FY3464 Quantum Field Theory
 Problemset 11

Problem 1

The term

$$
\begin{equation*}
\mathrm{i} \bar{\psi} \gamma^{5} \psi \tag{1}
\end{equation*}
$$

is Lorentz invariant. However, it violates CP symmetry. Prove that:

$$
\begin{equation*}
C P\left(\mathrm{i} \bar{\psi} \gamma^{5} \psi\right) P C=-\mathrm{i} \bar{\psi} \gamma^{5} \psi . \tag{2}
\end{equation*}
$$

Problem 2

Consider a $0+1$ fermionic harmonic oscillator. The path integral including source terms $\eta(t), \bar{\eta}(t)$ has the form

$$
\begin{equation*}
Z(\eta, \bar{\eta})=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\mathrm{i} \int d t\left[\bar{\psi}(t)\left(\mathrm{i} \partial_{0}-m_{0}+\mathrm{i} \varepsilon\right) \psi(t)+\bar{\eta}(t) \psi(t)+\bar{\psi}(t) \eta(t)\right]\right) \tag{3}
\end{equation*}
$$

Show in detail how it may be rewritten to

$$
\begin{equation*}
Z(\eta, \bar{\eta})=Z(0,0) \mathrm{e}^{-\int d t \bar{\eta}(t) S_{F} \eta(t)} \tag{4}
\end{equation*}
$$

where $S_{F}\left(t-t^{\prime}\right)$ is the analog of the Dirac propagator in 3+1 dimensions, satisfying:

$$
\begin{equation*}
\left(\mathrm{i} \partial_{0}-m_{0}\right) S_{F}\left(t-t^{\prime}\right)=\mathrm{i} \delta\left(t-t^{\prime}\right), \tag{5}
\end{equation*}
$$

and where we also defined

$$
\begin{equation*}
S_{F} \eta(t) \equiv \int d t^{\prime} S_{F}\left(t-t^{\prime}\right) \eta\left(t^{\prime}\right), \bar{\eta} S_{F}(t)=\int d t^{\prime} \bar{\eta}\left(t^{\prime}\right) S_{F}\left(t^{\prime}-t\right) . \tag{6}
\end{equation*}
$$

Hint: it may be useful to use the complete-square-and-shift-variables trick.

Problem 3

We saw in the lectures that if $m=0$ in the Dirac Lagrangian, the left-handed and right-handed spinors decouple. While this is clear mathematically, can you think of a physical argument for why this decoupling occurs, while it is not possible for $m \neq 0$?

