol{x}) & =\int d \boldsymbol{x}^{\prime}\left(\frac{\delta \Pi(\boldsymbol{x})}{\delta \phi\left(\boldsymbol{x}^{\prime}\right)} \frac{\delta H}{\delta \Pi\left(\boldsymbol{x}^{\prime}\right)}-\frac{\delta \Pi(\boldsymbol{x})}{\delta \Pi\left(\boldsymbol{x}^{\prime}\right)} \frac{\delta H}{\delta \phi\left(\boldsymbol{x}^{\prime}\right)}\right) . \tag{9}
\end{align*}
$$

To compute these expressions, we need \mathcal{H} :

$$
\begin{equation*}
\mathcal{H}=\Pi \dot{\phi}-\mathcal{L}=\frac{1}{2}\left[\Pi^{2}+\left(\partial_{i} \phi\right)^{2}+2 \zeta \phi^{2}\right], \tag{10}
\end{equation*}
$$

where we used that $\Pi=\partial_{0} \phi=\partial^{0} \phi$. Since $H=\int d \boldsymbol{x} \mathcal{H}(\boldsymbol{x})$, we obtain:

$$
\begin{align*}
\frac{\delta H}{\delta \Pi\left(x^{\prime}\right)} & =\Pi\left(x^{\prime}\right), \\
\frac{\delta H}{\delta \phi\left(x^{\prime}\right)} & =\frac{\partial \mathcal{H}}{\partial \phi\left(x^{\prime}\right)}-\nabla \cdot \frac{\partial \mathcal{H}}{\partial\left[\nabla \phi\left(x^{\prime}\right)\right]}=2 \zeta \phi\left(x^{\prime}\right)+\partial_{i} \partial^{i} \phi\left(x^{\prime}\right) . \tag{11}
\end{align*}
$$

Note that ∇ has components $\partial_{i}=\frac{\partial}{\partial x^{i}}$, in effect it is a covariant derivative which thus differentiates with respect to contravariant variables. We also used that $\partial_{i}=-\partial^{i}$. The Poisson brackets in Eq. (9) then take the form:

$$
\begin{align*}
\dot{\phi}(x) & =\pi(x), \\
\dot{\Pi}(x) & =-2 \zeta \phi(x)-\partial_{i} \partial^{i} \phi(x) . \tag{12}
\end{align*}
$$

Eliminating Π from these equations, we arrive at the equation of motion:

$$
\begin{equation*}
\ddot{\phi}+\partial_{i} \partial^{i} \phi+2 \zeta \phi=0 \tag{13}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} \phi+2 \zeta \phi=0 . \tag{14}
\end{equation*}
$$

